Structural Pattern Analysis in Telecom Social Networks

Pushpa Ravikumar, Ph.D. Adichunchanagiri Institute of Technology Chikmagalur Karnataka, India

ABSTRACT

The social network perspective emphasizes multiple levels of analysis. Differences among Customers are traced to the constraints and opportunities that arise from how they are embedded in networks, the structure and behavior of networks grounded in, and enacted by local interactions among customers. This paper addresses the local connections of customers in which it deals with social behavior of the whole population, as well as for understanding each individual. However this paper explains the structural patterns of Telecom social network in the form of network connection analysis and network distance analysis. A social network connection involves Demographics, density, reachability and connectivity of customers who are embedded in the network. Network distance analysis describes the walks, geodesic distance and flow between the customers. Populations with high density respond differently to challenges from the environment than those with low density, populations with greater diversity in individual densities may be more likely to develop stable social differentiation and stratification.

General Terms

Data Mining, Social Network Analysis

Keywords

Reachability, Demography, Connectivity, Geodesic, Density, Walks Reachability.

1. INTRODUCTION

A social network consists of a set of customers and one or more types of relations between them, Such as information exchange or economic relationship. The Customer is a social entity. It could be a person or any other entity for which a relationship with another entity could be defined [1]. The relationship between a pair of Customers is called a tie, link or pair. Each link may be directed or undirected, binary (present or absent) or weighted (a set of values, usually with higher value implying stronger relationship).Links could also be of particular types, e.g., friendship, kinship. All links of the same type can be grouped together as a relation. A dyad consists of a pair or Customers and the ties between them. A triad is a subset of three Customers and the ties among them. Relationship among larger subsets of Customers includes the subgroups or a group.

Social network encompasses a set of customers and all the relations that could be defined on them. Usually depending on the number of Customer type's n, a social network may be identified as being an n-mode network. A Social network analysis focuses on relations and ties in studying of customer's behavior and attitudes. Thus the position of the Customers within a network and strength of ties between them become critically important. Social position can be evaluated by finding the centrality of a node identified through a number of connections among network members. Such measures are used to characterize degrees of influence, prominence and

importance of certain members. Ties strengths mostly involve closeness of bond.

Differences among individuals in how connected they are can be extremely consequential for understanding their attributes and behavior. More connections often mean that individuals are exposed to more and more diverse, information. Highly connected individuals may be more influential, and may be more influenced by others. Differences among whole populations in how connected they are can be quite consequential as well. The information spreads more quickly where there are high rates of connection. In between the individual and the whole population, there is another level of analysis called composition. Some populations may be composed of individuals who are all pretty much alike in the extent to which they are connected. Other populations may display sharp differences, with small elite of central and highly connected persons, and larger masses of persons with fewer connections. Differences in connections can tell us a good bit about the stratification order of social groups. The second major set of approaches in basic network analysis is the distance between Customers (or, conversely how close they are to one another). Some Customers may be able to reach most other members of the population with little effort: they tell their friends, who tell their friends, and everyone knows. Other Customers may have difficulty being heard. They may tell people, but the people they tell are not well connected, and the message doesn't go far. Thinking about it the other way around, if all of my friends have one another as friends, my network is fairly limited even though I may have quite a few friends. But, if my friends have many nonoverlapping connections, the range of my connection is expanded.

If individuals differ in their closeness to other Customers, then the possibility of stratification along this dimension arises. Indeed, one major difference among social classes is not so much in the number of connections that Customers have, but in whether these connections overlap and constrain or extent outward and provide opportunity. Populations as a whole, then, can also differ in how close Customers are to other Customers, on the average. Such differences may help us to understand diffusion, homogeneity, solidarity, and other differences in macro properties of social groups.

2. LITERATURE SURVEY

In this section, related literature about various churn prediction techniques and scope of Telecom customer's Demographic analysis with respect to Telecommunication industry will be reviewed and discussed.

2.1 Churn Prediction Techniques

Knowledge acquisition of the telecom customers by consuming behavior based on data mining concepts was described by Chungfang Zhao, Yingliang Wu, and HaijunGao [2]. In this churn prediction method, a customer analysis model is founded by the method of data mining, including customer segmentation analysis. The customer churn analysis is based on client information data, billing data and customer care data. According to the way theme of data warehouse are organized [8]. The segmentation of customers has been done based on Euclidean distance calculation such as dividing the different entities with similar features for the aim that maximizes the difference between the groups and minimizes the differences within the groups. Limitations of this work were that, it considers the weak relationship between the customers and fails to find the hidden communities within the large data sets of telecom customers.

Hong Feng Lai [3] proposed a framework to extract implicit social network to interpret various features of social networks. To express the implicit social network, they propose rough set and frame logic to represent implicit relationship between objects by RST/FL framework. In their paper they discussed the transformation technique in which they transform the rough set data model into a logical specification language, Flogic. RST/FL framework finds the implicit social network to extract and express the social structure and relationship in customer database. In real social networks, there are various types of relations. Each relation can be taken as relation network. This paper discusses formal analysis to verify the properties of social networks.

2.2 Customer Demographics Analysis

To compete with other telecom providers, it is important to understand the behavior of the customers and predict their needs. In order to realize this, Parthan Kasarapu M. Saravanan Prasad Garigipati [4] explore the customers details based on their mobile usage behavior into social patterns (segments) and target the suitable segments for advertising.

In their approach, the usage data of the customers in association with their browsing behavior is used to form the segments considered to be an important addition. From the analysis of their usage rates with respect to a certain domain, the operator can drill down to the sub domain level interests and target them with specific customized services. This can be done by performing latent semantic analysis using Gibbs sampling algorithm and K-means clustering on the description of their accessed web pages with their usage and spend data.

