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ABSTRACT
A ’silent epidemic’ affecting millions worldwide every year is the
Traumatic Brain Injury. Management of these patients essentially
involves neuroimaging and noncontrast Computed Tomography
(CT) scans are the first choice amongst doctors. However, inter-
observer variability, considered ’Achilles heel’ amongst radiolo-
gists, can lead to missed diagnoses and grave consequences. This
paper presents a hybrid approach for semi-automated classification
of CT features according to Marshall CT Scheme. The proposed
method uses template matching, artificial neural networks and ac-
tive contours for segmentation of significant anatomical landmarks
and estimation of haematoma volume on brain CT scans. The pro-
posed method is efficient and robust in segmenting cross-sectional,
noncontrast CT scans and has been evaluated on images from sub-
jects with different ages and both genders. The hybrid method has
an average ICC ≥ 0.97 and Jaccard Index ≥ 0.86 compared
with the manual demarcations by radiology experts and performs
better than the state of the art. Hence, the approach can be used
to provide second opinions very close to the experts’ intuition.
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1. INTRODUCTION
Traumatic Brain Injury (TBI) is one of the serious public health
problems affecting millions worldwide every year. Also called a
’Silent Epidemic’ it affects all age groups and both genders [6, 17].
While the severity of the injury can range from mild to severe, the
high mortality and morbidity rates due to TBI can be attributed to
the fact that the extent of injury is often difficult to be accurately
reported by doctors making prognosis nearly impossible to pre-
dict [15]. Management of TBI cases essentially involves suggesting
neuroimaging and noncontrast Computed Tomography (CT) scans
are the first choice amongst doctors due to widespread availability
and the less time taken to perform the scan.
The emergency clinical approach includes neurophysiological ex-
amination and assessment of the severity of the trauma in using
CT classification schemes such as one proposed by Marshall et al.

(Fig. 1) to help establish diagnosis, prognosis, mortality, morbidity
and hospitalization time after trauma [10]. The initial noncontrast
CT carries significant prognostic value and combined with other
clinical parameters, can be helpful in prediction of long-term out-
comes [17].
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Fig. 1: Marshall et al. CT Rating representing categories of abnormalities
seen on CT scans. [10]

However, depending upon the perceptual skills, deduction and
knowledge of the observers, the interpretation results are often
fraught with variability and can lead to errors. Postmortem stud-
ies show that up to 20% of fatal illness can be misdiagnosed [9].
A study conducted to investigate performance of junior doctors in
accident and emergency (A&E) to diagnose significant x-ray re-
ported that only 32% of junior doctors correctly diagnosed the ill-
ness while the average performance of the senior doctors was 80%
[11]. Errors in interpretation of medical images can be avoided with
double reporting and to this end, the potential of using computer-
aided diagnosis (CAD) in mainstream radiology is quite encourag-
ing [14, 13]. The results from CAD are frequently used as ”second
opinion” by the observing clinicians, however, their usage requires
manual intervention (and seeding) and most of the proposed tech-
niques are not fast enough to be used on a large volume of data.
Computer aided quantitative radiology and volumetry studies of the
anatomical structures have been undertaken by many researchers
utilizing techniques from image processing and machine learning
domains [13]. An important first step in such systems, segmenta-
tion, provides a pertinent representation of image information and
a surfeit of methods have been proposed [18]. Manual demarcation
of regions of interest are still considered ’gold standard’, however,
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Fig. 2: Measurements on Axial CT Scans manually annotated by radiology
experts.

