On γ -Connected Sets

B. K. Tyagi

Department of Mathematics, Atmaram Sanatan Dharma College, University of Delhi, Delhi-110021, India.

Harsh V. S. Chauhan¹ Department of Mathematics, University of Delhi, Delhi-110007, India.

Rachna Choudhary² Department of Mathematics, University of Delhi, Delhi-110007, India.

ABSTRACT

The definition of γ -connectedness due to Császár [3] is modified and its basic properties are studied. The images and preimages of γ - connected sets under $(\gamma - \gamma')$ continuous mapping are investigated. Sufficient conditions for a mapping to be $(\gamma - \gamma')$ - continuous are given.

General Terms:

Mathematics Subject Classification: Primary 54A05, Secondary 54D10

Keywords:

 γ - connectedness, $(\gamma - \gamma')$ - continuous mapping, $(\gamma - \gamma')$ - semiconnected, $(\gamma - \gamma')$ - weakly semiconnected, $(\gamma - \gamma')$ - connected, γ - strongly semi-locally connected.

1. INTRODUCTION

Let X be a set and $\Gamma(X)$ be the collection of all monotone mappings: $A \subseteq B \subseteq X$ implies $\gamma A \subseteq \gamma B$ for $\gamma \in \Gamma(X)$. According to Császár $A \subseteq X$ is γ -open [1] if $A \subseteq \gamma A$ and the collection μ_{γ} of all γ -open sets forms a generalized topology : μ_{γ} is closed under arbitrary unions, and (X, μ_{γ}) is called a generalized topological space (GT-space). A set is γ -closed if its complement in X is γ -open. For a set $A \subseteq X$, $c_{\gamma}A$ is the intersection of all γ -closed sets containing A. The sets $U, V \subseteq X$ are said to be γ -separated if $c_{\gamma}U \cap V = \emptyset$ and $U \cap c_{\gamma}V = \emptyset$. Note that γ -separated sets U and V' are contained in $X' = \bigcup \{A : A \in \mu_{\gamma} \}.$ The set $X' = \bigcup \{A : A \in \mu_{\gamma}\}$ may not be equal to X. When

X' = X, X is called a strong generalized topological space.

A set $S \subseteq X$ is γ -connected [3] if $S = U \cup V$, U and V are γ -separated, implies that $U = \emptyset$ or $V = \emptyset$. The space X is said to be γ -connected if it is γ -connected subset of itself. It follows that if a space X is not strong then it is trivially γ -connected.

This situation is at variance with the classical topology where the property of connectedness acts as a classification device. Császár definition acts as classification device only in the class of strong generalized topological spaces. In order to overcome this problem the definition of γ -connectedness is modified and the analogues of all the results in Sections 1 and 2 [3] are obtained. In Section 5 sufficient conditions are given so that a mapping becomes $(\gamma - \gamma')$ continuous.

2. PRILIMINARIES

LEMMA 2.1. [3] For $U, V \subseteq X$, the following statements are eauivalent:

(a). U and V are γ -separated.

(b). There are γ -closed sets F_U and F_V such that $U \subseteq F_U \subseteq$ X - V and $V \subseteq F_V \subseteq X - U$.

(c). There are γ -open sets G_U and G_V such that $U \subseteq G_U \subseteq X - V$ and $V \subseteq G_V \subseteq X - U$.

LEMMA 2.2. Let $S \subseteq X$, then $c_{\gamma}(S \cap X') = c_{\gamma}(S)$.

PROOF. To show $c_{\gamma}(S) \subseteq c_{\gamma}(S \cap X')$, it is sufficient to consider the points in X'. Let $x \in X'$ be such that $x \in c_{\gamma}(S)$. Let G be any γ -open set such that $x \in G$. Then $G \cap S \neq \phi$. Therefore, $G \cap (S \cap X') \neq \phi$, that is, $x \in c_{\gamma}(S \cap X')$. \Box

3. γ - CONNECTED SETS

DEFINITION 3.1. A set $S \subseteq X$ is said to be γ -connected if $S \cap X' = U \cup V$, U and V are γ -separated, implies $U = \phi$ or V = ϕ . The space X is said to be γ -connected if it is γ -connected subset of itself.

THEOREM 3.2. For $\gamma \in \Gamma(X)$, the following statements are equivalent:

(a). The space X is γ -connected. (b). If $X' = G \cup G'$, $G \cap G' = \phi$, G and G' are γ -open, then either $G = \phi$ or $G' = \phi$.

