
International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 19, March 2015

36

A Survey on Query Performance Optimization by Index

Recommendation

Pratham L. Bajaj
PICT, Pune

ABSTRACT

Query language access data from databases. With exponential

growth of data, optimization techniques need to be adopt for

better results. Query performance tuning and optimization can

be achieved by query reformation and index selection.

Searching tuples from millions of results is overhead and it

degrades overall system performance. To reduce searching

time is goal of index recommendation. Index Selection

Problem (ISP) is optimization problem. This is NPH problem

and it can be solve by different approaches like greedy

approach, dynamic programming, linear programming, branch

and bound, genetic algorithm, etc. In general, indexing is done

on candidate keys but it will not give assurance of optimal

solution. Researchers tried to resemble ISP with knapsack

problem and variation of it. Different data structure are used

for indexing like tree, hash, bitmap, etc. In composite column

indexes, order of columns affects overall performance In-

memory databases are fast databases and new data structures

to be suggest for indexing. Usually indexing is done on only

columns which will yield profit in query execution. Join

operations executions are discussed briefly.

General Terms

Database performance optimization and tuning

Keywords

Index selection, knapsack problem, genetic algorithm.

1. INTRODUCTION
Relational Database System is very complex and continuously

evolving from last thirty years. Query performance tuning and

optimization is area of interest for most of researchers. Query

performance optimization can be done by (i) Query

reformation (ii) Index Recommendation. Real time

applications required fast response so databases are shifted

from disk to in-memory. In general, in-memory databases are

in de-normalize form means and there are no join operations.

Here SQL like query language is considered and there is no

nested query. Searching and sorting are two classical

problems of computer science. Database engine spend most of

time in searching of tuples from millions of tuples. Paper

focus on different indexes and indexing techniques.

In In-memory databases spaces are limited and indexes takes

some space. To reduce space complexity appropriate selection

of indexes is done. In general, database engine suggest

candidate key and that can be used as index. Databases deals

with range and equal query, tree is used for range query and

hash used for equal query. Hash is much faster than tree and

provide result in unit amount of time. Time and space are both

important parameters, so index selection should done properly

without overhead. Query cost estimation plan helps to judge

selected index. There are two different errors which can affect

system efficiency of system.(1) Error1- Query not utilizing

available index (Indexes are not used by predicates in query)

(ii)Error2- Indexing not done which satisfy predicates from

query. If indexing is not perform properly then whole table

scan to be done and it is time consuming job. Index Selection

Problem (ISP) is NPH problem. Database administrator

cannot performing on all available candidate keys because

there is cost associated with index maintenance.

Physical ordering of tuples in tables may affect may affect

performance plan, so there is concept of cluster indexes. It

force to keep ordering of tuples are same as ordering in index.

Researchers suggested different approaches for Index

selection like Trial and error approach, some resembles ISP

with knapsack problem.

2. QUERY LANGUAGE
Query language need to mention what to do, not necessary

how to do and databases system will take all care by database

system. Query grammar should be error free so that it parsing

result is error free.

It is structural language which allows user to give input as

what to do without any procedure. Query execution done in

three stages. In first stage, query syntax checking and symbol

table is creation is done by query parser. Tokens are separated

and compare with standard keywords. Tree like structure is

form for query parsing. Operator tree is output from parser.

ANTLR grammar is used for query conversion. It is bottom

up parser and gives results as early as possible. Once data is

parser and validate then it’s time for syntactic error checking.

Logical errors are removed in this stage and query is

forwarded for optimization purpose. In this stage reformation

of query is done. Generalized structure of query is shown

below:

Select [distinct] <Column_name(s)/*> from <Table_Name>

[where <Condition>

Having < Condition>

Order by <Condition>

Group by <Condition>]

Generally operands are at leaf and operator is at parent node,

result of it is further computed in bottom up manner. Query

reformation is part of query optimization. Nested queries are

transform into simple query, it saves recursive scanning time.

Clauses deals with conditions so most frequently occurring

queries are to be index. Optimize query is represented in

intermediate stage.

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 19, March 2015

37

Fig. 1 Query flow of DBMS [2]

Database query performs select, update, insert and delete

operation. Index data structure affects insertion, update and

delete operation.