The traditional method involves forming web communities using link based approach. Their method based on identifying social communities could produce an alternative approach for the mobile operators. The usage rates within a certain cluster, and the customers' interest towards a specific domain can help to determine their extent of willingness to spend in specific areas. This approach produces better results than the traditional methods by enabling the telecom providers to target a specific group of consumers. In this method, authors predict behavior of the telecom customers based on the information they have on each customer. Essentially, customer segmentation has to be done to separate out groups which are highly intra-similar with less inter-similar Characteristics. The segmentation has been done on customer usage and spends data with their browsing behavior, but this technique fails to identify the hidden segments or hidden Communities within a large customer data base.

Aarthi.S, Bharanidharan.S Saravanan and Anand.V [5], explain the method of predicting the customer demographics in a mobile social network. This network made of individuals connected based on their communication behavior using mobile phones can be called as a Mobile Social Network. Mapping and measuring of interactions and flows between people across mobile social networks are being performed extensively in an attempt to understand the intriguing patterns of human behavior. Such analyses can help in arriving at useful inferences for improving the accuracy of targeted advertisements. This paper makes one such attempt to extract the demographics (i.e. gender and economic status) of a person based on his/her connectivity in his/her respective social network(s) and mobile phone usage over a period of time.

3. METHEDOLOGIES

The term network has different meaning in different disciplines. In the data mining disciplines social network is defined as a set of Customers (or agents, or nodes, or points, or vertices) and one or more relationships (or links, or edges, or ties) between pairs of Customers. Network that represent a single type of relation among the Customers are called simplex, while those that represent more than one kind of relation are called multiplex. Multiplex relations are analyzed using different networks, one for each relation type [6].

Each tie or relation may be directed, or undirected that represents co-occurrence, co-presence, or a bonded-tie between the pair of Customers. The Multi-Relational Social Network constructed for Telecom data by considering the multiple relations as friendship, age and frequency of call, volume of call as ties between the customers is given below Fig. 1.

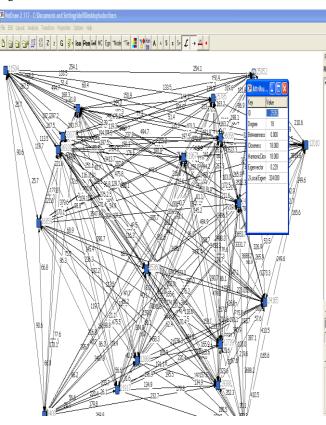


Figure 1: Multi-relational Telecom Social Network

Network connection analysis deals with size of the network, number of customers in a network and the relationship between the customers who are connected. The importance of this analysis is that it gives the basic demographic features. Demographic features illustrate the individual customer or group of customers. Individual customers may have many or few ties. Individuals may be sources of ties, or sinks (customer that receive ties, but don't send them), or both. The number and kinds of ties that customer have are the basis for similarity or dissimilarity to other customers and hence to possible differentiation and stratification.

The number and kinds of ties that Customers have are keys to determining how much their embeddedness in the network constrains their behavior, and the range of opportunities, influence, and power that they have. This analysis is categorized as

- Basic demographics
- Density
- Reachability
- Connectivity

3.1 Basic Demographic Analysis

The size of a network is defined by number of nodes or by number of edges of the network. In any network there are (k * k-1) unique ordered pairs of nodes (that is AB is different from BA, and leaving aside self-ties), where k is the number of nodes [7]. So, in resulting sample network of 50 Customers, with directed data, there are 2450 logically possible relationships. If we had undirected, or symmetric ties, the number 1225, since the relationship AB would be the same as BA. The number of logically possible relationships then grows exponentially as the number of customer increases linearly. It follows from this that the range of logically possible social structures increases (or, by one definition, "complexity" increases) exponentially with size.