these are time consuming and a robust and efficient method is re-
quired to assist the users.
Segmentation algorithms that are not spatially guided, usually clus-
ter the pixels intensities to generate regions of interest. The useful-
ness of spatially blind methods is not at par with the performance
of spatially guided algorithms because these can generate disjoint,
quasi-homogeneous regions and extensive user interaction and pa-
rameter tweaking required by these is not favourable in clinical
settings [14]. Techniques such as simple linear iterative clustering
(SLIC), adapt K-means approach and cluster pixels into superpix-
els [2]. The input image is divided into small user-defined sections,
which are the initial superpixels, and then the centres of these are
used for computing the mean of clusters. Iterations update the re-
gions and the location of centres. Based on the distance of the pix-
els from the cluster centre, a label is assigned and the process is
repeated until the error between successive cluster centres falls be-
low the defined threshold [1]. The algorithm, however, intrinsically
depends upon the selection of size of the initial superpixels which
needs to be changed based on the size of the respective region of
interest as reported by [16].
On the contrary, the neighbourhood information can result in bet-
ter segmentation taking into account the spatial characteristics of
medical images [13]. Techniques such as region growing and merg-
ing, active contours and level sets preserve the spatial relationship
between the pixels and neighbourhood information [18]. The ap-
plication of active contours for segmentation of the neuroimages
has gained significant popularity in the recent years [20, 19, 5, 16].
The underlying principle of active contours is to deform a bound-
ary around the region of interest to achieve the required segmenta-
tion. The implementation by Chan-Vese is considered state of the
art when the edges are not used to differentiate between the re-
gion of interest (ROI) and non-ROI [4]. Medical images, such as
brain CT, mostly present regions of interest without hard, distinct
edges and active contours not relying on gradient based edges can
produce better results of segmentation. However, placement of the
initial seed curve still poses a constraint on the evolution of the
curve and has to be performed manually by the user. Similarly, if
distinct edges are not considered, the evolving curve can creep into
the surrounding regions based on pixel intensity.
Several hybrid methods have been proposed to segment regions in
brain CT images. Bhadauria et al. proposed combination of Fuzzy
C-Means clustering and region-based active contour to segment
the haemorrhage region [3]. They used clustering to find an ini-
tial mask and then propagate it to the haemorrhage boundaries us-
ing region-based active contour. An automatic procedure based on
modified distance regularized level set (DRLSE) has been proposed
by Prakash et al. to segment haemorrhage in brain CT images [12].
Their method first creates a general intensity mask defined by a
set of DRLSE parameters to localize the region rapidly. Then the

region boundaries are identified in another level set step by choos-
ing the parameters so that more accurate boundaries are detected.
This method is sensitive to initial threshold values and can creep
beyond boundaries when the normal brain tissue and trauma have
very close intensity values.
An improvement of the DRLSE based segmentation was proposed
by [16]. In that method, the pixels are first classified using SLIC and
then the results are fed into the DRLSE algorithm to delineate the
final segmentation. The proposed method has been implemented on
brain trauma CT and results show improvement from the DRLSE
algorithm. However, the performance of SLIC is highly dependant
on the selection of the parameters of the algorithm.
Machine learning and computational intelligence has recently seen
an extensive and tenable integration in medical problems based on
the premise that these systems can adaptively learn and optimize
the relationship between inputs and outputs [7]. An artificial neu-
ral network (ANN), such as the feedforward net, can fit a given
finite input-output mapping problem and their use in medical im-
age processing highlights their efficiency in automatic delineation
of the ROI as proposed by [14, 13]. Medical images e.g., CT scans,
usually have inhomogeneity of background and noise; and recogni-
tion of ROI in 2-D images with such characteristics using ANN has
given plausible results. Furthermore, ANN’s can be trained using
a few representative images which have been manually annotated
and labelled in order to learn to recognize the ROI, and the process
later on becomes automated requiring no interaction from the user
to provide initial location of the ROI [13].
The significance of classifying TBI CT scans has been high-
lighted by related literature, however, there is still a gap requir-
ing a computer-aided system for performing segmentation, mea-
surements and classification of CT scans in a semi-automated ap-
proach. In this paper, a hybrid approach using template matching,
artificial neural networks and active contours is presented. The pro-
posed method efficiently segments and robustly performs linear
measurements on axial CT scans of brain based on the approach
proposed by [14, 16, 13], and classifies CT according to Marshal
et al. Scheme. The hybrid method can identify cerebrospinal fluid
(CSF) spaces i.e., cisterns and ventricles, detect midline shift and
estimate volume of intracranial haematomas. The rest of the paper
is organized as follows. Section 2 describes the methodology of
pre-processing, processing and analyses steps. Section 3 presents
and discusses the results and the paper is concluded in section 4.