In tradition databases, structure data is store in fixed schema

but it is not suitable for documents, blob type data. So SQL

query modified into NoSQL query. NoSQL stands for not

only SQL. NoSQL allows to store data in schema less and it is

more flexible. It is not using relational model. By CAP

theorem consistency (C), availability (A) and partition

tolerance (P) in distributed system it is possible to achieve

only two features Consistency and Availability or Consistency

and Fault tolerance. There are different types of NoSQL

databases. It improves program productivity. It further

classified in following:

1) Key-Value- Best for session data, profiles and also allows

to store multiple keys. E.g. Riak, Redis, Memcached.

2) Documents- Best for content management, web analytics,

e-commerce. E.g. MongoDB, Terrastore, RavenDB.

3) Column family- Best for content management and different

row may have different set of columns. Helps in maintain

heavy log- Cassandra, Hypertable.

4) Graph- Best for connected data just like social network,

routing information.

Join operation is most time consuming operator in overall

query execution life time. Left deep and Right deep should be

handle carefully so that overall tuples scans can be minimize.

Generally, evaluation of join operations are considered as NP

Complete problem and there are different strategies are [13]

1) Bottom up optimization- Execution start from based

relation and step by step execution is done.

2) Top down optimization- Uses divide and conquer, each

part is optimize separately and after aggregation again

optimization is perform.

3) Transformation- Transform complex execution plan to

other simpler plan.

Fig 2 (a) Left deep (b) bushy tree [13]

2.1 Deterministic Algorithms
Deterministic search solutions space and accepts different

approaches.

2.1.1 Dynamic Programming
This approach first is suggested by IBM by complete

searching of solution space. Generally complexity goes in

O(n3). It grows exponentially in join relations.

i. Selection Projection Heuristic

ii. Cartesian product heuristic

2.1.2 Iterative Dynamic Programming
Combination of classical Dynamic programming and greedy

approach.

2.1.3 Minimum Selectivity Heuristic
Heuristic construction of left deep tree.

2.1.4 IK Algorithm
Takes advantage if nested loop cost and find optimal left deep

join.

2.1.5 Relational Difference Calculus
Finds most influence relation in join expression. [13]

2.2 Randomized Algorithms
Overcome on classical deterministic algorithms and

developed non-deterministic approaches.

2.2.1 Random Walk Algorithm
Quality of algorithm is completely depends upon ratio of good

and bad solution in solution space.

2.2.2 Iterative Improvement Algorithm

Simple approach similar to hill climbing just like greedy

search strategy. It can apply iteratively.

2.2.3 Simulated Annealing Algorithm
Improvement over above approach. Less chances to trap in

poor local minimum.

2.2.4 Two Phase Optimization
It is combination of above two models. Iterative covers large

portion of solution space and simulated annealing good to

search point of neighborhood. [13]

2.3 Genetic Algorithms
Genetic algorithm is derived from survival of fittest model

and are applied to complex problems.

2.3.1 Coding
i. Simple left deep tree coding

ii. Travelling salesman coding

iii. Bushy Tree coding

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 19, March 2015

38

2.3.2 Selection
i. Roulette Selection

ii. Rank Selection

iii. Adaptive Selection

2.3.3 Crossover
i. Subsequence exchange

ii. Subset exchange crossover

iii. Order crossover

2.3.4 Mutation
i. Reciprocal exchange

ii. Exhaustive[10]

3. INDEXES
Indexing is depend upon physical organization of tuples.

Generally indexing done in following situations

 Frequently access query columns

 Unique key constraints on column

Best index selection can be done by analyzing query

execution plan for input query. Limit number of indexes for

given relation. Most frequent updating table should not index

heavily, it degrades overall performance. Heuristic steps for

index selection are shown below:

1) Analyze columns that are used in predicate frequently.

2) Initially go for single column indexes and if it is necessary

then go for composite column indexes.

3) Order of indexes in composite indexes are to be chosen

carefully.

4) If both range and equality condition are coming then go for

tree indexes only instead of maintaining separate hash and

tree indexes.