Table 1: The Out-degree statistics for Telecom customers

ie Edit Format V	iew Help										
NIVARIATE STA	TISTIC	5									
imension: iagonal valid	2			R	DWS						
nput dataset:				(A)	∕ ≬∆ ≲amn]	le 50 fr	:\Prog	an sile	es/sna	annle	501
inter and the second				-	WS) (A Samp)				an faire i	and the	
escriptive St	atisti	CS .									
	1	2	3	4	5	6	7	8	9	10	11
	Mean	Std De	Sum	Varian	5 SSQ	MCSSQ	Euc No	Minimu	Maximu	N of 0	N Miss
1 8408											
2 11504	0.521	0.493	25.000	0.243	28.000 25.000	11.979	5.000	0.000	1.000	48,000	0.000
3 11642	0.396	0.489	19,000	0.239	19.000	11.479	4.359	0.000	1.000	48,000	0.000
4 12010	0.438	0.496	21.000	0.246	21.000	11.813	4.583	0.000	1.000	48,000	0.000
5 12450	0.521	0.500	25,000	0.250	25,000	11,979	5,000	0.000	1.000	48,000	0.000
5 12450 6 12739	0.583	0.493	28,000	0.243	28,000	11.667	5,292	0.000	1.000	48,000	0.000
7 12868	0.521	0.500	25.000	0.250	25.000	11,979	5.000	0.000	1.000	48,000	0.000
8 15360	0.375	0.484	18,000	0.234	18,000	11.250	4.243	0.000	1.000	48,000	0.000
9 16859 10 19388	0.500	0.500	24.000	0.250	24.000	12.000	4.899	0.000	1.000	48.000	0.000
10 19388	0.417	0.493	20.000	0.243	20,000	11.667	4,472	0.000	1.000	48,000	0.000
11 21917 12 24165	0.583	0.493	28.000	0.243	28,000	11.667	5.292	0.000	1.000	48,000	0.000
12 24165	0.396	0.489	19.000	0.239	19.000	11.479	4.359	0.000	1.000	48.000	0.000
12 24105 13 24318 14 25052 15 25785 16 31967	0.417	0.493	20.000	0.243	20.000	11.667	4,472	0.000	1.000	48,000	0.000
14 25052	0.500	0.500	24.000	0.250	24.000	12.000	4.899	0.000	1.000	48.000	0.000
15 25785	0.625	0.484	30.000	0.234	30.000	11.250	5.477	0.000	1.000	48,000	0.000
16 31967	0.583	0.493	28.000	0.243	28.000	11.667	5.292	0.000	1.000	48.000	0.000
17 33077	0.625	0.484	30.000	0.234	30.000	11.250	5.477	0.000	1.000	48.000	0.000
16 31967 17 33077 18 36056 19 36928 20 37281	0.438	0.496	21.000	0.246	21.000	11.813	4.583	0.000	1.000	48.000	0.000
19 36928	0.563	0.496	27.000	0.246	27.000	11.813	5.196	0.000	1.000	48.000	0.000
20 37281	0.521	0.500	25.000	0.250	25.000	11.979	5.000	0.000	1.000	48.000	0.000
21 38977	0.438	0.496	21.000	0.246	21.000 22.000 23.000 26.000	11.813	4.583	0.000	1.000	48.000	0.000
22 39722	0.458	0.498	22.000	0.248	22.000	11.917	4.690	0.000	1.000	48.000	0.000
23 41321	0.479	0.500	23.000	0.250	23.000	11.979	4.796	0.000	1.000	48.000	0.000
24 43962	0.542	0.498	26.000	0.248	26.000	11.917	5.099	0.000	1.000	48.000	0.000
25 44868 26 47757	0.542	0.498	26.000	0.248	26.000	11.917	5.099	0.000	1.000	48.000	0.000
26 47757	0.438	0.496	21.000	0.246	21.000	11.813	4.583	0.000	1.000	48.000	0.000
27 47978	0.625	0.484	30.000	0.234	30.000 27.000	11.250	5.477	0.000	1.000	48.000	0.000
28 51192	0.563	0.496	27.000	0.246	27.000	11.813	5.196	0.000	1.000	48.000	0.000
29 52389 30 55373	0.396	0.489	19.000	0.239	19.000	11.479	4.359	0.000	1.000	48.000	0.000
30 55373	0.500	0.500	24.000	0.250	24.000	12.000	4.899	0.000	1.000	48.000	0.000
31 56862	0.521	0.500	25.000	0.250	25.000 25.000	11.979	5.000	0.000	1.000	48.000	0.000
32 58982	0.521	0.500	25.000	0.250	25.000	11.979	5.000	0.000	1.000	48.000	0.000
33 59044 34 59148	0.563	0.496	27.000	0.246	27.000	11.813	5.196	0.000	1.000	48.000	0.000
34 59148	0.500	0.500	24.000	0.250	24.000	12.000	4.899	0.000	1.000	48.000	0.000
35 60489	0.292	0.455	14.000	0.207	14.000	9.917	3.742	0.000	1.000	48.000	0.000
36 64433	0.521	0.500	25.000	0.250	25.000	11.979	5.000	0.000	1.000	48.000	0.000
37 67993	0.521	0.500	25.000	0.250	25.000	11.979	5.000	0.000	1.000	48,000	0.000
35 60489 36 64433 37 67993 38 69107 39 69391	0.354	0.478	17.000	0.229	17.000	10.979	4.123	0.000	1.000	48.000	0.000
39 69391	0.521	0.500	25.000	0.250	25.000	11.979	5.000	0.000	1.000	48,000	0.000

Statistics on the rows describes the role that, each customer plays as a source of ties (in a directed graph). The sum of the connections from the customer to others is called the outdegree. In this context, customer 1(Subscription-ID 8408) calls to 28 customers. Therefore customer 1 has out-degree value 28. Degree of points is important because depicts how many connections a customer has and in turn indicates the influential factor of a customer. Customer 15 and 17 has the highest out-degree measures with respect to connectivity analysis, therefore these customers influences more number of customers in a network. The meaning of the mean and standard deviation of Customer's out-degree reflect the strength of a tie between nodes. These statistics would have the easy interpretations as the sum of the strengths, the average strength, and variation in strength. The sum of each column in the adjacency matrix is the in-degree of the point. That is, how many other customers send information or ties to particular customers is considered for analysis. Customers that receive information from many sources may be prestigious (other customers want to be known by the customer, so they send information). The in-degree statistics for the Telecom customers are given in Table .2.