2. METHODOLOGY
The proposed method uses ANN to identify ROI for segmentation
from the input images. The binarized pixels from the ANN’s output
act as initial seeding point for active contour based segmentation.
Measurements of segmented ROI are then used for calculating the
length and breadth of the haematoma or the ventricles (Fig. 2) on
the respective axial slice. The input images are DICOM (Digital
Imaging and Communications in Medicine) files and the training
set (with PNG files) has been manually segmented and measured by
radiology experts. The dataset used for training, validation and test-
ing consists of cross-sectional, noncontrast CT studies from sub-
jects of both genders and different ages.
The proposed algorithm only requires the clinician to manually se-
lect the key slice, hence, it is semi-automated. Thereafter, all the
subsequent steps are fully automatic and do not require any user
interaction.
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2.1 Estimation of brain midline
Midline in the brain is an important reference point for assessing
the severity of injuries and pathological conditions. It is an anatom-
ical imaginary line formed by the falx cerebri and passes through
the septum pellucidum.

(a) (b)

Fig. 3: Manual annotation of the haematoma (red) and midline shift (green)
on brain CT scans by radiology expert.

The first step is to align the head into proper orientation on the
CT image to ensure that the reference points for measurements are
properly identified. The skull boundaries are extracted using Canny
edge detection with σ = 2 and threshold = [0.5 0.2] in the ex-
periments as these suppress detection of spurious edges. The cen-
troid of the skull boundary is detected which should lie on an ideal
midline. The CT scan containing nose of the patient is selected as
reference and using morphological dilation with ’disc’ structuring
element and grey level thresholding, the skull is extracted and sub-
jected to ’Canny’ edge detection (Fig. 4). The dilation of X by Y is
defined as:

X ⊕ Y =
⋃
Xy (1)

The region properties give the convex hull enclosing the skull and
the orientation of the major axis of the edge θ1 with respect to the
ideal midline passing through the centroid. In addition, demarcat-
ing the bony protuberance of the anterior and posterior falx cerebri
attachments provide the orientation angle θ2 as shown in Fig. 5.
These bony landmarks are usually not affected in traumatic and
pathological cases in which the brain parenchyma may show ab-
normalities. The rotation angle Θ is then estimated by ensuring that
the directions of θ1 and θ2 agree. The rotation angle Θ has to be
corrected with reference to the skull centroid as shown in Fig. 5.
The brain midline passes through the septum pellucidum. A set of
32 template images is created using the experts’ annotations. Us-
ing cross correlation and sum of squared difference for template

(a) (b) (c)

Fig. 4: Estimation of tilt of head in CT Scans. Image (a) shows rotation of
the head during CT scan procedure with reference line passing through cen-
troid. Image (b) is the result of morphological dilation and gives estimation
of tilt (θ1) towards right of patient. Image (c) is the final rotated CT.

(a) (b) (c)

Fig. 5: Correction of orientation of head in CT Scans using anterior bony
protuberance. Image (a) shows tilted head during CT scan procedure. Image
(b) shows the estimation of anterior bony protuberance giving θ2 and image
(c) is correction of orientation (Θ = −3.35◦).

(a) (b) (c)

Fig. 6: Template matching for Septum Pellucidum. Image (a) is a template
of the septum pellucidum region. Images (b) shows the identified location
of septum pellucidum using NCC. Image (c) also shows the estimation of
midline shift (13.5mm towards left) in the respective case.

matching, the septum pellucidum is located and used as a landmark
for locating the midline (Fig. 6). The normalised cross-correlation
(NCC) of a template, t(x, y) with a subimage f(x, y) can be cal-
culated as given in equation (2).

