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ABSTRACT 
In this competitive era, manufacturing companies have to focus 

on the quality of the produced products. The quality of the 

product produced is affected by many influential parameters 

during the process. The product once produced with a lower 

quality then usually ends up with incurring loss in certain terms 

to the company. Hence, it is extremely important to know the 

defect causing parameters and perform defect diagnosis. Various 

techniques like SPC-SQC, Six-Sigma and Kaizen have been 

used for quality analysis. But since last few years machine 

learning and data mining is being used for analysis due to 

advancement in the field and its advantages. This paper conducts 

an analytical survey of various business intelligence techniques 

used in for defect diagnosis. The paper concludes with the 

analytical results as random forest performs the best in terms of 

performance compared to other techniques and shows the future 

research scope in this area. Moreover, we find that random 

forest has not been introduced yet in steel defect diagnosis. 

General Terms 
Statistics, data mining, neural network, genetic algorithm, and 

ensemble approach. 

Keywords 
Ensemble approach, random forest, steel defect diagnosis 

1. INTRODUCTION AND 

BACKGROUND 
Survival of the fittest is the rule for surviving successfully in the 

world of competition. For the same the management needs to be 

on toes and take quick, correct and firm decisions frequently for 

collective growth. Business intelligence (BI) is a technology-

driven process for analyzing data and useful information to help 

business managers and end users make precise decisions. BI 

encompasses a variety of tools, applications and methodologies 

that enable organizations to collect data from various internal 

and external sources, prepare and perform analysis to create 

reports, dashboards and data visualizations. BI programs include 

forms of advanced analytics, such as data mining, predictive 

analytics, text mining, statistical analysis and big data analytics. 

 The products manufactured by manufacturing companies’ 

products may vary in quality than the expected quality in terms 

of many parameters. This expected quality may be customer 

defined. And if the quality produced deviates from what was 

expected by customer, then the product may be sold at a lower 

rate to the customer or may sold to some other customer who 

may accept the product. This incurs loss to the company in huge 

amount in terms of money and time.   

Statistical process and quality control has been used for quality 

analysis of products during the manufacturing process like x-bar 

and r-chart, as well as post analysis of defects like p-charts etc. 

However, manufacturing process are usually so complex that 

traditional statistical techniques or data management tools are 

not sufficient to extract learning patterns and knowledge for the 

quality improvement. 

In order mange this problem, data mining approaches are found 

useful to extract knowledge from the data generated in the 

process.  Data mining predicts future trends and behavior which 

makes businesses upbeat, knowledge-driven decisions [1]. Data 

mining algorithms can be divided as classification, clustering, 

regression and association models.  

Classification models classify data and properly calculate the 

value of each class variables [2,3]. There are different types of 

classification methods such as bayes functions, neural networks, 

support vector machines (SVM), decision trees and fuzzy rules.  

Clustering is a unsupervised method of machine learning 

application that clusters the dataset in groups with certain 

similarity in features. Examples og clustering algorithms are K-

means, Cobweb, farthest first etc. Amongst them K-means is 

most widely used and is simple. 

Regression models like logistic regression, linear regression, and 

multivariate non –linear regression are used for modeling a 

random variable, B as linear function of another variable B. 

Where A is the predictor variable and B is the response variable. 

Mathematically B =  a + bA. Where a, b are regression 

coefficients that control the growth pattern denoting Y intercept 

and slope of a line. Multiple regressions are used for more than 

one predictor variables. 

Association rules mining models are used for discovering the 

relationships and patterns in large databases. Two statistical 

measures known as Support and Confidence are used to control 

the process of association. Where support shows the significance 

of the rule and confidence shows the degree of certainty that the 

rule is satisfied in the data set. It takes the mathematical form as 

X->Y, where X and Y are data items. This is interpreted as the 

presence of X implies presence of Y also. There are many 

association rule-mining algorithms alike APRIORI and CARMA.  

