
International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 10, March 2015

39

Evaluation of Code Inspection on an Outsourced

Software Project in Mauritius

Geshwaree Huzooree
Department of IT

Charles Telfair Institute
Moka, Mauritius

Vimla Devi Ramdoo
Dept. of Computer Science and Engineering

University of Mauritius
Réduit, Mauritius

ABSTRACT

Software inspection is a proven methodology that enables the

detection and removal of defects in software artifacts and thus

contributes towards software quality assurance. It eventually

leads to significant budget and time benefits. To be most

effective, inspections must be an integral part of the software

development life cycle and form part of the development

schedule. This study considers code inspection as it is the

most frequently used inspection in the software development

process. For the implementation part of this research, code

inspection is carried out in a selected outsourced project in a

company situated in Mauritius, and the results are evaluated

based on the inspection process and feedback of people

involved in the inspection process.

General Terms

Software Code Inspection.

Keywords

Software Inspection, Defects, Software Verification and

Validation, Software Quality Assurance

1. INTRODUCTION
Software plays a major role in modern organizations and

many of the systems on which our lives and livelihoods

depend are run by software. Unfortunately, the development

of software is a major headache for organizations around the

world, even Mauritius is not an exception. Often software is

delivered late and does not meet user requirements as it

should. Many software problems are due to the development

of low quality software that is characterized by numerous

defects. Software experts have suggested that the way to

address these types of software problems is to improve

software quality through quality assurance methods and one

of the most well-known software quality techniques is indeed

software inspection [1] [2] [3].

Though well-established for finding defects, software

inspections are not universally used by software industries.

This is due to several reasons such as the lack of training on

how to carry out inspections, the need for project managers to

move resources away from testing into inspections, and the

large amount of paperwork that formal inspections require [4].

Along with audits, reviews, walkthroughs and configuration

management, software inspection is equally important to the

software verification and validation (SVV) process for finding

defects as early as possible. It usually involves activities in

which a team of qualified personnel determines whether the

created artifact is of sufficient quality. Detected quality

deficiencies are subsequently corrected, and in this way an

inspection can not only contribute towards software quality

improvement, but also lead to significant budget and time

benefits.

In this paper, as a first step, an evaluation of the current use of

software inspection around the world is introduced. Then the

implementation of the code inspection process on an

outsourced software project in an organization found in

Mauritius is carried out, and an evaluation of the results is

performed.

2. LITERATURE REVIEW

2.1 Software Inspection
Software inspection, which is a software quality technique,

was developed by Michael Fagan in 1972 at IBM (Fagan,

1976). It is a group meeting which is conducted to uncover

defects in a software work product (for example the software

requirements specification, software design specification,

code, and test plan). The approach is a formally defined

process involving a series of well-defined inspection steps and

roles, a checklist to aid error detection, and the formal

collection of process and product data.

Industries conducting software inspection have found it to be

effective way to uncover defects. The detection rate for an

inspection varies depending on the type of work product being

inspected and the specific inspection process used. Studies

have found that 30 to 90 percent of the defects in a work

product may be uncovered through the inspection process [5].

Early detection of defects can lead to cost savings. For

example, one study has estimated that inspection-based

techniques at Hewlett-Packard have yielded a cost saving of

$21 million [6]. It should also be noted that inspections may

take up a significant portion of a project's time and budget if

performed on a consistent basis throughout the life of a

project. According to an industry estimate from AT&T,

project teams may devote four to fifteen percent of project

time to the inspection process [7]. While allocating this

amount of time on inspections may seem high, the benefit of

reducing software defects has been found to outweigh the cost

of conducting inspections.

The favorable attitude that many in the software development

field have towards the inspection process is underscored by a

statement made by Barry Boehm (a well-known expert in the

field of systems development), who has written that "the

[software inspection] has been the most cost effective

technique to date for eliminating software errors." This

statement was backed up (see Figure 1) of Fagan, 1986 [8]

showing the difference it makes with and without inspections.