NCC =
1

n

∑
x,y

(f(x, y)− f̄)(t(x, y)− t̄)
σfσt

(2)

Where n is the number of pixels, f̄ and σf are the average and
standard deviation of f respectively and t̄ and σt are the average
and standard deviation of t respectively.
Identifying the septum pellucidum and its location with reference
to skull can be used for measuring the midline shift which is an
important clinical feature in assessment of traumatic or patholog-
ical conditions and a shift > 5mm is a factor for differentiating
between Rating III and Rating IV (and above) in Marshal et al.
scheme. Similarly, the appearance of haematoma changes with time
and at some point between 3 and 21 days, it can become isodense
to the adjacent cortex, making identification potentially tricky. In
such cases, visualising a number of indirect signs such as mass ef-
fect, sulcal distortion and midline shift are significantly important,
life-saving indicators.

2.2 Pixel classification using ANN
An input image is represented as an (n×m) matrix X =
{xij}, i = 1 . . . n, j = 1 . . .m, whose pixels can either belong
to a region of interest class Ω0 or to a non region Ω1. A rectan-
gular window P, which is a (k × k) matrix containing the central
pixel xij and r − 1 nearest pixels, where r = k2, is slid through
the image X. The sliding window transforms the image X into an
r × q matrix where q = (n− k + 1) (m− k + 1) and the central
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element of a column vector, hence, represents the pixel xij of the
input image. In the experiments, a sliding window with k = 5 gave
the optimum results. In addition, statistical features (Mean, Me-
dian, Standard deviation, Shannon’s Entropy and Discrete Fourier
Transform (DFT) are extracted and constitute the feature vectors in
Z. For the identification of cisterns, the spatial location of pixels
of region of interest also constitutes the feature vectors. The results
in Fig. 7 represent performance in terms of receiver operator char-
acteristic (ROC) curves. It is observed that ANN trained on these
features give better results when a combination of the features con-
stitutes the feature vector as compared to using them individually.

(a)

(b)

Fig. 7: Receiver Operator Characteristic (ROC) curves of ANN’s perfor-
mance based on difference image features. Image (a) represents perfor-
mance with individual statistical features extracted from the images: neigh-
bourhood, mean, median, std. dev., entropy and DFT. The image (b) shows
the performance when the feature vector comprises of their combination.

The matrix Z is fed to the Feedforward ANN with one hidden
layer of 10 neurons and the output neuron makes a decision yc =
{0, 1}, c = 1 . . . q, thus, classifying the image pixels to classes Ω0

or Ω1 which represent non-region of interest and region of interest,
respectively. The Levenberg-Marquardt backpropagation function,
which is highly recommended as a first-choice supervised algo-
rithm, is used in addition to scaled conjugate gradient, Bayesian
regulation, BFGS quasi-Newton and Gradient descent with mo-
mentum and adaptive learning rate backpropagation, however, Ja-
cobian training is not supported on GPU in Matlab.
The ANN is trained with the aim to minimize an error function ε for
a given number of training epochs. The error is calculated as mean

square error (MSE) as given in Eq. 3 with n samples, YO outputs
and YT targets.

ε =
1

n

n∑
i=1

(YO − YT )2 (3)

(a) (b) (c) (d)

(e)

Fig. 8: Comparison of the classification of pixels into probable ROI using
SLIC (a)-(d) and ANN (e). It is observed that the ANN based classification
results in better approximation of the haematoma as compared to the jagged
results from SLIC.

(a)

(b)

Fig. 9: Pixel classification with ANN. Images (a) and (b) show the input
image (left column) and the pixels identified within the ROI (right column).
However, there are some misclassified pixels, which are spatially disjoint
with the ROI, because of similar pixel intensities.
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The CT images, whose pixels are manually annotated by radiology
expert (e.g., Fig 3), are used and the ANN is trained to approx-
imate these. The pixel classification by ANN gives better results
as compared to SLIC superpixels which require a lot of param-
eter setting (Fig.8). The different ROI’s require different ANN’s
because of their intensity characteristics. The Fig. 9 depicts pix-
els of haematomas classified by respective ANN. The approach is
implemented to identify ROI which represent subdural or epidu-
ral haematomas. The output from the ANN can then be differen-
tiated into classes Ω0 or Ω1 by the squashing (transfer) function.
In the experiments, pure linear, saturated linear and the hyperbolic
tangent sigmoid functions produced better differentiation than the
log sigmoid functions. For further experiments, pure linear function
was used as squashing function.