(c). If $X = F \cup F'$, $F \cap F' \cap X' = \phi$, F and F' are γ -closed, then $F \cap X' = \phi$ or $F' \cap X' = \phi$.

(d). If H is γ -closed set such that $H \cap X'$ is γ -open, then $H \cap$ $X' = \phi \text{ or } H \cap X' = X'.$

¹The author acknowledges the fellowship grant of University Grant Commission, India.

²The author acknowledges the fellowship grant of Council of Scientific and Industrial Research, India

PROOF. (a) \Rightarrow (b). By 2.1 G and G' are γ -separated.

(b) \Rightarrow (c). Let G = X - F and G' = X - F'. Then $G = X' \cap F'$ and $G' = X' \cap F$. Therefore, G and G' are γ -open, $G \cup G' = X'$ and $G \cap G' = \phi$. So $G = \phi$ or $G' = \phi$. Therefore, $F \cap X' = \phi$ or $F' \cap X' = \phi$.

 $\begin{array}{ll} (c) \Rightarrow (d). \ Let \ F = H \ and \ F' = X - (H \cap X'). \ Then \ F \cap F' \cap X' = \phi, \ F \ and \ F' \ are \ \gamma - closed. \ Therefore, \ F \cap X' = \phi \ or \\ F' \cap X' = \phi. \ Thus, \ H \cap X' = \phi \ or \ H \cap X' = X'. \\ (d) \Rightarrow (b). \ Let \ X' = G \cup G', \ G \cap G' = \phi, \ G \ and \ G' \ are \ \gamma - open. \end{array}$

 $(d) \Rightarrow (b).$ Let $X' = G \cup G', G \cap G' = \phi, G$ and G' are γ -open. Let H = X - G, then $H \cap X' = G'$. So $H \cap X'$ is γ -open. Then $H \cap X' = \phi$ or $H \cap X' = X'$. Therefore, G = X' or $G = \phi$, that is, $G = \phi$ or $G' = \phi$.

 $(b) \Rightarrow (a).$ Let $X' = U \cup V$, where U and V are γ -separated. Let $G = X - c_{\gamma}U$ and $G' = X - c_{\gamma}V$. Then G = V and G' = U are γ -open sets, $G \cap G' = \phi$. Thus, $G = V = \phi$ or $G' = U = \phi$. \Box

EXAMPLE 1. Let \mathbb{R} be set of real numbers, A = [0, 1], B = (1, 2]. Then the collection $\mu = \{\phi, A, B, [0, 2]\}$ is a generalized topology on \mathbb{R} . The corresponding γ giving μ by Lemma 1.1 [2] is given by $\gamma A = \cup \{G \in \mu : G \subseteq A\}$. It is easily seen that \mathbb{R} is not γ -connected.

LEMMA 3.3. If S is γ -connected and $S \cap X' \subseteq U \cup V$, where U and V are γ - separated, then $S \cap X' \subseteq U$ or $S \cap X' \subseteq V$.

PROOF. Clearly, $S \cap X' = (U \cap S) \cup (V \cap S)$, where $U \cap S$ and $V \cap S$ are γ -seperated. So $U \cap S = \phi$ or $V \cap S = \phi$. Therefore, $S \cap X' \subseteq U$ or $S \cap X' \subseteq V$. \Box

THEOREM 3.4. If S is γ - connected, $S \subseteq T \subseteq c_{\gamma}S$, then T is γ - connected.

PROOF. Let $T \cap X' = U \cup V$, where U and V are γ -separated. Then $S \cap X' \subseteq U \cup V$. Then by lemma 3.3, $S \cap X' \subseteq U$ or $S \cap X' \subseteq V$. Therefore,

$$c_{\gamma}(S \cap X') \subseteq c_{\gamma}U \subseteq X - V$$

or

$$c_{\gamma}(S \cap X') \subseteq c_{\gamma}V \subseteq X - U.$$

By Lemma 2.2, $c_{\gamma}S \subseteq X - V$ or $c_{\gamma}S \subseteq X - U$. Therefore, $T \cap X' \subseteq X - V$ or $T \cap X' \subseteq X - U$. This gives $V = \phi$ or $U = \phi$. \Box

COROLLARY 3.5. If S is γ - connected then $c_{\gamma}S$ is γ - connected.

THEOREM 3.6. If $S = \bigcup_{\lambda \in \wedge} S_{\lambda}$, S_{λ} is γ -connected for $\lambda \in \wedge$, and $\lambda, \lambda' \in \wedge, \lambda \neq \lambda', S_{\lambda} \cap X'$ and $S_{\lambda'} \cap X'$ are not γ -separated, then S is γ -connected.