Table 2: The in-degree statistics for Telecom customers

File Edit Format View	i Help																			
UNIVARIATE STATI	STICS																			
Dimension:				COLUM	6															
diagonal valid?				10																
Input dataset:				SNA Se	imple 50) (C:\P	rografi A	iles\9	(A Samp	e 50)										
Descriptive Stat	ittire																			
iesu iprive stat	BUIG																			
	1	2	3	4	5	6	1	8	9	10	11	12	13	14	15	16	17	18	19	
	8408	11504	11642	12010	12450	12739	12868	15360	16859	19388	21917	24165	24318	25052	25785	31967	33077	36056	36928	372
1 Mear		0.458				0.563								0.500					0.625	
2 Std Dei	0.498	0,498	0,500	0.500	0.498	0,496	0.500	0.493	0,500	0,500	0,500	0.500	0.500	0.500	0.500	0,496	0,496	0.496	0.625	0.3
2 Std Dei 3 Sur	0.498 26.000	0.498 22.000	0,500 24,000	0.500 24.000	0.498 22.000	0.496 27.000	0.500 25.000	0.493 28.000	0.500 25.000	0.500 23.000	0,500 24,000	0.500 23.000	0.500 24.000	0.500 24.000	0,500 24,000	0.496 27.000	0,496 21,000	0.496 27.000	30.000	
2 Std Dev 3 Sur 4 Variance	0.498 26.000 0.248	0.498 22.000 0.248	0.500 24.000 0.250	0.500 24.000 0.250	0.498 22.000 0.248	0.496 27.000 0.246	0,500 25,000 0,250	0.493 28.000 0.243	0,500 25,000 0,250	0,500 23,000 0,250	0.500 24.000 0.250	0.500 23.000 0.250	0,500 24,000 0,250	0,500 24,000 0,250	0.500 24.000 0.250	0,496 27,000 0,246	0,496 21,000 0,246	0.496 27.000 0.246	30.000 0.234	0.4 16.0 0.2
2 Std Dev 3 Sun 4 Variance 5 SSC	0.498 26.000 0.248 26.000	0.498 22.000 0.248 22.000	0.500 24.000 0.250 24.000	0.500 24.000 0.250 24.000	0.498 22.000 0.248 22.000	0.496 27.000 0.246 27.000	0.500 25.000 0.250 25.000	0.493 28.000 0.243 28.000	0.500 25.000 0.250 25.000	0,500 23,000 0,250 23,000	0.500 24.000 0.250 24.000	0.500 23.000 0.250 23.000	0.500 24.000 0.250 24.000	0,500 24,000 0,250 24,000	0.500 24.000 0.250 24.000	0.496 27.000 0.246 27.000	0,496 21,000 0,246 21,000	0.496 27.000 0.246 27.000	30.000 0.234 30.000	0.4 16.0 0.2 16.0
2 Std Dev 3 Sun 4 Variance 5 SSC	0.498 26.000 0.248 26.000 11.917	0.498 22.000 0.248 22.000	0.500 24.000 0.250 24.000	0.500 24.000 0.250 24.000 12.000	0.498 22.000 0.248	0.496 27.000 0.246 27.000	0.500 25.000 0.250 25.000	0.493 28.000 0.243 28.000	0.500 25.000 0.250 25.000	0,500 23,000 0,250 23,000	0.500 24.000 0.250 24.000 12.000	0.500 23.000 0.250 23.000 11.979	0.500 24.000 0.250 24.000	0,500 24,000 0,250 24,000	0.500 24.000 0.250 24.000 12.000	0.496 27.000 0.246 27.000	0,496 21,000 0,246 21,000	0.496 27.000 0.246 27.000 11.813	30.000 0.234 30.000	0.4 16.0 0.2 16.0 10.6
2 Std Dei 3 Sun 4 Variance 5 SSC 6 MCSSC	0,498 26,000 0,248 26,000 11,917 5,099	0.498 22.000 0.248 22.000 11.917	0.500 24.000 0.250 24.000 12.000	0.500 24.000 0.250 24.000 12.000	0.498 22.000 0.248 22.000 11.917	0.496 27.000 0.246 27.000 11.813	0.500 25.000 0.250 25.000 11.979	0.493 28.000 0.243 28.000 11.667	0.500 25.000 0.250 25.000 11.979 5.000	0.500 23.000 0.250 23.000 11.979	0.500 24.000 0.250 24.000 12.000	0.500 23.000 0.250 23.000 11.979 4.796	0.500 24.000 0.250 24.000 12.000	0.500 24.000 0.250 24.000 12.000	0.500 24.000 0.250 24.000 12.000 4.899	0.496 27.000 0.246 27.000 11.813	0.495 21.000 0.246 21.000 11.813	0.496 27.000 0.246 27.000 11.813	30.000 0.234 30.000 11.250	0.4 16.0 0.2 16.0 10.6
2 Std Dev 3 Sun 4 Variance 5 SSC 6 MCSSC 7 EUC Norm	0,498 26,000 0,248 26,000 11,917 5,099 0,000	0.498 22.000 0.248 22.000 11.917	0.500 24.000 0.250 24.000 12.000	0.500 24.000 0.250 24.000 12.000	0.498 22.000 0.248 22.000 11.917 4.690	0.496 27.000 0.246 27.000 11.813 5.196	0.500 25.000 0.250 25.000 11.979 5.000 0.000	0.493 28.000 0.243 28.000 11.667 5.292	0.500 25.000 0.250 25.000 11.979 5.000 0.000	0.500 23.000 0.250 23.000 11.979 4.796	0.500 24.000 0.250 24.000 12.000 4.899	0.500 23.000 0.250 23.000 11.979 4.796 0.000	0.500 24.000 0.250 24.000 12.000 4.899	0.500 24.000 0.250 24.000 12.000 4.899	0.500 24.000 0.250 24.000 12.000 4.899 0.000	0.496 27.000 0.246 27.000 11.813	0.496 21.000 0.246 21.000 11.813 4.585	0.496 27.000 0.246 27.000 11.813	30.000 0.234 30.000 11.250	0.4 16.0 0.2 16.0 10.6 4.0 0.0
2 std Dev 3 Sur 4 Variance 5 SSU 6 MCSSU 7 EUC Norm 8 Minimum	0,498 26,000 26,000 26,000 11,917 5,099 0,000 1,000 48,000	0.498 22.000 0.248 22.000 11.917 4.690 0.000 1.000 48.000	0.500 24.000 0.250 24.000 12.000 4.899 0.000 1.000 48.000	0.500 24.000 0.250 24.000 12.000 4.899 0.000 1.000	0.498 22.000 0.248 22.000 11.917 4.690 0.000 1.000 48.000	0.496 27.000 0.246 27.000 11.813 5.196 0.000 1.000 48.000	0.500 25.000 0.250 25.000 11.979 5.000 0.000 1.000 48.000	0.493 28.000 0.243 28.000 11.667 5.292 0.000 1.000 48.000	0.500 25.000 0.250 25.000 11.979 5.000 0.000 1.000 48.000	0.500 23.000 0.250 23.000 11.979 4.796 0.000 1.000 48.000	0.500 24.000 0.250 24.000 12.000 4.899 0.000 1.000 48.000	0.500 23.000 0.250 23.000 11.979 4.796 0.000 1.000 48.000	0.500 24.000 0.250 24.000 12.000 4.899 0.000 1.000 48.000	0.500 24.000 0.250 24.000 12.000 4.899 0.000 1.000 48.000	0.500 24.000 0.250 24.000 12.000 4.899 0.000 1.000 48.000	0.496 27.000 0.246 27.000 11.813 5.196 0.000 1.000	0.496 21.000 0.246 21.000 11.813 4.583 0.000 1.000	0.496 27.000 0.246 27.000 11.813 5.196 0.000 1.000	30.000 0.234 30.000 11.250 5.477 0.000 1.000	0.4 16.0 0.2 16.0 10.6 4.0 0.0 1.0