In recent years data mining began to be applied to quality 

diagnosis and quality improvement in complicated 

manufacturing process, such as semiconductor manufacturing 

and steel making [4]. Many recent researches in fault detection 

and prediction have used data mining in their work. This paper 

does an analytical survey of the various recent approaches 

applied for fault diagnosis and then we particularly discuss tree 

ensembles, that has recently gained interest in research field 

since few year in various fields and stress on its exploration in 

fault diagnosis.  

The paper has been organized as follows: Section II presents 

detail survey of dominant models used defect prediction 

especially in steel industry, III Discusses the analytical review 

and Section IV Concludes the paper. 

http://searchdatamanagement.techtarget.com/definition/data
http://searchbusinessanalytics.techtarget.com/definition/business-intelligence-dashboard
http://searchbusinessanalytics.techtarget.com/definition/advanced-analytics
http://searchsqlserver.techtarget.com/definition/data-mining
http://searchcrm.techtarget.com/definition/predictive-analytics
http://searchcrm.techtarget.com/definition/predictive-analytics
http://searchcrm.techtarget.com/definition/predictive-analytics
http://searchbusinessanalytics.techtarget.com/definition/text-mining
http://whatis.techtarget.com/definition/statistical-analysis
http://searchbusinessanalytics.techtarget.com/definition/big-data-analytics
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2. DOMINANT MODELS FOR DEFECT 

DIAGNOSIS 
Various techniques have been applied for fault diagnosis using 

BI in industries. The approaches used by various researchers in 

their respective work.  

2.1 Statistical Approach 
Multivariate statistical methods proved to be easy to implement 

and satisfactory for basic industrial tasks, however many of 

them are linear and not give accurate information. So to improve 

prognostic system nonlinear techniques should be taken into 

consideration [4]. Linear PCA can handle high dimensional and 

correlated process variables, provides a natural solution to the 

errors-in-variables problem and includes disturbance 

decoupling, but it is linear therefore a lots of research was 

invested to nonlinearity and fitting to the nonlinear processes. 

According to their survey prognostics of complex engineered 

systems remains an area in which much more research is needed. 

Hence, Artificial intelligence and soft computing methods can 

offer great results, especially if combined into hybrid platforms. 

[4] Also discuss that Statistical process control and design of 

experiment approaches did not provide conclusive results. The 

DM answers this knowledge discovery concern as it is defined 

as a technique to extract predictive information and knowledge 

from databases [5]. 

[6] Used logistic regression, which is one of the traditional 

techniques used to determine the most influential process factors 

on the target process variable. They discusses the application of 

regression model in defect cause analysis of measured on 36 

input variables on 809 defective items produced. In this study, 

they have tried to develop a regression model which relates 

defect types to input factors. As the response variable was of 

nominal type they have applied multinomial logistic regressing 

approach using Clementine 10.1, the data mining software of 

SPSS. Although the fitted model was statistically significant (p-

values for Pearson and Deviance was 1.0; p-value for G was 

0.0), none of the parameter estimates are found to be significant. 

Experts in [7] state that as a key aspect of quality Control and 

diagnosing, this root cause identification involves searching for 

systematic faults that explain the observed variability behavior 

by incorporating process knowledge. 

They propose a statistical tool for diagnosing the quality of 

solder pastes, the proposed MLPCA based regression 

coefficients clustering algorithm. 

Disadvantages of this approach is that using statistical 

techniques and interpreting their results is difficult and requires 

a considerable amount of knowledge of statistics that non 

statisticians find difficult to resolve and understand.  

2.2 Decision Tree Machine Learning 

Approach 
In [8] they also have applied decision tree which is a simple 

tree-shaped structure where each internal node represents a test 

on one attribute, arcs show the results of a test and leaf nodes 

reflect classes. They are easy to understand and interpret. They 

can be applied to classify both numeric and categorical data. 

Because of these advantages decision trees are used extensively 

for prediction and classification purpose. 