2.3 Segmentation of CSF spaces and Haematomas
The training images have their pixels manually labelled and as-
signed either to class Ω0 or Ω1 by a radiology expert (Fig. 3) and
the ANN is trained to approximate these. The approach is imple-
mented to identify regions which represent subdural or epidural
haematomas, ventricles and cisterns. The ANN classifies pixels be-
longing to either the ROI or to the non-ROI. Due to the character-
istics of the imaging modality, some pixels with similar intensity
values could get classified as false positives although they are spa-
tially disjoint from the pixels of the ROI. These regions are further
refined using active contours as subsequently described.
The active contour method (using ’Edge’ or ’Chan-Vese’ imple-
mentations ) doest not give plausible results and segmentation dete-
riorates due to the size and placement of the initial seed curve. The
initial curve has to be manually placed by the user inside the ROI
in the form of a polygon and it then evolves to fit the ROI, which is
a tedious and time consuming approach. It can also make the seg-
mentation results vary when there is slight difference in the shape
of the initial polygon curve entered by user. The ’Chan-Vese’ and
’Edge’ implementations were run for 100, 200 and 400 iterations
for each input image and there was no curve evolution observed
beyond 400 iterations. The maximum Jaccard Index (JI) of ’Edge’
based method is 0.3312 and with ’Chan-Vese’, it is 0.6626 and the
segmentation is shown in Fig. 10. The maximum Dice’s coefficient
observed is 0.4976 and 0.7970 with ’Edge’ and ’Chan-Vese’ im-
plementations respectively.
In the proposed approach, the initial curve for the active contour
is extracted from the binarized ANN output using edge detection.
Hence, the initial curve automatically gets seeded and provides the
necessary seeding mask. The result of haematoma segmentation us-
ing hybrid approach is shown in Fig. 10d which gives better delin-
eation of the ROI. The Fig. 11 presents segmentation of three cases
using the proposed hybrid approach.
It should be noted, however, that the CT is a mirror image of the
anatomy of the patient as the CT is visualized from below upwards.
Hence, the presentation of haematoma on the left on CT is actually
right side of the patient’s brain and vice versa. Also, For most of the
TBI cases, the location of haematoma is usually 60% temporopari-
etal, 20% frontal and 20% parieto-occipital.

2.4 Measurements and Estimation of Volume
The CT scan studies in DICOM format are viewed using ’brain
window’ (width = 80, length = 40) with image size of 512 × 512
pixels. A radiology expert then provided the measurements which
are stored for comparison with automatic measurements by the al-
gorithm.

(a) (b)

(c) (d)

Fig. 10: Segmentation results from Active contour based approaches. Green
curve shows the active contour while red is the manual demarcation. Im-
age (a) shows output with edge based approach which undersegments, im-
age (b) is the result of ’Chan-Vese’ method in which the curve creeps into
the adjacent skull bone outside the ROI and image (c) is result of DRLSE
which fails to recognise haematoma as ROI. Image (d) is the result of hybrid
method closely approximates the ROI.

(a) (b) (c)

(d) (e) (f)

Fig. 11: Segmentation results from hybrid approach. Green curve shows
the active contour while red is the manual demarcation. Bottom row shows
magnified images corresponding to top row.

The contiguous image regions from step 2.3 are used by the algo-
rithm to determine measurements such as extrema, area, orientation
and axes lengths. This identifies and counts the number of pixels in
respective linear measurements and this is divided by spatial resolu-
tion of the respective study to give the measurements. The volume
of intracerebral hematoma was calculated according to the formula
V = a×b×c

2
, where a is the largest diameter of haematoma, b the

largest diameter normal to a , and c is the approximate number of

5



International Journal of Computer Applications (0975 8887)
Volume 113 - No. 9, March 2015

CT slices with haemorrhage multiplied by the slice thickness. This
equation of volume of ellipsoid assumes π ≈ 3 for simplification
[8]. The brain CT scans used in experiments were obtained using
brain protocol on Toshiba Activion 16, with 1mm slice thickness
and pixel spacing of 0.468/0.468 in the x, y axes in the 16-bit,
512 × 512 pixel DICOM images and from Philips Brilliance 16
with 5mm slice thickness and pixel spacing of 0.354/0.354.