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 10, March 2015

40

Fig 1: Development With and Without Inspections

2.2 Phases of Software Inspections
Software inspections are carried out in several defined steps.

The inspection process that consists of five steps namely (see

Figure 2):

1. Planning;

2. Overview meeting (optional);

3. Preparation;

4. Inspection / Examination meeting;

5. Rework / Follow-up.

For each step, the following information is included:

1. Objectives: the purpose of the step

2. Entry criteria: the conditions that must be met to begin the

step

3. Activities: the activities that occur as part of the step

4. Exit criteria: the conditions that must be met to complete

the step

5. Metrics: the product and process data that should be

collected.

2.3 Benefits of Software Inspections
The inspection process was designed to help the developing

organization to produce better products in terms of quality as

defects were found early and fixed when they were less

expensive. The effectiveness of the test activity is increased

and less time may have to be devoted to testing the product.

Another important benefit of inspections is the immediate

evaluation and feedback to the author from his peers which

will bring about improvements in the quality of future

products.

2.4 Software Inspections and Rate of

Defects
Research has shown that with inspections, defects can be

managed and reduced. The curve A (A-Injected) represents

the defects injected in the software. The Curve C (C-Detected

with Inspections) represents defects remaining after removal

by inspections for the volume of defects injected whereas the

curve B (B-Detected without Inspections) represents the

defects remaining without inspections [9] (see Figure 3).

Fig 2: Inspection Process

2.5 Code Inspection
Code inspections are highly efficient test methods which

cannot be substituted by any other test methods. It is time

consuming but according to statistics it will find up to 90% of

the contained errors, if done properly. However it all depends

on the methods and checks applied and on the diligence of the

inspectors. A proper code inspection may take several days

and needs the help of tools. Proper inspections can be applied

for almost all work products in the software life cycle. At the

first glance they may look very time consuming. Nevertheless,

statistical evaluations have shown that over the whole life

cycle of the software development they even save resources

and thus money and improve the quality of the product.

2.6 Code Inspection Metrics
It is difficult to monitor and analyze code inspection without

measurements. To be able to plan, monitor and improve

inspection (see Table 1), nine key metrics have been proposed

by AT&T laboratories, namely Bell using the Goal-Question-

Metric paradigm [10].

Table 1. Goals, questions and metrics

Goals, Questions and Metrics

Goals Questions Metrics

Plan

How much does the

Inspection process

cost?

Average effort per

KLOC

Percentage of re-

inspection

How much calendar

time does the

inspection process

take?

Average effort per

KLOC

Total KLOC inspected

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 10, March 2015

41

Monitor

and

Control

What is the quality of

the inspected

software?

Average fault detected

per KLOC

Average inspection rate

Average preparation rate

To what degree did the

staff conform to the

procedures?

Average inspection rate

Average preparation rate

Average lines of code

inspected

Percentage of re-

inspection

What is the status of

the inspection process?
Total KLOC inspected

Improve

How effective is the

inspection process?

Defect removal

efficiency

Total KLOC inspected

Average inspection rate

Average preparation rate

Average lines of code

inspected

What is the

productivity of the

inspection process?

Average effort per fault

detected

Average inspection rate

Average preparation rate

Average lines of code

inspected

The nine key metrics are as follows:

1. Total non-comment lines of source code inspected, in

thousands (KLOC) for simplicity.

Total KLOC inspected =
 𝐿𝑂𝐶 𝐼𝑛𝑠𝑝𝑒𝑐𝑡𝑒𝑑 𝑖
𝑁
𝑖=1

1000

2. Average lines of code (LOC) inspected.

Average LOC inspected=
𝑇𝑜𝑡𝑎𝑙 𝐾𝐿𝑂𝐶 𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑒𝑑 ∗1000

𝑁

3. Average preparation rate: the average rate, expressed in

lines of code per hour, at which an inspector studies the

inspection material.

Average preparation time =
𝑇𝑜𝑡𝑎𝑙 𝐾𝐿𝑂𝐶 𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑒𝑑 ∗1000

 𝑃𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑖
𝑁
𝑖=1

 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑠𝑝𝑒𝑐𝑡𝑜𝑟𝑠 𝑖

4. Average inspection rate: the average lines of code

inspected per meeting hour.

Average inspection rate =
𝑇𝑜𝑡𝑎𝑙 𝐾𝐿𝑂𝐶 𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑒𝑑 ∗1000

 𝐼𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑖
𝑁
𝑖=1

5. Average effort per KLOC: the average hours spent in an

inspection activities by an inspection team for one

thousands lines of codes of non-commented source code.