5) Selection of appropriate data structure depends upon

predicates, insert, update, delete operations. [12]

3.1 Clustered Index
 It force to arrange index order in same way as physical

design. There are almost one cluster index per table. It gives

good result many tuples are fetch having same type.

Bitmap Index- Indexes are represented by set of bits and if

column consider in indexing it bit is 1 otherwise 0. [5]

3.2 Multilevel Index
When number of tuples are more and available space for

indexing is less then multilevel index used. It improves

maintenance cost of system but update in indexing takes more

time than one level indexing. [5]

3.3 Hash
It gives result in unit time. Bucket is basic storage unit.

3.3.1 Static hashing
Key-value may search to one bucket and leads to sequential

search. Bucket size and key-value pair should remain in

uniform distribution.[5]

3.3.2 Dynamic hashing
Size of bucket is not uniform and it accommodate size that is

shrinking and expansion depends on database. Extendable

hashing is form of it. [5]

3.4 Tree
B tree is unbiased structure in which date is store at both

intermediate and leaf node. Searching is quite difficult than

B+ tree. Insertion and deletion are more complicate than B+

tree. Implementation harder than B+ tree.

B+ Tree alternative to indexed-sequential files and it

automatically organized itself in small local space. It provides

high fanout or low depth. Extra insertion or deletion will lead

to overhead. Length of leaf nodes to root are same means all

leaf nodes are remain at same level. Leaf node has between

[(n-1)/2] to (n-1) values. Leaf nodes have all key elements and

sequential scanning possible without moving back to parent

node. Searching is more efficient in B+ tree as compare to B

tree. Non-leaf nodes has between [n/2] to n children.

Fig 3 Tree node structure

Here.

P –Pointer to children

K- Key K1<K2<K3<…<Kn-1

RB tree is also store data in unbiased form so that it is easy for

cost estimation. Root is always color black and two blacks

nodes can be remain neighbors but not red nodes. It allows

better insertion and deletion operation. Tree data structure is

used when there is high cardinality means there are different

values for particular field. [5]

3.5 Bitmap
It allows fast read by maintain structure in 0 and 1. Structure

makes it possible for the system to combine multiple indexes

together for fast access to the underlying table.

1) For columns with very few unique values (low

cardinality)

2) Tables that have no or little insert/update are good

candidates (static data in warehouse)

3) Stream of bits: each bit relates to a column value in a

single row of table.

A modification to a bitmap index requires a great deal more

work on behalf of the system than a modification to a b-tree

index. In addition, the concurrency for modifications on

bitmap indexes is dreadful.[5]

For example,

Select * from Table where a>100 AND b<500 AND c=0

In this query, where clause contain three predicate and all are

having different arithmetic operator. The order of execution of

those predicates affects overall system execution cost. Query

will get best result when execution start from columns having

high cardinality and equality condition. If c=0 is executed first

then next can be go for columns having less number of

records.

Initially histogram based approach is used for cost estimation.

Range of histogram depends upon number of fields with

distribution metrics. Suppose 1, 2, 3, 4, 5, 6, 7, 8 are set of

histogram and sets 1 to 4 having values in million and sets 5

to 8 having values in hundred. In this case, data set is more

error prone.

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 19, March 2015

39

4. OPERATOR OPTMIZATION
Query reformation affect overall index selection scheme for

query execution.

1) OR operator executes either side as separate query

independent query and n times of single predicate, where

n is number of predicates having OR operator. It is

optimize by IN operator.

2) LIKE operator is most difficult to optimize because of

unexpected input from user. % is used for unknown set

of characters.

3) BETWEEN operator can be optimize by combination of

arithmetic operator and AND operator.[12] For example,

Select * from tab_name where col_name BETWEEN expr1

AND expr2

Optimize to Select * from tab_name where col_name>expr1

AND col_name<expr2

5. RELATED WORK
Ioannidis [2] considered optimization problem as

combinatorial optimization problem. Discussed Simulated

Annealing (SA) and Iterative Improvement in replacement

with exhaustive search. This is two phase optimization and

discuss under randomized algorithm. Iterative improvement

achieves local optimization which is downhill movement. SA

accepts some uphill movement by considering probability

factor. In two phase optimization, local optimization run for

some time and then uphill to find local minimum. Join

operations are discussed with left deep and right deep. Cost

function is based on following assumption (i) no pipelining

i.e. intermediate result, (ii) minimum buffering (iii) no

duplication elimination (iv) on-the-fly execution of projection.

