
International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 18, March 2015

1

Centralized Authorization Service (CAuthS) or

Authorization as a Service (AuthaaS)—A Conceptual

Architecture

Pranab Das
Principal Architect, Monocept

Cyber Pearl, Hitech City
Hyderabad, India

Abhinav Das
Student, Manipal University Jaipur

Dehmi Kalan, Sanganer
Jaipur, Rajasthan, India

ABSTRACT

Absence of architecture to describe how to implement

authorization1 as a centralized service, in a way similar to

authentication2, has been causing redundant deployment of

computing resources, lack of standard practices, and never-

ending learning curve in maintaining proprietary or ad hoc

authorization solutions. The paper develops an architecture,

which focuses on centralization of authorization, to be called

Centralized Authorization Service (CAuthS) or Authorization

as a Service (AuthaaS), when deployed as a service, and is

targeted to substitute platform-based ad hoc authorization

solutions.

General Terms

XACML: eXtensible Access Control Markup Language is a

standard maintained by OASIS [1].

ACL, RBAC, and ABAC: Access Control List, Role-Based

Access Control, and Attribute-Based Access Control are

commonly known patterns in the domain of authorization (

[2]; [3]; [4]]).

User Access Control (UAC): An enterprise or federation-

scoped authorization (access control) service discussed in the

paper. In addition to access control, validation of action by the

principal (user) is included in the meaning of authorization.

UUID: Universally Unique Identifier is defined by the Open

Software Foundation [5]. It should guarantee uniqueness of

principal within an enterprise-scoped or a federation-scoped

UAC service.

Identification, Identification Provider (IdP): Identification

a.k.a., authentication, validates credentials of principals and

returns results as Boolean responses. Issuing secured tokens is

often included in the task-list of the IdP [6]; however, the

latter responsibility may be gainfully shared by the SP

particularly if per-transaction tokens3 are warranted for

security reasons.

Core Concern, Crosscutting Concern: Core business gives

rise to logic known as the core concern; other, supportive

1Authorization has been defined differently by many ([20]; [21]; [22];

etc.). In this paper, it is, primarily, granting access to a principal over

a view of a UAC resource. However, it may also include validation of
user actions.
2 Similar to authorization, authentication (for the purpose of this paper

it is same as or close to assertion of identity) has many definitions
([23]; [24]; etc.) Here, the term means asserting identity of a

principal. Single Sign-On (SSO), Cross-Domain SSO, and Federated

SSO ([25]; [26]; [27]; [28]; [24]) have contributed to centralization of
this service.
3 Vide DUKPT [29], which is a way to address vulnerability of

sessions that use a single token for all transactions associated with it.

logic are known as crosscutting concern [7]. However, the

paper will take a relative view on this: if individual concerns

in the set 𝐶 = 𝑐1 , 𝑐2, … containing all of them are

implemented separately then it will be assumed that the

relation, crosscutting Χ into 𝐶 will be deemed reflexive, i.e.

𝑐𝑖Χ𝑐𝑗 ⇔ 𝑐𝑗Χ𝑐𝑖∀𝑐𝑖 , 𝑐𝑗 ∈ 𝐶, 𝑐𝑖 ≠ 𝑐𝑗 . It practically means that

authorization being a crosscutting concern for some business

service also means and is meant by the business service (or a

part of it) acting as crosscutting concern for authorization.

Service Provider (SP): UAC resources are controlled by the

Service Provider (SP), which provides access to identified

principals, subject to nature and extent determined by the

UAC.

Principal: Entity seeking access over UAC resources. Also

vide infra.

Subject: Entity allowed access over UAC resources. Also vide

infra.

Keywords

Computer security, access control, authorization, context type

mapping, strategy

1. INTRODUCTION
Since authorization is not currently being treated as

enterprise-wide, cross-domain, federated (cross-enterprise), or

cloud-based service, it necessitated deployment of redundant

computing resources to run multiple services in parallel.

Generally, authorization includes following component-

services: (a) collaboration with authentication to ascertain

identity of a principal; (b) manage data necessary to perform

authorization and providing a service-interface to the SP; and

(c) make use of such patterns as ACL, RBAC, or ABAC, etc.,

which would cover current and foreseeable future

requirements of managing the core problem of authorization

without breaking codebases4. Many of such functions as are

currently performed by individual services, can be performed

by a centralized service that would scale computing resources

better.

It is noteworthy that XACML evolved as a standard of

authorization rather than to facilitate development of a

centralized authorization service. Some criticized it for its

verbosity and complexity [8]. Nevertheless, a standard is

needed to build CAuthS or AuthaaS. Rest of the paper focuses

on a conceptual, rather than a descriptive, standard. As far as

the following architecture is concerned, ad hoc JSON or

4 Brittleness of codebase is defined as property that requires
disproportionately extensive modification required by a change in the

requirement, cf. Kremenek et al. [30]. The current usage is more in

line with sense used by Keenan and Steele [31] though.