Average effort per KLOC =
 𝐼𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑜𝑟𝑡 𝑖
𝑁
𝑖=1

𝑇𝑜𝑡𝑎𝑙 𝐾𝐿𝑂𝐶 𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑒𝑑

6. Average effort per fault detected.

Average effort fault detected =
 𝐼𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑜𝑟𝑡 𝑖
𝑁
𝑖=1

𝑇𝑜𝑡𝑎𝑙 𝑓𝑎𝑢𝑙𝑡𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑖

7. Average faults detected per KLOC.

Avg faults detected per KLOC=
 𝑇𝑜𝑡𝑎𝑙 𝑓𝑎𝑢𝑙𝑡𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑖
𝑁
𝑖=1

𝑇𝑜𝑡𝑎𝑙 𝐾𝐿𝑂𝐶 𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑒𝑑

8. Percentage of re-inspections.

% of re- inspections =
𝑁𝑜 𝑜𝑓 𝑟𝑒𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑑𝑖𝑠𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 ∗1000

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛𝑠

Note: Number of re-inspections dispositions = Number of re-

inspections disposition of type Re-Inspect + Number of re-

inspections disposition of type Rework

9. Defect-removal efficiency.

Defect removal efficiency =
 𝑇𝑜𝑡𝑎𝑙 𝑓𝑎𝑢𝑙𝑡𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑖
𝑁
𝑖=1

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑑𝑖𝑛𝑔 𝑓𝑎𝑢𝑙𝑡𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

Note: Total Faults Detected = Total number of faults detected

at the inspection

Total Coding Faults Detected = Total no of faults detected at

the inspection + Faults identified in inspected Code (during

testing) + Faults detected by customers.

The importance of inspection in the software development life

cycle has been seen, and the main metrics used in code

inspection have been enquired. The research is continued by

finding out the potential causes of software defects in

outsourced software projects of a company situated in

Mauritius.

3. COMPANY PROFILE
The company chosen for the purpose of this research is an

international Consulting and Systems Integration (CSI)

company having a branch in Mauritius where CRM projects

are outsourced. Currently, in the software development

phase of the CRM projects, there is no code inspection as

such that are carried out in the organization in Mauritius, but

there are time-to-time code reviews (informal) that are carried

out by the team leads. When non-compliant codes are found,

the team leads communicate informally to the developers

concerned so that they can modify the code, thus making it

compliant to the standards set for the particular project. PHP

is the main development language used in the organization.

4. METHODOLOGY

4.1 Causes of software defects
The potential causes of software defects are analyzed and

shown on the Ishikawa or Fish bone diagram (see Figure 5).

For this study, the "Coding Errors" cause are explored via a

code inspection process. A code inspection checklist was used

to perform the code inspection.

4.2 Implementation of Code Inspection
The following sample criteria were used to choose the module

of code to inspect (both important to the project and the

organization.

1. Criticality: functions that were critical to the

operation of the software developed.

2. Complexity: modules that were more complex that

other modules.

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 10, March 2015

42

3. Past history: modules that have shown a high

number of bugs in the past.

4. Experience level of software engineer: code written

by inexperienced software engineer.

The measures were collected as follows:

Inspection Rate (LOC/Hour) = Reviewed LOC/Review

Time

Preparation Rate per Reviewer (LOC/Hour per Reviewer) =

Reviewed LOC/ (Total Preparation Time/Number of

Reviewers)

Number of Reviewers (Reviewers) = All Participants at the

Review, excluding the Presenter.

The code inspection was carried out on selected samples of

code of 150 and 300 LOC respectively, and the documents

used are the Inspection Problem Report Form and the

Inspection Summary Process Report. After the inspection

process, a questionnaire was set up to gather feedback from

the people involved in the process and the results were then

evaluated.

4.3 Research Limitations and Assumptions
During the implementation of inspection, the sources of

limitations identified (hence assumptions taken) were as

follows:

1. Incorrect and/or bias information.

2. Time constraint.

3. Sampling errors.

5. RESULTS AND DISCUSSIONS
In order to evaluate the effectiveness of the inspection

program, the data collected from inspections are analyzed in

order to reveal trends. The data are the amount of product

inspected at a meeting, the time taken in preparation and in

the inspection meeting, total defects found per inspection and

the types of defects found in the development phase of the

software life cycle. The data for trending is normally collected

by the moderator, using forms provided for this purpose.