PROOF. Let $S \cap X' = U \cup V$, where U and V are γ -seperated. Then $S_{\lambda} \cap X' \subseteq U \cup V$ then by lemma 3.3, $S_{\lambda} \cap X' \subseteq U$ or $S_{\lambda} \cap X' \subseteq V$. By hypothesis there does not exist $\lambda, \lambda' \in \wedge$ such that $\lambda \neq \lambda'$ and $S_{\lambda} \cap X' \subseteq U$ and $S_{\lambda'} \cap X' \subseteq V$. Therefore, $S_{\lambda} \cap X' \subseteq U$ for each $\lambda \in \wedge$ or $S_{\lambda} \cap X' \subseteq V$ for each $\lambda \in \wedge$. Thus, $S \cap X' \subseteq U$ or $S \cap X' \subseteq V$. That is, $U = \phi$ or $V = \phi$.

COROLLARY 3.7. If $S = \bigcup_{\lambda \in \wedge} S_{\lambda}$, S_{λ} is γ - connected for $\lambda \in \land$, and $S_{\lambda} \cap S_{\lambda'} \cap X' \neq \phi$ for $\lambda, \lambda' \in \land$, then S is γ - connected.

COROLLARY 3.8. If $S = \bigcup_{\lambda \in \wedge} S_{\lambda}$, S_{λ} is γ - connected for $\lambda \in \wedge$ and $\cap_{\lambda \in \wedge} S_{\lambda} \cap X' \neq \phi$, then S is γ - connected.

DEFINITION 3.9. If $A \subseteq X$ and $x \in A$, the set $A_x = \bigcup \{S \subseteq A : x \in S, and S \text{ is } \gamma - connected}\}$ is called the γ -component of A containing x.

Evidently, A - X' is contained in A_x for each $x \in A$ since the singleton $\{x\}$ is γ - connected and $(A - X') \cup \{x\}$ is γ - connected.

THEOREM 3.10. Every subset $A \subseteq X$ is the union of all its γ -components. Each γ -component is a maximal γ -connected subset of A and two distinct γ -components are disjoint on $A \cap X'$. The γ -components of a γ -closed set are γ -closed.

PROOF. By definition every singleton is γ -connected, so $x \in A_x$ for $x \in A$, and $A = \bigcup_{x \in A \cap X'} A_x$. By corollary 3.8, A_x is γ -connected for $x \in A \cap X'$. If $x \in S \subseteq A$ is γ -connected, then $S \subseteq A_x$. Therefore, A_x is maximal γ -connected subset of A containing x. If $x, y \in A \cap X'$ and $A_x \cap A_y \cap X' \neq \phi$, then $A_x \cup A_y$ is γ -connected by corollary 3.8 and hence $A_x \cup A_y \subseteq A_x \cap A_y$ so that $A_x = A_y$. If A is γ -closed and $x \in A$, then $c_\gamma A_x \subseteq A$ is γ -connected by corollary 3.5 containing x. So $c_\gamma A_x \subseteq A_x$ and A_x is γ - closed. \Box

4. IMAGES AND PREIMAGES OF $\gamma\text{-}$ CONNRCTED SETS UNDER $(\gamma-\gamma')\text{-}$ CONTINUOUS MAPPINGS

DEFINITION 4.1. Let $f : X \to Y$, be a mapping and $\gamma \in \Gamma(X)$ and $\gamma' \in \Gamma(Y)$. Then f is said to be $(\gamma - \gamma')$ - continuous [2] if $f^{-1}(A)$ is γ - open whenever A is γ' - open.

f is $(\gamma - \gamma')$ -homeomorphism if f is bijective, f is $(\gamma - \gamma')$ -continuous and f^{-1} is $(\gamma' - \gamma)$ -continuous. f is $(\gamma - \gamma')$ -open if f(A)is γ' -open for every γ - open set A.

REMARK 4.2. Let $f: X \to Y$ be $(\gamma - \gamma')$ - continuous and x be a point in X - X'. If $f(x) \in Y'$, then $f^{-1}(Y')$ contains x and so $f^{-1}(Y')$ would not be γ -open. Thus, $f(x) \notin Y'$ for each $x \in X - X'$, that is, $f(X - X') \subseteq Y - Y'$.

THEOREM 4.3. If $S \subseteq X$ is γ - connected and $f : X \to Y$ is a $(\gamma - \gamma')$ - continuous mapping such that $f(X') \subseteq Y'$, then f(S) is γ' - connected.