(a) (b) (c)

Fig. 12: Output of the proposed method. Image (a) shows a grid overlaid on
the supra cellar cistern, (b) demarcates the ventricles and (c) identifies the
haematoma.

3. RESULTS AND DISCUSSION
The technique has been applied on 109 anonymized, cross-
sectional, noncontrast CT studies from different subjects with ages
between 5 to 85 years and both genders. Out of these, 51 cases
with haematomas are used for volume estimation and a total of 866
CT sclices with intracranial bleeds are analysed. Two radiology ex-
perts had independently performed manual segmentation and pixel
labelling of 20 cases to be used for training. The experts also pro-
vided measurements and judgements for all cases.
Midline in the brain is an important reference point for assessing
the severity of injuries and pathological conditions and in Marshall
et al. CT Classification, it is the significant characteristic of rating
IV and above. There can be mild to moderate shift but the resulting
manifestations can be quite serious and a shift > 5mm is con-
sidered a surgical emergency. The proposed method shows robust
performance in detecting tilted head of the patient during the scan
procedure and corrects it for proper subsequent measurements (ta-
ble 1). For evaluation, true positives (TP), true negatives (TN), false
positives (FP) and the false negatives (FN) are calculated for esti-
mating sensitivity and specificity.Sensitivity reflects the algorithm’s
ability to identify the given condition correctly and is calculated as:

Sensitivity =
TP

TP + FN
(4)

Similarly, specificity relates to the ability to exclude a condition
correctly and is calculated as:

Specificity =
TN

TN + FP
(5)

The sensitivity and specificity of the approach used for correction
of orientation of the head are 83% and 67%, respectively, while
considering the orientation as either tilted or normal (boolean). The
method uses the anterior and posterior bony protuberance of the
skull as landmarks and rotates the image accordingly so that the
ideal midline would be approximately vertical. The midline shift
is classified as either > 5mm or none (boolean), and the average

Table 1. : Performance of Proposed Method

CT Feature Sensitivity Specificity
Correction of Orientation 83% 67%
Midline Shift, Class≥ IV 89% 80%

performance of the proposed method is 89% and 80% in terms of
sensitivity and specificity, respectively.
The Jaccard Index (JI) or coefficient is used to measure similarity
between ground truth and segmentation results. JI measures simi-
larity between finite sets and is defined as:

J(M,A) =
|M ∩A |
|M ∪A |

(6)

Where M is the set of pixels from manual segmentation, A is the
output of the proposed algorithm and 0 ≤ J(M,A) ≤ 1. JI, hence,
is 0 when there is no overlap between the experts’ demarcation (M )
and algorithm’s approximation (A) and is equal to 1 when there
is perfect overlap. Consequently, values close to 1 indicate better
performance. Another measure which not very different from JI is
Dice’s coefficient and is also used to quantify the performance of
the proposed method and is calculated as:

D =
2J

(1 + J)
(7)

where J is the Jaccard index calculated earlier. Compared to the
performance of state of the art active contours which had JI of
0.5667 ± 0.2052 with ’Chan-Vese’ method, the hybrid approach
shows JI of 0.8689 ± 0.042 when a feedforward net is used for
initial classification of pixels for subsequent segmentation. The re-
sults are given in Table 2 which shows JI and Dice’s coefficient
based evaluations.

Table 2. : Performance of proposed approach using Feedforward Neural
Net with active contours compared with Chan-Vese approach, DRLSE and
SLIC with DRLSE.