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 18, March 2015

2

ASCII strings ([9]; [10]; [11]) may also be used in place of

XML.
2. ELEMENTS OF DESIGN
Essential elements of CAuthS, as depicted by Figure 1, are

following.

Figure 1: UMLclass diagram showing static relationship between CAuthS and its ecosystem

2.1 CAUTHS OR AUTHAAS
CAuthS or AuthaaS is described by the following classes.

2.1.1 Principal
A principal is an actor that requires access to a UAC resource

by means of the SP interface provided by the platform

containing such resource. It, therefore, needs authentication

and authorization.

2.1.2 Platforms and UAC Resources
Platforms implement SP for the benefit of principals; they

also contain UAC resources, views of which are provided to

principals via SP. Such resources are components of platforms

that would normally consociate with permissions, including

none, thereby defining views5 of it that are made accessible to

principals. To create views, platforms would implement

handlers. The set views Ψ may be conceived as the binary

relation6 [12] ‗for the purpose of‘7 from the set of UAC

resources Υ to the set of permissions Ξ, which is described by

(1) below.

(1) Ψ ⊆ Υ × Ξ

Here, the first component of each vector8𝜈 ∈ Ψ is arbitrarily

taken to be a UAC resource and the second component is,

permission.

2.1.3 IdP (Identity Provider)
IdP authenticates a principal to the platform.

2.1.4 UAC
UAC implements a client interface to be used by the platform.

It also implements an authorization interface that determines a

subjects‘ accessibility over a view.

5 A view may be taken as such aspect or aspects of a UAC resource as
can be made accessible to a principal.
6 In this paper all future relations will be deemed to be binary ones.
7 For example, if 𝜐 ∈ Υ represents a ‗chair‘ and 𝜉1 , 𝜉2 ∈ Ξ represents

‗sitting on‘ and ‗standing on‘ respectively then 𝜐𝐴𝜉1 would mean
‗chair for the purpose of sitting on‘, etc.
8 These are n-tuples, including ordered pairs [33].

2.1.5 Subject
Subject (a.k.a. role in RBAC) represents a set containing all

smallest grains of assignees that can be authorized and a

convenient indirection that allows loose coupling between

principals and views. Subjects 𝑆 and views Ψ would define

relation‗is authorized to‘ or𝐴, also to be called the

authorization-set.

(2) 𝐴 ⊆ 𝑆 × Ψ

A relation ‗may act as‘ or𝑅𝑜 would exist from principals 𝑃

into subjects 𝑆, defined by (3) below9.

(3) 𝑅𝑜 ⊆ 𝑃 × 𝑆

The relation (3) means that one or more principals can be

mapped to one or more subjects (and vice versa) while (2)

would determine corresponding views in the following steps:

(a) Given 𝑝 ∈ 𝑃, find 𝑅𝑜𝑝 ⊆ 𝑅𝑜 such that 𝑝 × 𝑆 ∩

𝑅𝑜 = 𝑅𝑜𝑝 .

(b) For all 𝑠𝑗 ∈ 𝑅𝑜𝑝 , 𝑗 ∈ 𝑆 find 𝑎𝑘 ⊆ 𝐴 such that

 𝑠𝑗 × Ψ ∩ 𝐴 = 𝑎𝑘 .

(c) Views 𝜓𝑝 assignable to 𝑝 would be given by

 𝜓𝑝 = 𝜓 𝑠, 𝜓 = 𝑎𝑘 , 𝑠 ∈ 𝑆 ∧ 𝜓 ∈ Ψ .

2.1.6 Extension
Infrequently though, subjects and views may be conditionally

associated; for example, a subject and a view may be

connected via environmental conditions10 ([13]; [3]). It may

be trivially observed that such conditions would affect

dimensions of vectors represented by (2) above. Thus, if 𝑇 is

9 By not narrowing down the relation from 𝑃 into 𝑆 to a function, 𝑅𝑜
would fulfill both many-to-many, which is typical with RBAC ([34];

[35]), and many-to-one, typical with ABAC ([36]; [37]), schemata.
10Use case 1: An employee may enter the server room only between

8am and 5pm. Use case 2: A user may access their web-based account

only when a request originates from Princeton, NJ.

Principal

Subject

Platform

IdP

UACService

Permission

<<Interface>>

UACClient

<<Interface>>

Handler

<<Interface>>

SP

View

<<Interface>>

Authentication

<<Interface>>

Authorization

Resource

0
..

*
1

..
*

*

1..*
*

1
..

*
0

..
*

1
..

*

V
ie

w

<<implement>>

<
<

im
p

le
m

en
t>

>

A
u

th
o

ri
za

ti
o

n

<<cr
ea

te
>>

<<implement>>

A
u
th

en
ti

ca
ti

on

<
<

im
p

le
m

en
t>

>

co
n

ta
in

s

<<implement>>

use

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 18, March 2015

3

the set of time intervals such as11{ 8,17 ,… } then 𝐴 may be

redefined by(4) below.