[8] Have used C5.0 algorithm, which is an improved version of 

C4.5. They have used Clementine 10.1 to implement this 

algorithm. After building the tree, global pruning with 75% 

pruning severity was performed to avoid over fitting. Leaf nodes 

were allowed with minimum 5 records. Estimated accuracy for 

the final model was found to be 92.15% for the training set. The 

model classified 91.93% of the testing data correctly. The 

decision tree model found nine process variables to be influential 

on the response, defect types, and it also extracts ten rules 

associated with these significant input variables.[8] Also show 

that logistic regression although used for defect analysis, gave 

unsatisfactory results. Instead CART I results in 64 % accuracy 

and CART II resulted in 92% accuracy. 

In [9] the author has proposed a knowledge based continuous 

quality improvement in manufacturing quality. They state that 

DMAIC(Define-Measure-Analyse-Imporove-Control) is a 

problem driven approach. They have proposed a different model 

from DMAIC that is goal-driven approach. They have collected 

1000 records randomly from the process. Where each records 

consists of 4 factors. The records were classified on defect rates. 

The records with defect rate >  3.0% were set as H and others as 

L. They have used Decision tree C5.0 for the analysis. They 

generated 5 rules. They have used these rules for identifying 

parameter optimization. 

 [10] Established an algorithmic decision tree, for the prediction 

of cracks evolution during hot rolling. They evaluated prediction 

of V-shaped and U-shaped cracks in steel slab during hot rolling 

using C4.5 program. 

Fahmi Arif, et.al.[11] have used a combination of PCA and ID3 

algorithm in multistage with 1115 instances with 22 variables to 

realize more faultless manufacturing. Each PCA model has its 

own weight that is defined by weighted clustering technique. [12] 

Shows the use of decision trees to create a control mechanism for 

regulation of the Hot metal temperature (HMT), a state of blast 

furnace for examining the feasibility of structuring a control 

mechanism for the HMT of pig iron utilizing available decision 

tree and rule-based predictor formulation technology. 

Advantages of this approach is that it is very easy to interpret and 

visualize. It works with numeric and categorical data. 

2.3 Neural Network Machine Learning 

Approach 
Jarno J. Haapamali, et.al. [13] Have used data mining methods in 

hot steel rolling for scale defect prediction. The data they gather 

were average values and process measured with different 

frequencies. Origin of scale defects has been a topic of interest 

for many research projects, but it is still hard to find literature on 

the modeling of defects [13]. They have gathered 1326 steel 

strips and 50 variables from diagnostics measurements and 127 

averages values. They used SOM neural networks for this task, 

as it is capable to visualize non-linear dependencies and has been 

used in various industrial applications. The mean accuracy of the 

system was probably lower than 90%. [14] Also shows the 

applicability of regression and neural network in defect detection 

at Tata steel. 

[15] Presents the preliminary results of a data mining study of a 

production line involving hundreds of variables related to 

mechanical, chemical, electrical and magnetic processes involved 

in manufacturing coated glass. The study was performed using 

two nonlinear, nonparametric approaches, namely neural network 

and CART, to model the relationship between the qualities of the 

coating and machine readings.[16] Observers good results when 

using multi-layered feed-forward artificial neural network (ANN) 

models to predict the silicon content of hot metal from a blast 

furnace. As time-dependencies (time lags) between each of the 

various inputs used and the output (silicon content) were found to 

be significant, each input was lagged from the output by a set 

amount. [17] examines the ability of feed-forward neural 

networks to predict the hot metal temperature of pig iron based 
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on 39 input parameters that reflect the current and past 

conditions of the blast furnace. 

Authors in [18] propose a structured model based on neural 

network with radial basis function for defect component analysis 

along with PCS.  

Advantage of this approach is that this can be applied to both 

linear and non linear data. uses less statistical training, has the 

ability to detect all possible interactions between predictor 

variables. 

Disadvantages of the approach are that it is difficult to interpret, 

"black box" nature, greater computational burden and is prone to 

overfitting. 