Abdekadar et al. [3] discussed query optimization methods for

uniprocessor relational databases to data grid system through

parallel, distributed systems. Compare optimization methods

achieved by (i) Size of search space (ii) Static or dynamic

methods (iii) Re-optimization and re-scheduling execution

plans (iv) Intra-operator and inter-operator level of

modification (v) centralized or decentralized control.

Molina [4] discussed in-memory databases with data

representation, query processing, access method,

performance, application programming interface and

protection, data clustering and migration.

Gupta at. al. [5] suggest limitations of trial and error

approach, it divide space between tables and indexes.

Discussed space and time complexity for maintenance of

indexes. Greedy approach used for subcube selection and

explain all possible indexes with m attribute.

m
𝑟
 𝑟!

𝑚

𝑟=0

With n-dimensional data cubes associated with

(1)2n view

(ii) 3n slice queries

(iii) About 3n! possible indexes and 2n! are fat indexes

Materialize view versus views in associated indexes.

S. Chaudhuri et. al [6] discussed cost driven index selection

tool and provided special attention to handle multi-column

index complexity. Index goodness evaluated on basis of query

syntax and index cost statistics. Follows iterative model in

first iteration consider one column index, second iteration two

column and so on. Efficiency measures on (i) Number of

indexes considered (ii) Number of reformation of indexes i.e.

enumeration. Calls between optimizer, enumeration and

server is overhead so proposes atomic configuration approach.

From set of M configuration set M’ sets are chooses by

greedy approach. Cost (Q, C) estimation done on

Javier et. al [1] an evolutionary algorithm applied on physical

database design for ISP. Discussed problems (i) updates in

physical design (workloads) by using logging capabilities. (ii)

Resolve set of candidate indexes. Highlights ISP in dynamic

environment like materialize views. ISP is a optimization

problem and its goal is minimization of cost. Genetic

algorithm (GA) evolved from the theory of evolution and it is

stochastic search. At initial set of bit sequences are considered

as chromosomes and population is all possible set of indexes.

Reproduction of indexes are done with genetic operator,

crossover and mutation. Reasons to go with GA are (i) To

deal with large space (ii) Non-linear optimization problem.

Success of GA is totally depends upon fitness function. M is

index configuration and number of indexes are

M= C (i, nCols) ∗ nIndexType
𝑛𝐶𝑜𝑙𝑠

𝑖−1

Where,

C(I, nCols)=
𝑛𝐶𝑜𝑙𝑠 !

 𝑛−𝑝 !∗𝑝!

It provides experimental results with genetic algorithm

approach.

Papadomanolakis et. al. [7] Heuristic approach are well suited

for large data space but they are hard to analyses and

compute. Linear programming guarantee for optimal solution

with combinatorial analysis. Linear programming are used for

index selection and later branch and bound are used for

quality checking if index. Index selection is definition is just

like atomic configuration [6]

Gupta et. al [8] it gives algorithm to automate selection of

summary table and indexes. It provides first Index selection

Plan based on Trial and Error approach to find optimal plan.

Combinatorial analysis of views, queries and indexes.

Provides 1 step index selection. By aggressive pruning may

remove optimal solution. Complex system due to

consideration of pre-compute data.

Calle et. al [1] Not only consider gain of index configuration

but also generate best configuration for query. Consider as

variant of knapsack problem. Not limited to locally optimal

solution Recommendation of indexes based on query. Smart

column enumeration for index scan. Reducing optimizer call

by placing enumeration algorithm inside optimizer. No

concept of partitioning in parallel databases. To guarantee of

quality work No analysis of hardness study. Indexing on

materialized view in optimizer. No mass query optimization.

Chaudhuri et. al. [11] use of heuristic approach to find optimal

configuration of indexes by:

(1) Removing spurious indexes by considering query and cost

information. (2)Optimization of index set (goodness) (3)

Iterative approach to manage multi column indexes.