(4) 𝐴 ⊆ 𝑆 × Ψ × 𝑇

The relation (4) above may be observed to address

requirement of use case 1, vide footnote 10.

2.1.7 Sequencing
Sequence of calls, in view of which the architecture has been

defined, is following.

(a) A principal requests for a UAC resource to the platform

via SP.

(b) The request is asserted by the IdP to have been originated

from an identified principal12.

(c) Authorization-profile of the principal is requested and

fulfilled via UAC client that may comprise of data

related to zero or more subjects. UAC may create profile

from persistent data; it may also obtain data from other

processes that make such data available to it on the fly.

(d) Based on profile-data, the platforms would select

handlers and parameterize them in order to create views

that are authorized for the principal. Thereafter platforms

would return such authorized views to principals via SP.

2.2 Profile
Not all mutually exclusive, subject-profiles13 Πj‘s are

necessarily subsets of the authorization-set 𝐴 and/or are

indexed by the set 𝑆 of subjects, vide(5) and (6) below14.

(5) Π𝑗𝑗∈𝑆 = 𝐴 ⇒ Π𝑗 ∈ 𝒫 𝐴 ∀𝑗 ∈ 𝑆

(6) Π𝑚 ∩ Π𝑛 ⊇ 𝜙∀𝑚 ≠ 𝑛 ∧ 𝑚, 𝑛 ∈ 𝑆

Thus, all subject-profiles, together, constitute the

authorization-set; additionally, distinct subjects may not

always have distinct subject-profiles. One or more subject-

profiles would aggregate in a profile, which relates to a

principal, vide supra (under Subject) and Figure 2.

Profiles may be conceived as mementoes [14], each holding a

complex message from UAC to undifferentiated platforms—

any participating platform should be able to process profiles

to obtain authorization-related data. Such messages should

have semantics that need be understood only by the recipient,

not even UAC, in general (only an administrator of UAC data

related to an SP may need to understand semantics of data

related to such SP). A minimalist schema of profile is

depicted by Figure 2.

The schema need not be the same for all platforms or UAC

resources; each platform or resource may have their own

schema or reuse a common schema. Details of the sample

schema in Figure 2 are following.

2.2.1 Principal Id
Principal Id uniquely identifies a principal.

2.2.2 Profile
A profile is a comprehensive set of authorization-data related

to a principal. Notably, principals 𝑃 and the set 𝒫 𝐴 would

have a functional relation [15] ℎ given by (7); also, vide §2.2.

Thus, given a principal 𝑝, an element Π𝑝 of 𝒫 𝐴 can be

11 8,17 represents a closed interval, being a subset of the real

continuum ℝ, representing an interval between clock times in 24 hour
format.
12 Such assertion may be performed by the IdP at the outset of a

session, to be carried through tokens exchanged between a principal

and the SP until expiry of the same session.
13 Subject profiles are profiles related to one subject.
14𝒫(𝑋) denotes the power set [38] of the set 𝑋.

uniquely determined. This is because a power set would

contain all subsets, including possible unions.

(7) ℎ: 𝑃 → 𝒫 𝐴 ⇔ ∃ Π𝑝 ∈

𝒫 𝐴 ∀𝑝 ∈ 𝑃 ℎ 𝑝 = Π𝑝

Clearly, the profile 𝛱𝑝 would be union of zero or more

subject-profiles 𝑠, vide (8) below.

(8) 𝛱𝑝 = Π𝑠𝑠∈𝑝

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 18, March 2015

4

Figure 2: A sample schema of profile (i.e. of a principal)

2.2.3 Subject Id
Uniquely identifying a subject, subject id 𝐼𝑠‘swould be

derivable from principal id 𝐼𝑝 , because associated subjects can

be identified from the identity of a principal, vide supra

(under Subject). Subject-profiles are aggregated over subjects

related to a principal in order to constitute a comprehensive

set of authorization-data related to the latter.

2.2.4 Access Filter
An access filter includes data related to a set of permissions,

applicable to a subject, over a subset of UAC resources and

how authorized views of such resources may be created. Thus,

an access filter𝑗is a unique vector 𝐼𝑗
𝜐 , 𝐼𝑗

ℎ , 𝐼𝑗
𝜉
 ofa UAC

resource id 𝐼𝑗
𝜐 , a handler id 𝐼𝑗

ℎ , and a permission id𝐼𝑗
𝜉
,

describing which handler should be applied against which

UAC resource and with which permission. Generically, the set

of access filters comprise a sub-set of the set of three-

tuples,𝐼𝜐 × 𝐼ℎ × 𝐼𝜉 , of UAC resource id‘s, handler id‘s, and

permission id‘s.

