
International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 16, March 2015

14

Design and Simulation of Wireless Sensor Network in

NS2

Genita Gautam
Department of Computer Sc & Engineering

Sikkim Manipal Institute of Technology,
Sikkim Manipal University,Sikkim

Biswaraj Sen
Department of Computer Sc & Engineering

Sikkim Manipal Institute of Technology,
Sikkim Manipal University,Sikkim

ABSTRACT

This paper provides a study of how to design and implement

Wireless Sensor Network (WSN) in NS2 (Network Simulator

version 2).A wireless sensor network (WSN) consists of a

number of sensors which are spatially distributed and are

capable of computing, communicating and sensing.NS2 is an

event-driven simulation tool that is useful in studying the

dynamic nature of computer networks.NS2 provides users

with executable command ns which take on input argument,

which is the name of a Tool Command Language (TCL)

simulation scripting file. Network Animator (NAM) is a TCL

based animation tool for viewing network simulation traces

and real world packet traces. Scripting languages such as

AWK (Aho Weinberger Kernighan) script and PERL script

can be used to calculate the performance metrics using these

trace files. A simple simulation consisting of 17 nodes and

calculation of average end-to-end delay and average energy

consumption is shown.

Keywords

Wireless Sensor Network (WSN), Network Simulator

Version2 (NS2), Tool Command Language (TCL), Network

Animator (NAM), Aho Weinberger Kernighan (AWK).

1. INTRODUCTION
A wireless sensor network (WSN) consists of spatially

distributed autonomous sensors to monitor physical or

environmental conditions such as temperature, sound,

vibration, pressure and humidity [2]. There are a number of

sensors which connect to the controllers and processing

stations directly while there are other sensors who

communicate the collected data wirelessly to a centralized

processing station. It is for this reason that a sensor node is

often not only responsible for collection of data, but also for

in-network analysis, correlation, and aggregation of its own

data and data from other sensor nodes. The capabilities of

sensor nodes in a WSN can vary widely, that is, simple sensor

nodes may monitor a single physical phenomenon, while

more complex devices may combine many different sensing

techniques (e.g., acoustic, optical, magnetic)[3]. They can also

differ in their communication capabilities. While simple

sensors may only collect and communicate information about

the observed environment, more powerful sensors (i.e.,

sensors with large processing, energy, and storage capacities)

can perform computation and aggregation of data. Wireless

sensor networks have inspired many applications. Some of

them are futuristic while a large number of them are

practically useful. The diversity of applications in the latter

category is remarkable – environment monitoring, target

tracking, pipeline (water, oil, gas) monitoring, structural

health monitoring, precision agriculture, health care, supply

chain management, active volcano monitoring, transportation,

human activity monitoring, and underground mining may also

perform extensive processing and aggregation functions [2].

Fig 1[2]: Wireless sensor network

2. NS2 SIMULATORS
Network Simulator (Version 2), widely known as NS2, is an

event- driven simulation tool that is useful in studying the

dynamic nature of communication networks. Simulation of

wired as well as wireless network functions and protocols

(e.g., routing algorithms, TCP, UDP) can be done using NS2.

In general, NS2 provides users with a way of specifying such

network protocols and simulating their corresponding

behaviors. Due to its flexibility and modular nature, NS2 has

gained constant popularity in the networking research

community since its birth in 1989[6][10].

NS2 provides users with executable command ns which takes

on input argument, the name of a Tcl simulation scripting file.

Users are feeding the name of a Tcl simulation script (which

sets up a simulation) as an input argument of an NS2

executable command ns. In most cases, a simulation trace file

is created, and is used to plot graph and/or to create

animation.NS2 consists of two key languages: C++ and

Object-oriented Tool Command Language (OTcl). While the

C++ defines the internal mechanism (i.e., a backend) of the

simulation objects, the OTcl sets up simulation by assembling

and configuring the objects as well as scheduling discrete

events (i.e., a frontend). The C++ and the OTcl are linked

together using TclCL. Network animator (Nam) is a Tcl/TK

based animation tool for viewing network simulation traces

and real world packet traces. It is mainly intended as a

companion animator to the ns simulator [6][10].

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 16, March 2015

15

Fig 2[6]: NS2 Simulator

After the trace file is created Scripting languages such as

AWK (Aho Weinberger Kernighan) script and PERL script

can be used to calculate the performance metrics. Here PERL

script is used to calculate the average end- to-end delay of

packets from the source node to the sink node. PERL script is

a general- purpose programming language originally

developed for text manipulation and now used for wide range

of tasks including system administration, web development,

network programming and more.

3. METHODOLOGY
Sensing can be defined as a technique that is used to gather

information about a physical object or process, including the

occurrence of events (i.e., changes in state in rise of

temperature or pressure). A device performing such a sensing

task is called a sensor. The constraint most often associated

with sensor network design is that sensor nodes operate with

limited energy budgets. Typically, they are powered through

batteries, which must be either replaced or recharged (e.g.,

using solar power) when depleted. For some nodes, neither

option is appropriate, that is, they will simply be discarded

once their energy source is depleted. Whether the battery can

be recharged or not significantly affects the strategy applied to

energy consumption [2]. Thus when we create sensor nodes in

NS2, an energy model needs to be defined which is the energy

each node has at the beginning of simulation. The components

required for creating an energy model includes initialEnergy,

txPower, rxPower and idlePower. The initialEnergy represents

the level of energy in the node at the beginning of simulation,

txPower and rxPower represents the energy consumed for

transmitting and receiving the packets. And the most

important component the energy model of a sensor node must

contain is called the “sensePower”. It denotes the energy

consumed by a sensor node during the sensing operation.