3.2 Network Density Analysis

For a valued network, density is defined as the sum of the ties divided by the number of possible ties (i.e. the ratio of all tie strength that is actually present to the number of possible ties). The density of a network may give us insights into such phenomena as the speed at which information diffuses among the nodes, and the extent to which customer have high levels of social capital and/or social constraint. The overall density measure of a network is given in Table 3. The density of the information exchange relation matrix is 0.4962. That is 49% of all the possible ties are present.

Table 3: The Density measures of Telecom Social Network

Density - Notepad				
File Edit Format View Help				
DENSITY / AVERAGE MATR	EX VALUE			
Input dataset:		SNA Sample	e 50 (C:∖Program	Files\SNA Sample 50) \Program Files\SNA Sample 50-density)
Output dataset:		SNA Sample	s 50-density (C:	\Program Files\SNA Sample 50-density)
	Density	No. of Ties	Avg Degree	
SNA Sample 50	0.4962	1167.0000	23.8163	

3.3 Network Reachability Analysis

A Customer is reachable by another if there exists any set of connections by which can be traceable from the source to the target customer, regardless of how many others fall between them. If the data are asymmetric or directed, it is possible that customer A can reach customer B, but that customer B cannot reach customer A. With symmetric or undirected data, of course, each pair of Customers either is or is not reachable to one another. If some customers in a network cannot reach others, there is the potential of a division of the network. Network Reachability analysis is given in Table 4.

Table 4: The Reachability measures of Telecom Social Network

🖡 ucinetlog9 - Notepad	
File Edit Format View Help	
REACHABILITY	
Type of data:	ADJACENCY
Input dataset:	SNA Sample 50 (C:\Program Files\SNA Sample 50)
For each pair of nodes, the algorithm length that connects them.	finds whether there exists a path of any
	5 6 7 8 9 10 11 12 13

		8408	11504	11642	12010	12450	12739	12868	15360	16859	19388	21917	24165	24318
1	8408	0.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
2	11504	1.000	0.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
3	11642	1.000	1.000	0.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
4	12010	1.000	1.000	1.000	0.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
5	12450	1.000	1.000	1.000	1.000	0.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
6	12739	1.000	1.000	1.000	1.000	1.000	0.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
7	12868	1.000	1.000	1.000	1.000	1.000	1.000	0.000	1.000	1.000	1.000	1.000	1.000	1.000
8	15360	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.000	1.000	1.000	1.000	1.000	1.000
9	16859	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.000	1.000	1.000	1.000	1.000
10	19388	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.000	1.000	1.000	1.000
11	21917	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.000	1.000	1.000
12	24165	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.000	1.000
13	24318	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.000
14	25052	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

3.4 Network Connectivity Analysis

Adjacency matrix of a customer communication relationship deals with whether there is a direct connection from one customer to another (or between two customers for undirected data). Reachability focus on whether two customers are connected or not, by way of either a direct or indirect pathways of any length. Point Connectivity computes the local point connectivity between all pairs of nodes in a network. The local (point) connectivity of two non-adjacent vertices is the number of vertices that need to be deleted so that no path connects them, this is equal to the maximum number of vertex disjoint paths connecting them. If there are many different pathways that connect two Customers, they have high connectivity in the sense that there are multiple ways for a signal to reach from one to the other. Table 5 shows the point connectivity for social network.