5.1 Result: Perceived Effectiveness of Code

Inspections
The result of the perceived effectiveness of code inspection

from 5 team members sampled to answer the questionnaire.

The mean value of the answers was computed to generate the

graph (see Figure 6)

Fig 6: Perceived effectiveness of code inspection

Fig 3: Rate of defects

Fig 5: Ishikawa Diagram showing the Potential causes of software defects

Lack of communication

Lack of user

involvement

Lack of management

support

Inconsistent, Incomplete,

Ambiguous
Requirement errors

New errors introduced

as a result of change

Undiscovered

errors

Incomplete testing

Customers

change mind
Software

Requirement

Specifications

Inconsistencies

Untold

expectation

s

Scope creep

Testing

Software

Defects

Schedule

constraint

s

Inadequate

tools

Design Errors
Requirement

Errors

People

Lack of training
Logic errors

Spaghetti code, ghost

code, broken builds

Coding Errors

Lack of experience/

expertise

Software

Design

Specifications

Requirement errors

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 10, March 2015

43

5.1.1 Evaluation of Category 1: Planning Phase

and/or Overview Meeting (optional)
It can be seen that the planning phase is on an average of 4 on

the rating scale of 1-5 used, where 1 stands for "strongly

disagree" and 5 stands for "strongly agree"(see Figure 6). It

means that the team members were nearly satisfied with the

planning phase, for example they agreed that the moderator

and the inspection team were selected based on their

expertise. They also agreed on the commitment from the team

and the responsibilities fulfilled by the moderator as adequate.

Nevertheless, the members did not quite agree from the fact

the inspectors from other range of disciplines were

considered, as according to them, was not the case.

5.1.2 Evaluation of Category 2: Preparation

Phase
The team agreed with the familiarity that they were supposed

to have for the inspection, but they did not however keep track

of the preparation time. The main reason was that they were

preoccupied with other work, so they could not dedicate a

specific amount of time for the preparation, but rather find

some time whenever possible for the preparation.

5.1.3 Evaluation of Category 3: Inspection

Meeting Phase
Based on the team feedback, the overall inspection meeting

was adequately done as expected. Some team members did

not agree from the fact that the follow-up after the inspection

meeting was evaluated as it should. On the other hand, all the

team members agreed that the moderator did not distribute

any meeting minutes, but rather said it informally.

5.1.4 Evaluation of Category 4: Follow-up Phase
Almost all the team members were satisfied of the follow-up

phase that they found small but adequate. They appreciated

the fact that the moderator communicated the completion of

the inspection to the team via a formal motivational email.

5.1.5 Evaluation of Category 5: Overall

inspection Process
On average, the overall inspection process was judged as 3.5

on a scale of 1 (strongly disagree) to 5 (strongly agree). The

objectives set were met and the team agreed that the

inspection process helped them promote quality deliverables

as they found defects in their code and thus learned from their

previous mistakes. Some team members agreed that there

were still ways for improvement in the inspection process for

example on the way conflicts are resolved. Some team

members on the other hand did not appreciate their

deliverables being inspected by peers.

5.2 Result: Implementation of Code

Inspection
According to the metrics identified in Code Inspection

Metrics of the literature review (see Table 2), the code

inspection was implemented on two set of an outsourced

project modules and its effectiveness evaluated.

Table 2. Metrics used

Metrics

Results

Module 1 Module 2

Total KLOC inspected 0.3 .015

Average LOC inspected 300 150

Average Preparation Rate 150 150

Average Inspection Rate 150 150

Average Effort per KLOC 73 73

Average Effort per Fault

Detected
4.4 2.8

Average faults detected per

KLOC
17 27

Percentage of re-inspections 0 0

Defect-removal efficiency 71% 100%

Inspection Scenario:
Two modules of PHP code were inspected, and the

assumptions are as follows:

 Preparation time ≈ 50 lines of source code/hour

 Inspection rate of about 100-200 lines of source

code/hour

 Rework time = 0

 Assumption: No disposition of type re-

inspect/rework

The data gathered for the two modules of code are as follows

(see Table 3):