2.2.5 Access Validator
Access may need validation ex post facto, i.e. after access has

been provided to a UAC resource; in the same way as access

filters do before providing access. The vector 𝐼𝑗
𝜐 , 𝐼𝑗

ℎ , 𝑀𝑗
𝜄 , 𝑀𝑗

𝑒

representing an access validatorwould include UAC resource

id 𝐼𝑗
𝜐 , handler id 𝐼𝑗

ℎ , pre-access hint (hint-message) 𝑀𝑗
𝜄 , and

exception alert (exception-message) 𝑀𝑗
𝑒 . One or more of the

last two dimensions of the vector may be undefined.

2.2.6 Authorization Handlers
Handlers have been supererogatorily designed as reusable

logic implemented with identical syntax but distinct

semantics. Semantically differentiated but syntactically

identical interfaces are not new15. With such interfaces one

can effectively dissociate contexts from strategies in order to

facilitate reuse by discovery of types at runtime, which may

15 Discovery of types at runtime in high-level languages such as

through ‗generics‘ or ‗reflection‘ [39] are in vogue, whereby given

context, it is possible to discover and construct a instance of a type.
Discussion on a similar line can be found in the strategy pattern [14].

With non-object-oriented languages, e.g. UNIX and SQL, ‗eval‘ and

‗dynamic SQL‘ work in a similar fashion.

also be achieved, albeit in a limited way, with conditional

logic. Let, for example, a handler ℏ be known by the

following generic (functional) signature:

(9) ℏ: ℐ → 𝒪

Here ℐ represents input-type and 𝒪 output-type. If ℐ, 𝒪 are

replaced by members of the context-type 𝐶 then, given the

function, discovery 𝑑, vide footnote 15, it is possible to

bijectively (≅) [16] map contexts into types, vide (10) below.

(10) 𝑑: 𝐶 ≅ ℐ ∪ 𝒪 ∪ … ⇒ ∃ 𝑐𝑖 , 𝑐𝑜 ∈ 𝐶∀𝒾 ∈ ℐ ∧ ℴ ∈

𝒪 𝑑 𝑐𝑖 = 𝒾 ∧ 𝑑 𝑐𝑜 = ℴ ∧ 𝒾 = 𝒿 ⇒ 𝑐𝑖 = 𝑐𝑜

The first part of (10) implies that the discovery function maps,

equivalently16, contexts into the union of different types,

including input-type and output type. This implies that for all

members of input-type or output-type one can always find

corresponding context-type such that discovery of context

yields types such as input-type or output-type. Further,

distinct contexts always map to distinct types.

Therefore, it would be possible to discover syntactically

correct types by contexts that are supplied at runtime, which

would allow (9) being re-designed as (11) below.

(11) ℏ ∘ 𝑑: 𝐶 → 𝒪

Thus, it is possible to map contexts into syntactically correct

output-types. This is possible because 𝑑, vide (10), enables

converting contexts into types17. Access filters can, thus,

covert contexts into type-driven handlers (strategies) and

apply them to control access over UAC resources.

2.2.6.1 Overcoming Platform Barriers
The scheme described above uses discovery in order to avoid

serialization of types, too, some of which could be disparate

across platforms. Thus, it may help if all types are serialized

as universally recognizable context-type18.

16 Equivalency is a consequence of bijection [40].
17 It may also be possible to change syntactic signature based on

context. Thus 𝑐𝒹 ∈ 𝐶 may represent the context of a delimiter-type

, ∈ 𝒟 separating distinct types expressed as contexts. For example, if
 𝑐𝒶 ∈ 𝐶 𝑑 𝑐𝒶 = 𝒶 ∈ 𝒜 and 𝑐𝒷 ∈ 𝐶 𝑑 𝑐𝒷 = 𝒷 ∈ ℬ hold then

ℏ 𝑑 𝑐𝒶 = 𝒷 and ℏ 𝑑 𝑐𝒶𝑐𝒹𝑐𝒷 = ℯ ∈ ℰ may have same syntax.

However, the delimiter-context 𝑐𝒹, in function ℏ makes it bivariate by

making the latter equivalent to ℏ 𝑐𝒶 , 𝑐𝒷 = ℯ ∈ ℰ.
18 XML [41] and JSON [42] can be two such types.

SubjectPrincipalId

AccessFilter AuthorizationHandlerAccessValidator Permission

ResourceId

HandlerId

PermissionId

InputGuide

ErrorAlert

HandlerId

Namespace

Class

Method

Parameter

PermissionId

PermissionName

PermissionValue

PermissionDescription

Profile SubjectId

0
..
1

0
..

1

0..*

1..*

0..*0..*0..*

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 18, March 2015

5

Since implementation of handlers would be specific to the

platform of each access-controlled UAC resource, a generic

function, e.g., (9) above, between any platform and UAC may

return a profile as a memento that would contain all necessary

contexts of types for controlling access. These are mapped to

different types and are specific to platforms. Using taxonomy

of major object-oriented languages, a typical approach19to

invoke a method was chosen in the sample.

2.2.7 Permissions
Permissions Ξ combine with UAC resources Υ to give the

superset of all views Ψ, vide (1) supra (under Platforms and

UAC Resources)20.