Method Jaccard Index Dice’s coefficient
Active Contour (Chan-Vese) 0.5667± 0.2052 0.7271± 0.156

DRLSE 0.518± 0.11 0.675± 0.099

SLIC + DRLSE 0.807± 0.067 0.892± 0.043

Proposed method 0.8689± 0.042 0.9169± 0.02

The intraclass correlation coefficient (ICC) assesses rating relia-
bility by comparing the variability of different ratings of the same
subject (e.g., CT scan) to the total variation across all ratings and all
subjects. It is a descriptive statistic used for the assessment of con-
sistency or reproducibility of quantitative measurements made by
different observers measuring the same quantity and generally fo-
cuses on how well the observers’ scores matched the ground truth.
For pooled variance σ2(w) within subjects and variance of traits
σ2(b), the ICC is given as:

ICC =
σ2(b)

σ2(b) + σ2(w)
(8)

The intraclass correlation coefficient (ICC) was calculated using
MedCalcrto compare the results with experts to ascertain reliabil-
ity of measurements. Linear measurements from experts and our
algorithm show ICC range from 0.91 to 0.99 and the results are
given in table 3. The identification of the cisterns showed an ICC of

6



International Journal of Computer Applications (0975 8887)
Volume 113 - No. 9, March 2015

≥ 0.91 which can be improved by adding shape constraint to iden-
tify supra cellar and the quadrigeminal cisterns more accurately.

Table 3. : Identification of ROI on the axial CT scans.

Region of Interest ICC
Supra cellar cistern 0.91
Lateral ventricles 0.97
Intracranial haematoma 0.99

The optimum testing performance of the feedforward ANN was
88.9% to segment the image. Increasing or decreasing the number
of hidden layers or neurons in ANN did not significantly improve
the performance and the average performance was 87.4−88.9% in
training and testing. The technique was also evaluated using pattern
net with 87.2−88.0% performance, while the cascade-forward net
had average performance of 84.1− 87.2%.
A t-test is a statistical hypothesis test following Student’s t distribu-
tion if the null hypothesis is supported. The paired t-test considers
the difference between paired values in observations from the al-
gorithm and expert, estimates the variation of values within each
and produces a single number known as a t-value. It represents if
two sets of observations are significantly different from each other
resulting in the acceptance or rejection of the null hypothesis. It is
calculated as:

t =
x̄1 − x̄2 −∆√

s21
n1

+
s22
n2

(9)

where x̄1, s1 and n1 are mean, standard deviation and number of
observations in algorithm’s output and x̄2, s2 and n2 are mean,
standard deviation and number of observations in expert’s anno-
tations, respectively. The ∆ is the hypothesized difference between
the means. In the experiments, n1 = n2 and the ∆ = 0 are used.

Table 4. : Estimation of Haematoma Length with different methods in brain
CT Scans. The ∆ = 0 at α = 0.05.

Groups Mean Std. Dev. Std. Err. t
Expert 7.849 2.053
Proposed Method 7.876 1.970

Difference -0.027 0.336 0.047 -0.583
Chan-Vese 9.014 2.344

Difference -1.165 1.211 0.170 -6.866
Edge 7.179 2.607

Difference 0.670 1.736 0.243 2.754

Table 5. : Two Tail t-test on estimation of Haematoma Length with different
active contour methods.

Method p-value t-crit lower upper Sig.
Chan-Vese
method

9.7E-09 2.0E+00 -1.5E+00 -8.2E-01 yes

Edge method 0.008 2.009 0.181 1.158 yes
Proposed
method

0.563 2.009 -0.122 0.067 no

The paired t-test evaluation of the proposed method against experts’
annotation and state of the art methods is given in Tables 4 - 7.
The null hypothesis assumes that there is no statistically significant

Table 6. : Estimation of Haematoma Breadth with different methods in brain
CT Scans. The ∆ = 0 at α = 0.05.

Groups Mean Std. Dev. Std. Err. t
Expert 3.745 1.206
Proposed Method 3.755 1.241

Difference -0.010 0.259 0.036 -0.270
Chan-Vese 4.380 1.112

Difference -0.635 0.751 0.105 -6.039
Edge 3.341 1.213

Difference 0.404 0.676 0.095 4.266

Table 7. : Two Tail t-test on estimation of Haematoma Breadth with different
methods.