2.4 Support Vector Machine Learning 

Approach 
Authors in [19] have shown a comparison between various 

mining algorithm for fault detection. They conclude support 

vector machines SVM have the best processing time and also 

overall high accuracy. Then they applied C5 model to generate 

predictions rules.[20] Also  propose a (SVM) based model 

which integrates a dimension reduction scheme to analyze the 

failures of turbines in thermal power facilities. They have taken 

case from a thermal power plant to evaluate the effectiveness of 

the proposed SVM based model. They conclude that that SVM 

outperforms linear discriminant analysis (LDA) and back-

propagation neural networks (BPN) in classification 

performance. 

In [21] authors have proposed a new approach for fault detection 

and diagnosis based on One-Class Support Vector Machines (1-

class SVM) has been proposed. The approach is based on a non-

linear distance metric measured in a feature space. 

Disadvantages of this technique are its high algorithmic 

complexity and extensive memory requirements in large-scale 

tasks. 

2.5 Association Mining 
Authors in [9] also stated that during manufacturing the process 

variable undergo variation. For that purpose they have used SPC 

to identify the variations and then used association rule for 

diagnosis of cause of the problem. Here apriori algorithm 

minimum antecedent support was set to 0.65% and confidence 

was set to 80%. They considered 62,592 products, 16,905 

products failed the test. They concluded that 95% of the 

products that failed in the test were due to assembly line 4.  

[22, 23] Mining association rules is particularly useful for 

discovering relationships among items from large databases. 

Authors of [24] have used Association rules, Decision Tree and 

neural networks for detection of steel defects on surface. After 

performing preprocessing continued with the selection of the 

most meaningful variables, and the number of variables was 

reduced from 186 to 36 at the modeling phase. The study also 

tried using these algorithms to reduce product defects with Pits 

& Blister defect. 

They show that the accuracy percentage of each model out 

performs other depending on the carbon content and other 

elements.  

This has been shown  in table 1.[25] Also shows Root-cause 

Machine Identifier (RMI) method using the technique of 

association rule mining to solve the problem of defect detection 

efficiently and effectively. This analysis was defect case based. 

 

2.6 Genetic Algorithm Machine Learning 

Approach 
For prediction of scale defect prediction [26], shows the Genetic 

algorithm (GA) based method. They have used SOM for 

identifying the most promising variables and then used these 

variables in GA for the prediction. Average error was 

0,0957[1/m2]. [27] uses genetic algorithm to create a controller 

for the HMT.  Given current conditions (specified by the current 

HMT, which is referred to as the “operating point,” and current 

values of the input variables), the solution should determine what 

changes need to be made to each variable in order to achieve a 

desired HMT at a desired time (some hours into the future).   

2.7 Rough Set Theory Approach 
Error rates at a manufacturing process are used as input to 

identify knowledge for further assistance to engineers; authors of 

[28] comment. They have presented presents a new heuristic 

algorithm, called extended rough set theory, for reduct selection 

in rough set theory (RST) applications. They also show a 

comparison of SPC-SQC control charts and regression analysis 

for the same. 

2.8 Ensemble based Approach 
In recent years, a number of data mining approaches for 

modeling data containing non linear and other complex 

dependencies have appeared in literature[29].[30] shows the 

effective use of Random forest in non-linear insurance claim 

data. They investigated BART, S-PLUS, TREENET, logistic 

regression, Random Forest and Insightful Miner Tree procedures. 

[29] Shows the results of  decision tree ,tree forest and tree boost 

approaches. Tree boost and Tree forest both create ensemble of 

trees. The difference is tee boost creates it in sequence and forest 

creates them in parallel. Both the trees produce high accuracy, 

but surely results better than single tree. Previous research [31] 

has shown that an ensemble is often more accurate than any of 

the single classifiers.  