Generation of multi column indexes from single column. SQL

statement is metric of goodness. Explain measures of

efficiency of index selection tool. Not consider materialize

view in optimizer operation. Number of optimizer invocation

reduce by consider small knapsack with single column.

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 19, March 2015

40

Kolackow et. al. [10] Converge global solution in one phase.

Focus on minimizing cost of query execution plan and

optimum utilization of indexes. Genetic algorithms are used.

Reduce space for candidate solution. No guarantee of optimal

solution. Experiments done without considering materialized

view.

6. CONCLUSION
Query optimization by considering suitable physical design

(selecting optimal set of indexes) for in-memory databases.

One can solve index selection problem by utilization of

genetic algorithm for in-memory databases. This heuristic

approach does not guarantee of optimal solution but gives best

results near to optimal solution. Researchers developed

different searching and selecting strategies which can help to

maximized objective function. Linear programming assures

optimal solution by following branch and bound. Best index

selection will gives fast results and also helps for future

coming query.

Future scope of this project is to find cost execution plan of

particular query based on the number of tuples satisfy given

predicate. And solve predicates based on minimum tuples

return by it. Also Index recommendation for LIKE operator is

not cover in this paper.

7. ACKNOWLEDGMENTS
I would like to express my gratitude to Firat Kart for the

useful comments, remarks and engagement through the

learning process of this topic. Furthermore, I would like to

thank Nikhil Tamhankar and Abhay Chavan for introducing

me to the topic as well for the support on the way.

8. REFERENCES
[1] J. Calle, Y. Sáez and D. Cuadra,”An Evolutionary

Approach to the Index Selection Problem,” Nature and

Biologically Inspired Computing (NaBIC) IEEE 2011,

pp. 485 - 490.

[2] Y. E. Ioannidis,” Randomized Algorithms for optimizing

large Join Queries,” in SIGMOD '90 Proceedings of the

1990 ACM SIGMOD international conference on

Management of data, pp 312-321.

[3] A. Hameurlain and F. Morvan, “Evolution of Query

Optimization Methods”, Springer Trans. on Large-Scale

Data & Knowledge, pp. 211–242, 2009.

[4] H. Molina,”Main Memory Database Systems: An

Overview,” IEEE Transaction on Knowledge and data

engineering, vol 4 No.6, December 1992.

[5] Oracle “Performance Tuning Guide 11g Release 2”.

[6] S. Chaudhuri and V. Narasayya, “An Efficient, Cost-

Driven Index Selection Tool for Microsoft SQL Server”,

Proceeding of the 23rd VLDB Conference, 1997, pp 146-

155.

[7] S. Papadomanolakis and A, Ailamaki in “An Integer

Linear Programming Approach to Database Design” in

International Conference on Data Engineering

Workshop, 2007, pp 442-449.

[8] H. Gupta, V. Harinarayan and A. Rajaraman, “Index

Selection for OLAP”, in International Conference on

Data Engineering, 1997, pp 208-219.

[9] S. Chaudhuri, V. Narasayya, “Self-Tuning Database

Systems: A Decade of Progress” in VLDB Endowment,

ACM 978-1-59593-649 2009.

[10] P. Kolaczkowski, and H. Rybinski, “Automatic Index

Selection in RDBMS by Exploring Query Execution Plan

Space,” Springer SCI 223, 2009, pp.3-24.

[11] S. Chaudhuri, “Index Selection for Databases: A

Hardness Study and a Principled Heuristic Solution” in

IEEE transactions on knowledge and data engineering,

vol. 16, no. 11, 2004.

[12] G. Valentin, M. Zuliani, D. C. Zilio, A. Skelley and G.

Lohman, “DB2 Advisor: An Optimizer Smart Enough to

Recommend Its Own Indexes”.

[13] S. Vellev “Review of Algorithms for the Join Ordering

Problem in Databases Query Optimization”.

[14] S. Chaudhuri “An Overview of Query Optimization in

Relational Systems”, in ACM SIGACT-SIGMOD-

SIGART symposium on Principles of database systems,

1998, pp 34-43.

IJCATM : www.ijcaonline.org

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6083215
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6083215
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6083215