PROOF. Let $f(S) \cap Y' = U' \cup V'$ with γ' - separated sets U'and V'. By 2.1 [3], $f^{-1}(U')$ and $f^{-1}(V')$ are γ - separated, and $S \cap f^{-1}(Y') \subseteq f^{-1}(U') \cup f^{-1}(V')$. Since $f(X') \subseteq Y'$, $S \cap$ $X' \subseteq f^{-1}(U') \cup f^{-1}(V')$. Since S is γ - connected, by lemma 3.3 $S \cap X' \subseteq f^{-1}(U')$ or $S \cap X' \subseteq f^{-1}(V')$. Therefore, $f(S \cap X') \subseteq$ U' or $f(S \cap X') \subseteq V'$. By Remark 4.2 $f(S - X') \cap Y' = \emptyset$. Hence, $f(S) \cap Y' \subseteq U'$ or $f(S) \cap Y' \subseteq V'$. Thus, either $U' = \emptyset$ or $V' = \emptyset$. \Box

The condition $f(X') \subseteq Y'$ in the classical topology case holds trivially since X' = X and Y' = Y.

THEOREM 4.4. If f is $(\gamma - \gamma')$ - open and injective, $Y' \subseteq f(X')$, $S \subseteq X$ and f(S) is γ' - connected, then S is γ - connected.

PROOF. Let $S \cap X' = U \cup V$ with γ - separated sets U and V. Then by 2.3 [3] $f(S \cap X') = f(U) \cup f(V)$ with γ' - separated sets f(U) and f(V). Since f is injective, $f(S) \cap f(X') = f(U) \cup f(V) \cup f(V)$. Now $Y' \subseteq f(X')$ implies $f(S) \cap Y' \subseteq f(U) \cup f(V)$. Therefore, $f(U) = \emptyset$ or $f(V) = \emptyset$, that is, $U = \emptyset$ or $V = \emptyset$. \Box

THEOREM 4.5. If f is $(\gamma - \gamma')$ -open injective and $Y' \subseteq f(X')$, then for each γ' connected set $C \subseteq Y$, $f^{-1}(C)$ is γ - connected.

PROOF. Let $f^{-1}(C) \cap X' = U \cup V$ with U and V γ - separated sets. Suppose $U \neq \emptyset$ and $V \neq \emptyset$. Then f(U) and f(V) are

non-empty and γ' - separated sets by 2.3[3]. Since U and V are γ - separated, $U \subseteq X - c_{\gamma}V$. Then $f(U) \subseteq f(X - c_{\gamma}V) \subseteq Y'$ since f is $(\gamma - \gamma')$ - open. Similarly, $f(V) \subseteq Y'$. Since $f(U) \subseteq C$ and $f(V) \subseteq C$, $f(U) \subseteq Y' \cap C$ and $f(V) \subseteq Y' \cap C$. Since Y' = f(X'), for each $y \in Y' \cap C$, there exists an $x \in X'$ such that f(x) = y. Since $x \in f^{-1}(C)$, $x \in f^{-1}(C) \cap X' = U \cup V$. Consequently, f(x) = y belongs to either f(U) or f(V), that is, $C \cap Y' = f(U) \cup f(V)$. This means that C is not γ' - connected, a contradiction. \Box

5. SUFFICIENT CONDITIONS FOR $(\gamma - \gamma')$ -CONTINUITY

DEFINITION 5.1. A GT - space (X, μ_{γ}) is said to be T_1 - space if for any two distinct points in X' there exists a γ - open set containing one of the points but not the other.

Note that the above definition of T_1 - space is different from the one in [4, 10].

The following definitions are generalizations of the corresponding notions in [5, 6, 7, 8, 9].

DEFINITION 5.2. Let $f : X \to Y$ be a mapping from a GT-space X into a GT-space Y. Then f is said to be

1. $(\gamma - \gamma')$ - semiconnected if for each γ' - closed and γ' - connected set $K \subseteq Y$, $f^{-1}(K)$ is γ - closed and γ - connected.

2. $(\gamma - \gamma')$ - weakly semiconnected if for each γ' - closed and γ' connected set $K \subseteq Y$, $f^{-1}(K)$ is γ - closed.

3. $(\gamma - \gamma')$ - connected if for each γ - connected set $A \subseteq X$, f(A) is γ' - connected.

DEFINITION 5.3. A GT- space (X, μ_{γ}) is said to be γ - strongly semi-locally connected if for each $x \in X'$ and γ - open set W containing x there exists a γ - open set $V \subseteq W$ containing x such that X - V is γ - connected.