3. COMPONENTIZATION
How UAC stands in relation to other components is depicted

in Figure 3 as well as described below. It may be noted that

functions to be performed by platforms are included in UAC

Resource Managers.

3.1 Interfaces

3.1.1 UAC Resource<n>SP (UAC Resource

Service Provider)
The interface allows principals 𝑃 to make use of the Principal

Interface21𝐼𝑝 to request from UAC resources Υ and obtain

amongst views Ψ determined by their profiles Π𝑝∀𝑝 ∈ 𝑃 .

Earlier (vide Subject supra) it was discussed how id22 of a

principal, which ought to be part of a request, could be

logically processed to obtain the set of views 𝜓𝑝 permissible

to it. If all possible views corresponding to UAC resource𝜐 ∈

Υ be given by 𝜓𝜐 then Ψ′ = 𝜓𝑝 ∩ 𝜓𝜐 should determine

the view to be returned to the principal, if unique. However, if

cardinality of Ψ′ is greater than one then some other policy or

condition e.g., ‗union of permissible views if more than one‘

would determine the final view to be authorized. If composite

views are unwarranted, principals may explicitly indicate

which subject they represent to avoid exceptions [17].

3.1.2 Identity Service
Identity service is implemented by an IdP and used by

platforms to identify principals at the outset of sessions.

However, instead of the IdP, tokens or assertions (also, vide

footnote 12), may be generated by platforms, which would

facilitate per-transaction tokens, vide footnote 3, without

overburdening the IdP.

3.1.3 Access Control Service
Platforms would make use of the interface to request access

control data with respect to an identified principal. It may also

include which UAC resource(s) the principal wanted access to

and conditions, if any. In response, the service would return a

memento containing authorization profile of the principal. If

details such as UAC resources or conditions are supplied, the

profile can be trimmed to include only relevant information.

19 These are as follows: handler id, namespace, class, method,
parameters (separated by delimiter).
20 In sample, permissions were described with a unique id, name,

value, and description. The former would be used to index
permissions, name and value would describe a property, description is

optional.
21 This may be a human-computer interface or one between two
systems, depending on nature of the principal.
22 Ids of principals may be taken as indirection of principals

themselves.

3.1.4 Invoker
Platforms use the interface for decorating [14] UAC resources

in order to create views, where handlers would provide

strategies [14] and profiles contexts.

3.1.5 View Handling
UAC resources would implement the interface for the benefit

of handlers in order to decorate them. If necessary, order of

handlers may be specified in the profile.

3.1.6 View Generation
The interface, implemented by the platform, allows a UAC

resource to pass a final and decorated view of it, thereby

completing processing-cycle of authorization.

3.2 Components

3.2.1 Platform<n>
Platforms are containers of all other components. One

platform differs from another in implementation details of its

components—types in relation to components being generally

incompatible across platforms. However, context-types need

be undifferentiated to be understood in the same way

universally.

3.2.2 UAC Resource<n>
UAC resources are components, views of which are accessed

by principals. To facilitate the process, they would implement

view handling and associate with view generation interfaces.

3.2.3 UAC Resource Manager<n>
These components coordinate the processes of authentication,

authorization, and managing views. Thereby, they present a

façade [14] to the principal interface. Internally, they may

manage session-tokens, process profiles of principals to

determine strategies in order to invoke appropriate handlers as

strategies, and receive final views of UAC resources before

passing to the principal.

3.2.4 Handler<n>
These components process specific authorization tasks, which

may be generic or applicable to a specific type of UAC

resources.

3.2.5 Principal Interface
These are components implemented by clients of the UAC

resource service provider interface—they maintain an

interface between principals and platforms.

3.2.6 IdP
This component implements the identity service.

3.2.7 UAC
This component implements access control service.

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 18, March 2015

6

Figure 3: UML component diagram of CAuthS in relation to its ecosystem

4. ADMINISTRATION
Administration relates to the maintaining static relationship

between UAC and other components. For such purpose, a

maintenance interface would be provided by UAC (not in the

diagrams).

5. ADAPTING TO AD HOC

AUTHORIZATION SOLUTIONS
If ad hoc authorization solutions need be adapted, it may be

achieved in on of the following two ways.

5.1 Adapting CAuthS to Ad Hoc

Authorization

Figure 4: Adapting CAuthS to Ad Hoc Authorization

Firstly, adapter may convert calls to the access control service

into those of the ad hoc authorization interface. Thus, there

would be as many ad hoc UAC Adapters as there are ad hoc

authorization interfaces. The scheme does not use a view-

handling interface.

5.2 Adapting Ad Hoc Authorization to

CAuthS
Alternatively, ad hoc authorization interface may allow

unrestricted access to handlers over UAC resources vide

<<component>>

Platform1

<<component>>

UAC

<<component>>

IdP

<<component>>

Platform2

<<component>>

PrincipalInterface

<<component>>

Resource1

<<component>>

Handler1_1

<<component>>

Handler1_2

<<component>>

Handler1_n

<<component>>

ResourceManager1

ViewGeneration

ViewHandling

Invoker

AuthenticationAuthorization

AccessControlService

Authorization

IdentityService

Authentication

View Resource2SP

View

Resource1SP

Details of Components are omitted.