Table 5: The Connectivity measures of Telecom Social Network

🛛 ucin	etlog1 - N	lotepad													
File Edi	t Format	View Help	1												
POINT	CONNECT	IVITY													
	dataset				S	VA Samp	le 50 (d	:\Proq	ram Fil	es\SNA :	Sample	50)			
Output	connec	tivity:			P	ointCon	nectivi	ty (C:\(Program	Files\	PointCo	nnectiv	ity)		
		1		3					8						
		8408	11504	11642	12010	12450	12739	12868	15360	16859	19388	21917	24165	24318	250
1	8408													24.000	
-		25.000												24.000	
3	11642 12010													19.000 21.000	
5	12450													24.000	
	12739													24.000	
7	12868													24.000	
8	15360													18.000	
9	16859 19388													24.000	
	21917													20.000 24.000	
	24165													19.000	
	24318													0.000	
	25052													24.000	
	25785													24.000	
	31967 33077													24.000	
18	36056													24.000	
19	36928													24.000	
20	37281	25.000	22.000	24.000	24.000	22.000	25.000	25.000	25,000	25.000	23,000	24.000	23,000	24.000	24.0
	38977													21.000	
22	39722													22.000	
23	41321	25.000	22.000	25.000	23,000	22.000	23,000	25.000	23,000	25.000	23.000	25.000	23,000	23.000	23.0

4. RESULTS AND DISCUSSIONS

The network connection analysis described in methodology section explains the properties of the network with respect to adjacencies of the customers who are direct connected from one customer to the next. But the way that customers are embedded in networks is more complex than this. To explain the importance of distance analysis consider the two customers, call them A and B, might each have five friends. But suppose that none of customer A's friends have any friends except A. Customer B's five friends, in contrast, each have five friends. The information available to B and B's potential for influence is far greater than A's. That is, sometimes being a friend of a friend may be quite consequential. To capture this aspect of how individuals are embedded in networks, one main approach is to examine the distance that a customer is from others. The three measures of distance analysis are walks, geodesic distance and flow.

4.1 Walks in Telecom Networks

A walk is a sequence of customers and relations that begins and ends with customers. A closed walk is one where the beginning and end point of the walk is the same customer. Walks are unrestricted. A walk can involve the same customer or the same relation multiple times. . The length of a walk is simply the number of relations contained in it. The numbers of walks of a given length between all pairs of Customers can be found by raising the matrix to that power. The importance of computing walks of customers deals with strength of ties or relations. Customers that are connected at short lengths or distances may have stronger connections; customers that are connected many times (for example, having many, rather than a single path) may have stronger ties. Their connection may also be less subject to disruption, and hence more stable and reliable. Table 6 illustrates the number of walk of customers in a social network.

Table 6: The Walk analysis of Telecom customers in a network

🖡 ucinetlog2 - Notepad	
File Edit Format View Help	
GEODESIC DISTANCE	
Type of data: Nearness transform: Input dataset: Output distance:	ADJACENCY NONE SNA Sample 50 (C:\Program Files\SNA Sample 50) C:\Program Files\SNA Sample 50-Geo
For each pair of nodes, the a between them. Average distance	gorithm finds the \neq of edges in the shortest path = 1 SN4

Average distance = 1.504 Distance-based cohesion ("Compactness") = 0.748 (range 0 to 1; larger values indicate greater cohesiveness) Distance-weighted fragmentation ("Breadth") = 0.252

Frequencies of Geodesic Distances

	1 Frequenc	2 Proporti
11 22	1167.000 1185.000	0.496

Geodesic Distances

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
		8408	11504	11642	12010	12450	12739	12868	15360	16859	19388	21917	24165	24318	25052	25785	31967
1	8408	0.000	1.000	2.000	2.000	1.000	1.000	1.000	2.000	2.000	1.000	1.000	1.000	1.000	2.000	2.000	1.000
2	11504	1.000	0.000	2.000	2.000	1.000	1.000	2.000	1.000	1.000	1.000	2.000	2.000	1.000	2.000	2.000	2.000
3	11642	1.000	2.000	0.000	2.000	2.000	2.000	1.000	1.000	2.000	1.000	2.000	1.000	2.000	2.000	1.000	2.000
4	12010	2.000	2.000	1.000	0.000	2.000	2.000	1.000	2.000	2.000	2.000	1.000	2.000	2.000	2.000	1.000	1.000
5	12450	2.000	1.000	2.000	1.000	0.000	1.000	1.000	2.000	2.000	2.000	1.000	1.000	2.000	1.000	1.000	2.000
6	12739	2.000	2.000	1.000	1.000	2.000	0.000	1.000	1.000	1.000	2.000	2.000	1.000	2.000	1.000	1.000	2.000
7	12868	2.000	1.000	1.000	2.000	1.000	1.000	0.000	1.000	1.000	1.000	2.000	2.000	2.000	2.000	2.000	1.000
8	15360	1.000	1.000	1.000	2.000	2.000	1.000	1.000	0.000	1.000	2.000	2.000	2.000	2.000	2.000	1.000	2.000
9	16859	2.000	2.000	1.000	2.000	1.000	2.000	2.000	1.000	0.000	2.000	1.000	1.000	1.000	2.000	2.000	1.000
10	19388	2.000	2.000	2.000	2.000	1.000	1.000	1.000	1.000	1.000	0.000	1.000	1.000	1.000	2.000	2.000	2.000
11	21917	2.000	2.000	2.000	1.000	1.000	1.000	2.000	2.000	2.000	1.000	0.000	1.000	2.000	2.000	1.000	1.000
12	24165	1.000	1.000	1.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	0.000	2.000	2.000	2.000	1.000

4.2 Geodesic Distance Analysis

Geodesic distance is the number of relations in the shortest possible walk from one customer to another. It is also possible to define the distance between two Customers where the links are valued the distance between two Customers is defined as the strength of the weakest path between them. The distance between two Customers is defined as the sum of the costs along the shortest pathway. The Table 7 shows the geodesic measures of social network of telecom customers.