Method p-value t-crit lower upper Sig.
Chan-Vese
method

1.9E-07 2.0E+00 -8.5E-01 -4.2E-01 yes

Edge method 8.8E-05 2.0E+00 2.1E-01 5.9E-01 yes
Proposed Al-
gorithm

0.788 2.009 -0.083 0.063 no

difference (∆ = 0) in the measurements between algorithms and
experts. The results of estimating the measurements of the major
and minor axes of the haematoma ellipse show that the state of
the art Chan-Vese and Edge models have statistically significant
difference in the measurements. This rejects the null hypothesis for
the state of the art. The performance of the proposed method has no
significant difference from the hypothesized mean and, hence, the
null hypothesis is not rejected.
The experiments were performed using Matlab R© R2013b on Mac
OS X and Windows 7 platforms. The Jacobian training of ANN is
not supported on GPU in Matlab R2013b and in those cases, only
CPU was used.

3.1 Correlation to the Marshall CT Classification
The information gathered from the clinical and imaging profile of
the patient is used by the doctors to ascertain the diagnosis, plan
treatment and most importantly, establish the prognosis. From the
tables 1 and 3, it can be seen that the method can efficiently detect
ROI for use in Marshall et al. CT Classification. The significant
features: cisterns and ventricles, midline shift and haematomas are
identified and measured automatically by the method. The com-
pressed or absent cisterns are seen in Marshall et al. ratings II and
III while midline shift classifies IV and above. The presence of
mixed or high density lesion > 25cm3 is classified as rating VI.
When these characteristics are not identified, the CT would fall in
rating I or normal. The performance evaluation is given in Table 8.

Table 8. : Classification of the brain trauma CT according to Marshall et al.
CT Rating.

Marshall CT Class Feature ICC
I or II Cisterns and Ventricles 0.91 and 0.97
III or IV Midline Shift 0.98
V or VI Lesion > 25cm3 0.99

Since the experiments were conducted on the cross-sectional, non-
contrast CT studies performed at the time of admission of within
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early hours of injury, none of the patients had the mass lesions re-
moved at that time. Hence, no CT with Rating V were used in the
experiments.

4. CONCLUSION
Manual demarcation of ROI by expert radiologists is still consid-
ered gold standard, however, the proposed approach has shown
plausible results with 87.4 − 88.9% accuracy with ANN in seg-
menting the different ROI’s rquired for Marshal et a. CT classifi-
cation. JI of 0.8689± 0.042 was achieved with feedforward ANN
and active contours in segmenting the haematoma. Correction of
orientation of head and detection of midline shift > 5mm showed
sensitivity of 85% and 80% and specificity of 75% and 86% respec-
tively. The midline shift is the characteristic of Marshall et al. CT
classes IV and above and, hence, quantifying it can significantly
help the doctors in the emergency department.
The ICC results were ≥ 0.91 compared with experts in identify-
ing cisterns as regions of interest and ≥ 0.97 for ventricles and
haematomas. As the manual annotations were performed be expert
radiologists, the ICC performance of the method can be quite use-
ful for the junior doctors in the reducing the inter-observer variabil-
ity. It can also be seen that the hybrid approach adapts well to di-
verse image characteristics and the performance is very close to the
doctor’s intuition compared to the state of the art active contours
method as shown by the paired t-test results. The combination of
ANN with active contours gives significantly improved segmenta-
tion than using SLIC with level sets.
Interpretation of the medical images by the radiologists is fraught
with errors and variations which represent the weakest aspect of
clinical imaging. Research efforts to correlate image features to
clinical outcomes are imperative for differential diagnosis, prog-
nostic assessment, pre-surgical mapping and treatment planning in
patients, these endeavours are fettered by the time and effort re-
quired to manually report clinical findings. Hence, it is proposed
that integration of automated systems in clinical and research set-
tings can significantly reduce the radiologists’ workload and inter-
observer and intra-observer variability.
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