AdHocAuthorizationSolution<n>

<<component>>

UAC

<<component>>

AdHocUACAdapter<n> AuthorizationAdaptation

AccessControlService

AdHocAuthorization<n>

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 18, March 2015

7

Figure 5. Unless view creation process is tightly coupled with

the ad hoc authorization solution, this way more granular

access control could be exercised by UAC.

Figure 5: Adapting ad hoc authorization to CAuthS

6. CONCLUSION
The architecture facilitates centralizing authorization service

in the following way.

(i) It separates the concern related to maintenance and

management of authorization-related data from

application of the same that, in a way, distinguishes

between access-control ―core‖ and ―crosscutting‖(

[18]; [19]).

(ii) The core concern of authorization has been

separated from SP‘s by managing data related to

them in platform-neutral, ubiquitous contexts,

thereby facilitating centralization.

(iii) Handling of contexts forms a part of business logic

of SP‘s that are core concern for them. However,

handlers as strategies may introduce a standard way

of handling, wherein contexts are provided by the

UAC client.

(iv) Dynamic discovery of types, vide footnote 15,can

scaled down maintenance of handlers.

(v) A profile, as a memento, may use a standard

schema, e.g. one provided by XACML, or, an ad

hoc schema. JSON may be used in addition to XML

or an ASCII string. Thus, it is plausible that CAuthS

uses different schemas for mementoes for different

authorization clients.

(vi) It provides architectures to integrate ad hoc

authorization solutions, thereby making coexistence

possible among ad hoc solutions adopted by legacy

applications and CAuthS.

Since a ubiquitous memento connects SP‘s with the UAC

service, the latter may be deployed as a service, thereby

justifying calling it as AuthaaS. Benefits of UAC as CAuthS

or AuthaaS are following.

(i) Scaling productive computing resources, man or

machine, would be easier. This is because, as a

centralized service, one may load balance CAuthS

independent of UAC resources that CAuthS

authorizes.

(ii) Learning curve of maintaining authorization

service would be flatter since one need not learn a

multitude of solutions.

7. A Special Use Case
23

A special use case of CAuthS would be to grant access to a

subset Ψ⊆𝑝 of the accessible views Ψ𝑝 by an authenticated

principal 𝑝 ∈ 𝑃 to another, possibly unauthenticated principal

𝑝′ ∈ 𝑃, who normally would not have access to all views

under such subset i.e., 𝜙 ⊆ Ψ𝑝 ′ ∩ Ψ⊂𝑝 ⊆ Ψ⊆𝑝 . The process

would be following.

(i) A permission grant 𝑔 ∈ Ξ may be created.

(ii) A subset ΨΥ of views Ψ may be defined, which

only would be under purview of ‗grant‘.

Alternatively, let ΨΥ = Ψ.

(iii) A subset 𝑃Υ of principals 𝑃 may be defined, in a

way similar to (ii) above. Alternatively, let 𝑃Υ = 𝑃.

Another alternative would be 𝑃Υ may have

23 The use case is similar to OAuth 2.0 standard ([43]; [44]).

However, in the paper details of implementation are omitted.

Principal

Subject

Platform

IdP

UACService

Permission

<<Interface>>

UACClient

<<Interface>>

Handler

<<Interface>>

SP

View

<<Interface>>

Authentication

<<Interface>>

Authorization

Resource

AdHocAuthorizationSolution

<<Interface>>

AdHocAuthorization

UnrestrictedAccess

0
..

*
1

..
*

*

1..*

*

1
..

*
0

..
*

1
..

*

<
<

ex
te

n
d
>

>

U
n
re

st
ri

ct
ed

A
cc

es
s

<
<

co
n

ta
in

>
>

<<implement>>

V
ie

w

<<implement>>

<
<

im
p

le
m

en
t>

>

A
u
th

o
ri

za
ti

o
n

<<cr
ea

te
>>

<<implement>>
A

u
th

en
ti

ca
ti

o
n <
<

im
p

le
m

en
t>

>

co
n
ta

in
s

<<implement>>

use

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 18, March 2015

8

principals all of which are not in 𝑃 i.e., 𝜙 ⊆ 𝑃Υ ∩

𝑃 ⊆ 𝑃Υ24.

(iv) A set Υ𝑔 of composite resources may be defined,

union of which with Υ may be assigned (:=) to Υ,

vide(12) below.

(12) Υ𝑔 = ΨΥ × 𝑃Υ ∧ Υ ≔ Υ ∪ Υ𝑔 ⇒ Υ𝑔 Υ𝑔 ⊆ Υ ∩
 ΨΥ × 𝑃Υ

(v) A subject 𝑠𝑗
𝑔
∈ 𝑆 may be created that has grant 𝑔

permission on a subset Υ𝑗 of Υ𝑔 . In other words, the

subject has access to any view Ψ𝑗 = Υ𝑗 × 𝑔 .