THEOREM 5.4. If $f : X \to Y$ is (γ, γ') - weakly semiconnected and onto γ' - strongly semi- locally connected space Y, then f is $(\gamma - \gamma')$ - continuous.

PROOF. Let $B \subseteq Y$ be γ' - open. It will be shown that $f^{-1}(B)$ is γ - open in X. For each point $b \in B$ there exists a γ' - open set $V_b \subseteq B$ containing b such that $Y - V_b$ is γ' - connected. Also $Y - V_B$ is γ' - closed. So $f^{-1}(Y - V_b)$ is γ - closed since f is $(\gamma - \gamma')$ weakly semiconnected. Also $f^{-1}(Y - V_b)$ contains no point of $f^{-1}(V_b)$. Thus, $X - f^{-1}(Y - V_b) = R_b$ is γ - open set containing $f^{-1}(V_b)$ and has the property that $f(R_b) = V_b$. Consequently, $\cup_{b \in B} R_b$ is γ - open and furthermore $f^{-1}(B) = \cup_{b \in B} R_b$. \Box

THEOREM 5.5. If f is $(\gamma - \gamma')$ - open injective, $(\gamma - \gamma')$ connected mapping, $Y' \subseteq f(X')$ and Y is a T_1 - space, then f is $(\gamma - \gamma')$ semiconnected. Further, if f is onto and Y is γ' -strongly semi-locally connected, then f is $(\gamma - \gamma')$ - continuous.

PROOF. Let $B \subseteq Y$ be any γ' - closed and γ' - connected set. By $4.5 f^{-1}(B)$ is a γ - connected set. Suppose $f^{-1}(B)$ is not γ - closed. Then there exists a point x in $c_{\gamma}(f^{-1}(B)) - f^{-1}(B)$. Since $f^{-1}(B)$ is γ - connected, $\{x\} \cup f^{-1}(B)$ is γ - connected by theorem 3.4 Since f is $(\gamma - \gamma')$ - open and injective, $f(X - X') \subseteq Y - Y' \subseteq B$ since B is γ' - closed. Therefore, $X - X' \subseteq f^{-1}(B)$. So $x \in X'$ and $f(x) \in Y'$ and $f(x) \notin B$.

Now $f(\{x\} \cup f^{-1}(B)) \cap Y' = \{\{f(x)\} \cup f(f^{-1}(B))\} \cap Y' = \{f(x)\} \cup (B \cap Y').$ Since Y is a T_1 - space. $\{f(x)\}$ and $B \cap Y'$ are γ' - separated sets. So $f(\{x\} \cup f^{-1}(B))$ is not γ' - connected. a contradiction. Therefore, f is $(\gamma - \gamma')$ - semiconnected. The second part follows from 5.4 \Box

COROLLARY 5.6. If $f : X \to Y$ is a bijection, X is γ -strongly semi-locally connected, Y is γ' -strongly semi-locally connected, f is $(\gamma - \gamma')$ - weakly semiconnected and f^{-1} is $(\gamma' - \gamma)$ -weakly semiconnected, then f is a $(\gamma' - \gamma)$ - homeomorphism.

6. **REFERENCES**

- [1] Á. Császár, Generalized open sets, Acta Math. Hungar. 75 (1997), 65–87.
- [2] Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar. 96 (2002), 351–357.
- [3] Á. Császár, γ- connected sets, Acta Math. Hungar. 101(2) (2003), 273–279.
- [4] Á. Császár, Separation Axioms for Generalized topology, Acta Math. Hungar. 104(1-2) (2004), 63–69.
- [5] M. R. Hagan, A Note on Connected and Peripherally Continuous Functions, Proc. Amer. Math. Soc. 26 (1970), 219–213.
- [6] M. R. Hagan, Condition for Continuity of Certain Open Monotone Functions, Proc. Amer. Math. Soc. 30(1) (1971), 175–178.
- [7] J. J. Jones, On Semiconnected Mappings of Topological Spaces, Proc. Amer. Math. Soc. 19 (1968), 174–175.
- [8] J. K. kohli, Sufficient Condition for Continuity of Certain Connected Function, *Glasnik matematicki* 15 (1980), 377– 381.
- [9] P. E. Long, Concerning Semiconnected Maps, Proc. Amer. Math. Soc. 21 (1969), 117–118.
- [10] G. E. Xun and G. E. Ying, μ- separations in generalized topological spaces, *Appl. Math. J. Chines Univ.*, 25(2) (2010), 243–252.