ucinetlog3 - I	Notep	ad																													
ile Edit Format	View	Help																													
OF GEODESI	C PA	THS E	ETWE	EN F	AIR	S OF	P0]	INTS																							
nput datasei	t:							SNA	. Sai	npla	e 5() ((:\\	Proç	gnar	n Fi	iles	5/51	IA S	5amp) Je	50)									
of Geodesi	c Pa	ths																													
		2 11 1 	3 4 1 12								24	25	25					37 	38	39 											
1 8408 2 11504 3 11642 4 12010 5 12450 6 12739 7 12868 8 13360 9 16859 10 19388 11 21917 12 2416 31067 13 13 24318 14 25052 15 5785 16 31967 13 36056 19 36928 20 37281 21 389772 23 9722 24 43962 24 43962 25 44868	1 9 11 14 12 1 16 11 14 14 12 11 14 14 11 13 15 11 13 11 12 13	$\begin{array}{c} 12\\ 10\\ 1 \\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1$	4 14 1 6 1 1 5 1 1 14 1 14 1 14 1 14 1 14 3 12 3 1 1 10 2 12 2 12	$ \begin{array}{c} 1 \\ 9 \\ 9 \\ 1 \\ $	13 12 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 2 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1	$14 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	1 12 1 1 1 1 1 1 1 1 1 1 7 18 2 10 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 1 5 100 2 12 2 12 1	$\begin{array}{c} 10\\1\\1\\1\\3\\14\\7\\1\\1\\1\\7\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\$	1 1 12	$\begin{smallmatrix} 1 \\ 11 \\ 12 \\ 12 \\ 13 \\ 12 \\ 10 \\ 1 \\ 13 \\ 12 \\ 1 \\ 13 \\ 13 \\ 13 \\ 13 \\$	8 12 1 10 8 9 10 15 8 1 1 1 13 1 11 14 12 10	$\begin{array}{c}12\\1\\1\\1\\1\\4\\1\\3\\1\\1\\1\\0\\1\\1\\1\\1\\2\\1\\2\\1\\0\\1\\1\\1\\1\\1\\1\\1$	1 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c}1\\1\\1\\2\\1\\1\\9\\8\\1\\1\\0\\1\\1\\1\\2\\1\\1\\1\\2\\8\\1\\1\\1\\0\\16\end{array}$	$\begin{array}{c} 12\\11\\10\\1\\1\\1\\2\\13\\16\\1\\5\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 5 7 9 1 6 7 1 8 1 4 3 1 1 0 1 3 9 1 1 6 8 9	9 12	$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 9 \\ 1 \\ 1 \\ 1 \\ $	$\begin{array}{c}1\\12\\13\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\$	$11 \\ 12 \\ 1 \\ 13 \\ 6 \\ 12 \\ 9 \\ 1 \\ 9 \\ 11 \\ 14 \\ 1 \\ 1 \\ 12 \\ 1 \\ 13 \\ 13 \\ 13 \\ 13 \\ $	9 1 1 1 1 1 1 1 1 1 1 1 1 1	962111161912751117701161810	4 19 17 18 7 7 8 9 11 11 13 7 6 1	$\begin{array}{c}10&1\\9&1\\9&1\\15&1\\13&1\\13&1\\1&1&1\\1&$	$\begin{array}{c}1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 12\\ 15\\ 1\\ 1\\ 10\\ 13\\ 1\\ 17\\ 1\\ 1\\ 1\\ 19\\ 1\\ 19\\ 1\\ 19\\ 1\\ 19\\ 1\\ 12\\ 1\\ 1\end{array}$	12 14 11 13 13 13 13 13 13 12	

4.3 Network Flow Analysis

The flow measures in a valued or binary network the value of each edge (1 or 0 for binary networks) can represent a capacity of flow of information from source to destination node in a network. It is computed by using the below formulae.

- Let c(x) denotes the capacity of each edge of a network N.
- A flow in N between two nodes s and t is a function f such that $0 \le f(x) \le c(x)$ for every edge x and for every node $z \ne s$ or t, $\Sigma f(yz) = \Sigma f(zw)$.
- So that for each node, except s and t, the total amount of flow into the node equals the total flow leaving the node.
- The total flow leaving s is the same as that going into t, this value is called the value of the flow.
- The maximum flow is simply the maximum value possible between two vertices.

The network flow measures are given in the below Table 8.

Table 8: The Network flow measures of Telecom customers

ucinetlog	I - Notepa	ıd													
File Edit Forr	nat View	Help													
AAXIMUM FL	OW														
(nput data	set:				SNA SI	ample 50) (C:\Pi	ogram I	iles\si	NA Samp	le 50)				
	8408	11504	11642	12010	12450	12739	12868	15360	16859	19388	21917	24165	24318	25052	25785
8408 11504 11642 12010 12450 12739 12868 15360 16859 19388 21917 24165 24318	25.000 19.000 21.000 25.000 26.000 28.000 18.000 24.000 20.000 26.000 19.000	0.000 19.000 21.000 22.000 22.000 22.000 18.000 22.000 20.000 22.000 19.000	0.000 21.000 24.000 24.000 24.000 18.000 24.000 24.000 20.000	24.000 19.000 0.000 24.000 24.000 24.000 18.000 24.000 20.000 24.000 19.000	22.000 19.000 21.000 0.000 22.000 22.000 18.000 22.000 20.000 22.000 19.000	25.000 19.000 21.000 25.000 0.000 25.000 18.000 24.000 20.000 27.000 19.000	25.000 19.000 21.000 25.000 25.000 18.000 24.000 20.000 25.000 19.000	25.000 19.000 21.000 25.000 28.000 25.000 0.000 24.000 20.000 28.000 19.000	25.000 19.000 21.000 25.000 25.000 25.000 18.000 0.000 20.000 25.000 19.000	23.000 19.000 21.000 23.000 23.000 23.000 18.000 23.000 0.000 23.000 19.000	24.000 19.000 21.000 24.000 24.000 24.000 18.000 24.000 20.000 0.000 19.000	23.000 19.000 21.000 23.000 23.000 23.000 18.000 23.000 20.000 23.000 0.000	24.000 19.000 21.000 24.000 24.000 24.000 18.000 24.000 20.000 24.000 19.000	24.000 19.000 21.000 24.000 24.000 18.000 24.000 20.000 24.000 20.000 19.000	24.000 19.000 21.000 24.000 24.000 24.000 18.000 24.000 20.000 24.000 19.000
25052 25785 31967 33077 36056	24.000 26.000 26.000	22.000 22.000 22.000 22.000 22.000	24.000 24.000 24.000 24.000 24.000	24.000 24.000 24.000 24.000 24.000	22.000 22.000 22.000 22.000 22.000	24.000 27.000 27.000 27.000 21.000	24.000 25.000 25.000 25.000	24.000 28.000 28.000 28.000 28.000	24.000 25.000 25.000 25.000	23.000 23.000 23.000 23.000 23.000	24.000 24.000 24.000 24.000 24.000	23.000 23.000 23.000 23.000 23.000	24.000 24.000 24.000 24.000 24.000	0.000 24.000 24.000 24.000 24.000	24.000 0.000 24.000 24.000