(vi) A principal 𝑝 ∈ 𝑃 having been related to 𝑠𝑗
𝑔

 by ‗is

authorized to‘ or 𝐴, i.e., 𝑝𝐴𝑠𝑗
𝑔

, would be able to

grant permission on previously defined views to

previously defined principals.

8. ACKNOWLEDGMENTS
The first author wishes to acknowledge encouragement and

suggestions provided by Mr. Gangadhar Heralgi, Co-founder

& CTO of Monocept and Mr. Ganesh Iyer, President of

Vertex Computer Systems.

9. REFERENCES
[1] OASIS. (2013, Jan.) OASIS eXtensible Access Control

Markup Language (XACML) TC. [Online].

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-

spec-os-en.pdf

[2] David F Ferraiolo, Ravi Sandhu, Serban Gavrila, D

Richard Kuhn, and Ramaswamy Chandramouli,

"Proposed NIST standard for role-based access control,"

ACM Transactions on Information and System Security

(TISSEC), vol. 4, no. 3, pp. 224--274, 2001.

[3] Eric Yuan and Jin Tong, "Attributed based access control

(ABAC) for Web services," in Web Services, 2005.

ICWS 2005. Proceedings. 2005 IEEE International

Conference on, 2005.

[4] Shucheng Yu, Cong Wang, Kui Ren, and Wenjing Lou,

"Achieving secure, scalable, and fine-grained data access

control in cloud computing," in INFOCOM, 2010

Proceedings IEEE, 2010, pp. 1--9.

[5] Network Working Group. (2005, July) A Universally

Unique IDentifier (UUID) URN Namespace. [Online].

http://www.ietf.org/rfc/rfc4122.txt

[6] Martin Gaedke, Johannes Meinecke, and Martin

Nussbaumer, "A modeling approach to federated identity

and access management," in Special interest tracks and

posters of the 14th international conference on World

Wide Web, 2005, pp. 1156--1157.

[7] Markus Lorch, Seth Proctor, Rebekah Lepro, Dennis

Kafura, and Sumit Shah, "First Experiences Using

XACML for Access Control in Distributed Systems," in

XMLSEC '03 Proceedings of the 2003 ACM workshop

on XML security, New York, NY, USA, 2003, pp. 25-

37.

24 In the first two alternatives, IdP‘s as well as authentication interface

corresponding to any member of 𝑃Υ would be known to the platform;
however, for the third alternative, such information—metadata

relating to principals—may be added by the authorizing principal

when they define a principal for the purpose of grant.

[8] Gregor Kiczales et al., "Aspect-Oriented Programming,"

in Proceedings of the European Conference on Object-

Oriented Programming, vol. 1241, ECOOP, 1997, pp.

220–242.

[9] Ramon Lawrence, "The space efficiency of XML,"

Information and Software Technology, vol. 46, no. 11,

pp. 753--759, 2004.

[10] Nurzhan Nurseitov, Michael Paulson, Randall Reynolds,

and Clemente Izurieta, "Comparison of JSON and XML

Data Interchange Formats: A Case Study.," Caine, pp.

157--162, 2009.

[11] Bruno Gil and Paulo Trezentos, "Impacts of data

interchange formats on energy consumption and

performance in smartphones," in Proceedings of the 2011

Workshop on Open Source and Design of

Communication, 2011, pp. 1--6.

[12] Paul Moritz Cohn, Universal algebra.: Springer, 1981.

[13] Jaehong Park and Ravi Sandhu, "Towards usage control

models: beyond traditional access control," in

Proceedings of the seventh ACM symposium on Access

control models and technologies, 2002, pp. 57--64.

[14] Erich Gamma, Richard Helm, Ralph Johnson, and John

Vlissides, Design Patterns: Elements of Reusable Object-

Oriented Software. Upper Saddle River, NJ: Addison-

Wesley Professional computing Series, 1995.

[15] James F Gray, Sets,relations,and functions.:

Holt,Rinehart & Winston, 1962.

[16] F. Borceux, Handbook of Categorical Algebra: Volume

2, Categories and Structures.: Cambridge University

Press, 1994.

[17] Westley Weimer and George C Necula, "Exceptional

situations and program reliability," ACM Transactions

on Programming Languages and Systems (TOPLAS),

vol. 30, no. 2, p. 8, 2008.

[18] Kyo C Kang et al., "FORM: A feature-oriented reuse

method with domain-specific reference architectures,"

Annals of Software Engineering, vol. 5, no. 1, pp. 143--

168, 1998.

[19] Gregor Kiczales et al., "Getting started with AspectJ,"

Communications of the ACM, vol. 44, no. 10, pp. 59--

65, 2001.