Table 3. Data gathered from PHP modules

Data Gathered Module 1 Module 2

No of Inspection, N 1 1

No of Inspectors 3 3

No of participants 8 8

LOC 300 150

Preparation Time 6hrs 3hrs

Inspection Duration 2hrs 1hr

Total Fault Detected 5 4

Total Coding Fault

Detected
7 4

The results from the code inspection implementation highlight

the fact after introducing a code inspection process within the

organization, it is equally important to assess its viability and

effectiveness with the organization. Despite the inspectors

have spent twice the time to prepare and inspect 300LOC

compared to the sample code of 150LOC (see Figure 7); the

defect removal efficiency is still 71% (see Figure 8). The

results shows that code inspections with fewer LOC are more

effective in defect removal and less time consuming in terms

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 10, March 2015

44

of preparation time and inspection duration compared to code

inspections with greater LOC.

Fig 7: Time taken to prepare and inspect modules

Fig 8: Percentage Defect-removal efficiency

6. CONCLUSION
Formal inspections have been demonstrated by many

organizations to be an effective method for finding and

removing defects in software products. However, just putting

a formal inspections program in place does not guarantee that

the program will operate at maximum efficiency. It is

important to evaluate the implementation of the formal

inspections process and to improve it by fine tuning the

procedures that are followed.

The study showed that developers who participate in the

inspection of their own product actually create fewer defects

in subsequent work. Because inspections formalize the

development process, productivity-enhancing and quality-

enhancing tools such as automated tools can be adopted more

easily and rapidly. So to further improve quality in the

software product, automated tool can be used wherever

possible for inspections such as automated code inspection.

Moreover, some custom-built inspection processes can be

used as well based on lessons learned after carrying out

inspections on projects of the particular organization.

Results have shown that after the inspection, everyone has a

better understanding of the work done. For the outsourced

project’s modules inspected, we found that inspection also

encourages collaboration between the project team members

thus increasing communication.

Thus, organizations should be aware that introducing the

inspection process to improve effectiveness generally lowers

productivity, but the cost of this decrease is negligible when

compared with the cost of removing defects later in

development or testing phases. However, some improvements

in effectiveness also increase productivity. Code inspections

can further be used to improve quality of the software and

also reinforce coding standards, besides reviewing of codes.

This study can be extended whereby code inspections can be

further implemented and evaluated by varying the preparation

time, the inspection duration and number of inspectors with

respect to the LOC to estimate the efficiency of code

inspection.

7. REFERENCES
[1] Kamei, Yasutaka, et al. 2013. A large-scale empirical

study of just-in-time quality assurance. Software

Engineering, IEEE Transactions on 39.6: 757-773.

[2] Fagan, Michael E. 2001. Advances in software

inspections. Pioneers and Their Contributions to

Software Engineering. Springer Berlin Heidelberg: 335-

360.

[3] McIntosh, Shane, et al. 2014. The impact of code review

coverage and code review participation on software

quality: A case study of the qt, vtk, and itk projects.

Proceedings of the 11th Working Conference on Mining

Software Repositories. ACM.

[4] Remillard, Jason. 2005. Source code review systems.

Software, IEEE 22.1: 74-77.

[5] Brykczynski, Bill, Reginald Meeson, and David A. 1994.

Wheeler. Software Inspection: Eliminating Software

Defects. IDA, Inst. for Defense Analyse.

[6] Johnson, Philip M. 1998. Reengineering inspection.

Communications of theACM 41.2: 49-52.

[7] Wiegers, Karl E. 2002. Seven truths about peer reviews.

Cutter IT Journal15.7: 31-37.

[8] Fagan, Michael E. 1976. Design and code inspections to

reduce errors in program development. IBM Systems

Journal 15.3: 182-211.

[9] Software Inspections, Ron Radice, article published in

Methods & ToolsSummer. 2002.

http://www.methodsandtools.com/PDF/dmt0202.pdf

[Accessed: 21 October 2012].

[10] Barnard, J. and Price, A. 1994. Managing Code

Inspection Information. IEEE Software, 59-69.

IJCATM : www.ijcaonline.org