36928 26.000 22.000 24.000 24.000 22.000 27.000 25.000 27.000 25.000 23.000 24.000 23.000 24.000 24.000 24.000

2	0920	20.000	22.000	24.000	24.000	22.000	27.000	23.000	27.000	21.000	23.000	24.000	23.000	24.000	24.000	24.000	
3	7281	25.000	22.000	24,000	24.000	22.000	25.000	25.000	25.000	25.000	23.000	24.000	23.000	24.000	24.000	24.000	
3	8977	21.000	21.000	21.000	21.000	21.000	21.000	21.000	21.000	21.000	21.000	21.000	21.000	21.000	21.000	21.000	
3	9722	22.000	22.000	22.000	22.000	22.000	22.000	22.000	22.000	22.000	22.000	22.000	22.000	22.000	22.000	22.000	
4	1321	23.000	22.000	23,000	23.000	22.000	23.000	23.000	23.000	23.000	23.000	23.000	23.000	23.000	23.000	23.000	
4	3962	26.000	22.000	24.000	24.000	22.000	26.000	25.000	26.000	25.000	23.000	24.000	23.000	24.000	24.000	24.000	
4	4868	26.000	22.000	24.000	24.000	22.000	26.000	25.000	26.000	25.000	23.000	24.000	23.000	24.000	24.000	24.000	
4	7757	21.000	21.000	21,000	21.000	21.000	21.000	21.000	21.000	21.000	21.000	21.000	21.000	21.000	21.000	21.000	
4	7978	26.000	22.000	24.000	24.000	22.000	27.000	25.000	28.000	25.000	23.000	24.000	23.000	24.000	24.000	24.000	
5	1192	26.000	22.000	24,000	24.000	22.000	27.000	25.000	27.000	25.000	23.000	24.000	23.000	24.000	24.000	24.000	

5. CONCLUSIONS

This paper focus the basic network analysis with respect to connection and distance between customers and a whole community of customers (Populations). There is a great deal of information about both individuals and the Population in a single adjacency matrix. The basic network analysis focuses on the immediate neighborhood of each customer, dyads and triads in which they are involved. The degree of the customer, deals with the extent to which customer may be constrained by, or constrain others. Connectivity measures deals with the extent to which customer can reach others in the network, in turn useful in describing customer's social structure. In looking at the connections of customers, factors such as reciprocity, reachability, density and transitivity in relations can be regarded as important indicators of the stability and institutionalization of customer's positions in social networks.

6. REFERENCES

- Shaun Doyle, "Social network analysis in the Telco sector Marketing applications", Journal of Database Marketing & Customer Strategy Management (2008) 15, pp130-134.doi: 10.1057/dbm.2008.8
- [2] Chung fang Zhao, Yingliang Wu, HaijunGao "Study on Knowledge Acquisition of the Telecom Customer" Consuming Behavior Based on Data Mining", 2008 IEEE.
- [3] Hong Feng Lai, "Identify implicit social network by RST/FL framework", 2009, Advances in Social Network Analysis and Mining (IEEE Computer Society), pp.362-363, DOI 10.1109/ASONAM.2009.62.
- [4] Parthan Kasarapu M. Saravanan Prasad Garigipati, "Exploring Social Patterns in Mobile Data", Second International Conference on Advances in Databases, Knowledge, and Data Applications, 2010, pp.62-68.
- [5] Aarthi.S&Bharanidharan.SSaravanan.M&Anand.V," Predicting Customer Demographics in A Mobile Social Networks", 2011 International Conference on Advances in Social Networks Analysis and Mining (IEEE), pp553-554.
- [6] Victor Ströele, Geraldo Zimbrão, Jano M. Souza," Evaluating Knowledge Flow in Multi relational Scientific Social Networks ", Proceedings of the 2011 15th International Conference on Computer Supported Cooperative Work in Design, 2011 (IEEE), pp516-523.
- [7] Hially Rodrigues de S'a and Ricardo B. C. Prud'encio, "Supervised Link Prediction in Weighted Networks", Proceedings of International Joint Conference on Neural Networks, San Jose, California, USA, July 31 August 5, 2011,pp 2281-2288.
- [8] Namhyoung Kim, "A New Ensemble Model for Efficient Churn Prediction in Mobile Telecommunication", in 45th Hawaii International Conference on System Science (HICSS), Date of Conference: 4-7 Jan. South Korea 2012,pp 1023 – 1029.