[20] Patricia P Griffiths and Bradford W Wade, "An

authorization mechanism for a relational database

system," ACM Transactions on Database Systems

(TODS), vol. 1, no. 3, pp. 242--255, 1976.

[21] Sushil Jajodia, Pierangela Samarati, and VS

Subrahmanian, "A logical language for expressing

authorizations," in Security and Privacy, 1997.

Proceedings., 1997 IEEE Symposium on, 1997, pp. 31--

42.

[22] Michiharu Kudo and Satoshi Hada, "XML document

security based on provisional authorization," in

Proceedings of the 7th ACM conference on Computer

and communications security, 2000, pp. 87--96.

[23] Jan De Clercq, "Single sign-on architectures," in

Infrastructure Security.: Springer, 2002, pp. 40--58.

[24] Alessandro Armando, Roberto Carbone, Luca

Compagna, Jorge Cuellar, and Llanos Tobarra, "Formal

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 18, March 2015

9

analysis of SAML 2.0 web browser single sign-on:

breaking the SAML-based single sign-on for google

apps," in Proceedings of the 6th ACM workshop on

Formal methods in security engineering, 2008, pp. 1--10.

[25] Howard Barnum, Claude Cr'epeau, Daniel Gottesman,

Adam Smith, and Alain Tapp, "Authentication of

quantum messages," in Foundations of Computer

Science, 2002. Proceedings. The 43rd Annual IEEE

Symposium on, 2002, pp. 449--458.

[26] Jingsha He, "System and method for single sign-on to a

plurality of network elements," 5,944,824, Aug. 31,

1999.

[27] Timothy S Dare, Eric B Ek, and Gary L Luckenbaugh,

"Method and system for authenticating users to multiple

computer servers via a single sign-on," 5,684,950, Nov.

4, 1997.

[28] Andreas Pashalidis and Chris J Mitchell, "A taxonomy of

single sign-on systems," in Information security and

privacy, 2003, pp. 249--264.

[29] Dennis G Abraham and Richard K Hite, "Method and

apparatus for initialization of cryptographic terminal,"

5,745,576, Apr. 28, 1998.

[30] Ted Kremenek, Paul Twohey, Godmar Back, Andrew

Ng, and Dawson Engler, "From uncertainty to belief:

Inferring the specification within," in Proceedings of the

7th symposium on Operating systems design and

implementation, 2006, pp. 161--176.

[31] Ed Keenan and Adam Steele, "Exploring game

architecture best-practices with classic space invaders,"

in Proceedings of the 1st International Workshop on

Games and Software Engineering, 2011, pp. 21--24.

[32] James Rumbaugh, Ivar Jacobson, and Grady Booch,

Unified Modeling Language Reference Manual, The.:

Pearson Higher Education, 2004.

[33] W Rudin, Principles of mathematical analysis, 3rd ed.:

McGraw Hill, Inc., 1976.

[34] David F Ferraiolo and D Richard Kuhn, "Role-based

access controls," arXiv preprint arXiv:0903.2171, 2009.

[35] Ravi S Sandhu, Edward J Coyne, Hal L Feinstein, and

Charles E Youman, "Role-based access control models,"

Computer, vol. 29IEEE Computer Society, no. 2, pp. 38-

-47, 1996.

[36] Fawaz A and Miege, Alexandre and El Saddik,

Abdulmotaleb Alsulaiman, "Threshold-based

collaborative access control (T-CAC)," in Collaborative

Technologies and Systems, 2007. CTS 2007.

International Symposium on, 2007, pp. 46--56.

[37] Ruo-Fei Han, Hou-Xiang Wang, Qian Xiao, Xiao-Pei

Jing, and Hui Li, "A united access control model for

systems in collaborative commerce," Journal of

Networks, vol. 4, no. 4, pp. 279--289, 2009.

[38] George A Gratzer, Universal algebra.: Springer Science

& Business Media, 2008.

[39] Andrew Kennedy and Don Syme, "Design and

implementation of generics for the. net common

language runtime," in ACM SigPlan Notices, 2001, pp.

1--12.

[40] Steven Roman, Steven M Roman, and Steven M Roman,

Advanced linear algebra.: Springer, 2005.

[41] Tim Berners-Lee, Dan Connolly, and Ralph R Swick,

"Web architecture: Describing and exchanging data,"

WWW-address: http://www. w3. org/1999/04/WebData,

1999.

[42] Douglas Crockford. (2006, July) Network Working

Group Request for Comments. [Online].

https://tools.ietf.org/html/rfc4627

[43] Whitfield Diffie, Paul C Van Oorschot, and Michael J

Wiener, "Authentication and authenticated key

exchanges," Designs, Codes and cryptography, vol. 2,

no. 2, pp. 107--125, 1992.

[44] D. Ed. Hardt. (2010, Jan.) Internet Engineering Task

Force. [Online]. https://tools.ietf.org/html/draft-hardt-

oauth-01.

IJCATM : www.ijcaonline.org