Apart from these components it is important to specify the

communication range “RXThresh" and the sensing range

“CSThresh” of a node.

The following code will set the “RXThresh” and “CSThresh”

to 40 meters.

Phy/WirelessPhy set CSThresh_ 40;

Phy/WirelessPhy set RXThresh_ 40;

The energy model can be created using the following code:

Energy model

 $ns node-config -energyModel EnergyModel \

 -initialEnergy 50 \

 -txPower 0.75

 -rxPower 0.25 \

 - idlePower 0.04\

 -sensePower 0. 10\

The next step in simulation is tracing. Tracing is a necessary

technique for each discrete-event simulator, because it tells us

what has happened inside the model during its running and the

output analysis is also based on the tracing results. Normally

for a simulation tool, trace data can be either displayed

directly during execution of the simulation, or stored in a file

to be post- processed and analyzed. Ns-2 supports the latter

one better, though Nam (an animation tool designed for

working with ns-2) can implement the first one to a certain

extent.Ns-2 is able to trace all packets that are received,

dropped and sent by agents, routers[6]. Before the simulation

starts running, we should tell ns 2 what events we want to

trace:

set tracef [open simple.tr w]

This command creates an object tracef and opens the file

simple.tr in write mode. The format of the trace file is

presented below:

Fig 3[6]: Trace file format

4. RESULT AND ANALYSIS

4.1 Simulation Scenario
Sixteen wireless sensor nodes are created. Node 17 is labeled

as the sink node. Communication between the nodes is
achieved using UDP. A CBR session is created between each

node and the sink node. The simulation has been carried out
for 100 milliseconds. The routing protocol used is DSDV and

the MAC protocol used is 802.11.

Fig 4: Nam output showing the sink node and the

other nodes

4.2 Calculation of Average End-to-End

Delay and Total Energy Consumed
The trace file simple.tr is obtained is shown in figure 5. In

addition to the packets that are received, dropped and sent by

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 16, March 2015

16

the nodes, the trace file also shows the energy model. [Energy

ei es et er]. Where,

Energy represents the energy remaining,

ei = energy in idle mode,

es= energy used in sensing

et= energy used in transmitting the packets

er = energy used in receiving the packets

Fig 5: Trace file simple.tr

A PERL script Avgdelay.pl is written to calculate the average

end-to-end delay of packets from the source nodes to the sink

node. The command used to execute it in the terminal is given

by:

Fig 6: Calculation of average end-to-end delay using

PERL script

An AWK Script energy.awk is written to calculate the average

energy consumed in the network .The command to execute in

the terminal is given by:

Fig 6: Calculation of average energy consumed using

AWK script

5. CONCLUSION
This paper provides an overview of implementation of WSN

in NS2. A simple simulation detail of creating a WSN is also

presented. Tracing is done to capture all packets that are

received, dropped and sent. The trace file obtained is

simple.tr. The trace file has then been used to calculate the

average end -to-end delay of the packets during the simulation

via a PERL script Avgdelay.pl. Also the trace file is used to

calculate the average energy consumed in the network via an

AWK script energy.awk. In future the calculation of average

energy consumption and average end-to-end delay can be

represented using XGraph.

6. REFERENCES
[1] Jianliang Zheng and Myung J. Lee,”A Comprehensive

Performance Study of IEEE 802.15.4”,IEEE, Aug. 1999.

[2] Waltenegus Dargie and Christian Poellabauer,”

FUNDAMENTALS OF WIRELESS SENSOR

NETWORKS”, John Wiley & Sons, Ltd, pp.25-30, 2010

[3] SUHAS J. PATIL and B. R.

CHANDAVARKAR,”HOMOGENEOUS SIMULTI-

INTERFACE MOBILE NODE SUPPORT IN

NS2”International Journal of Communication Network

Security ISSN: 2231 – 1882, Volume-1, Issue-4, 2012

[4] Fröhlich, B. and Plate, J. 2000. The cubic mouse: a new

device for three-dimensional input. In Proceedings of the

SIGCHI Conference on Human Factors in Computing

Systems

[5] Security Model Using NS2 “International Journal of

Latest Trends in Engineering and Technology (IJLTET),

Vol. 4 Issue 1 May 2014.

[6] Introduction-to-network-simulator

2”ns2blogger.blogspot.in/”,2014/04.

[7] Brown, L. D., Hua, H., and Gao, C. 2003. A widget

framework for augmented interaction in SCAPE.

[8] Y.T. Yu, M.F. Lau, "A comparison of MC/DC,

MUMCUT and several other coverage criteria for logical

decisions", Journal of Systems and Software, 2005, in

press.

[9] Spector, A. Z. 1989. Achieving application requirements.

In Distributed Systems, S. Mullender.

[10] Teerawat Issariyakul, Ekram Hossain,“Introduction to

Network Simulator 2”, Springer US,2008, pp 1-18.

IJCATM : www.ijcaonline.org

http://link.springer.com/search?facet-author=%22Teerawat+Issariyakul%22
http://link.springer.com/search?facet-author=%22Ekram+Hossain%22