[32] Evaluated 23 datasets with neural networks, decision trees 

and ensemble approaches. And they concluded that bagging is 

always more accurate than any other classifier.[33] Made use of 

disjoint partitions of training datasets to learn the base decision 

trees, and ranking of training bootstrap samples on the basis of 

diversity. The approach lead to efficient learning of Random 

Forest classifier. [34] states that for a small number of variables, 

the ANN classification was competitive, but as the number of 

variables was increased, the boosting results proved more 

efficient and superior to the ANN technique. [35] Found that 

random forest feature extraction showed comparable fault 

diagnosis performance for The Tennessee Eastman process, 

better fault identification performance for the simple nonlinear 

system, and better fault detection performance for the calcium 

carbide process; as compared to principal component analysis. 

[36]have presented a taxonomy of Random Forest algorithm and 

performed analysis of various algorithms / techniques based on 

Random Forest algorithm.[37] proposed a random forest based 

research that obtained 99.7% classification accuracy in diagnosis 

and prognosticating breast cancer with ML and state that random 

forest results better than other ML algorithms done in past works. 

The effectiveness of random forests on fault diagnosis of power 

electronic circuit experimented by determining optimal 

configurations of random forest in [38].Experimental results 

show that the method is feasible and effective. A total of 1760 

data of all 22 classes were selected for fault testing and accuracy 

of 98.92% was seen. 
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[39] Applied two different types of randomness, inserted into the 

individual trees of a random forest. They evaluated results 

obtained by other classical Machine Learning algorithms, such 

as neural networks, Classification and Regression Trees 

(CART), Naive Bayes, and K-nearest neighbor (KNN). They 

used a dataset of Gas turbine for fault diagnosis with 864 

instances described by 27 distinct attributes. Best results were 

obtained by using 500 trees and 6 features. This research 

achieved performance 97% precision and recall. 

Authors in [40] state that random forest has achieved good 

results when being applied to medicine, biology machine 

learning and other areas but however they apply this method to 

machinery fault diagnosis. They experiment RFA on ship 

intelligent fault diagnosis of chain box. They concluded that the 

error rates with 3 dimensions were less than 4 dimension RF 

creation. They have used 220 samples with 16 dimensions. 

A comprehensive table of survey is shown in Table1. This 

shows that though the existing MLA have good performance 

like decision trees, neural networks and genetic algorithms, still 

random forest outperforms these MLAs. This seems to be an 

emerging MLA and is yet to be explored in many fields and 

provides a scope for further research based on its applicability in 

various industries like manufacturing, stock market, medicine 

etc, applicability in various fields such as stream data mining 

and performance up gradation. 

3. ANALYTICAL RESULTS 
We here present the analytical survey in the form of table in 

Table 1. “Ref. No” column is to the reference number referred, 

“method used” shows the approach followed in the respective 

work, “problem addressed” describes the problem on which the 

approach was applied, “input variables and instances” shows the 

amount of data used for addressing the issue, “method used” is 

the algorithm used, “statistically significant, error rates, 

accuracy” show any statistically relevant measure of 

performance achieved or error rates obtained or accuracy 

obtained, which as addressed as S,E, and A respectively and 

“comments” describes the final conclusion of the applied 

approach. A symbol “*” shows that, no value is present to assign 

the respective column. 

We find that lots of work has been done in fault diagnosis in 

manufacturing industries. We studied that experts though have 

applied statistical approaches in many work but researchers 

emphasis that application on statistics only is not capable of 

exploring patterns and knowledge from the data, hence the 

application of data mining is highly recommended. Many 

experts have used different machine learning methodologies in 

their work, and have presented the performance achieved. We 

find that the performance of ensemble techniques particularly 

tree ensembles outperform other existing techniques. Tree 

ensembles are extended decision trees that generate hundreds or 

thousands of tress as optimized. These trees are created one by 

one using sampled data randomly, keeping 1/3 for out of bag 

error calculation. They can deal with “small n large p”-

problems, high-order interactions and correlated predictor 

variables. They also are very stable and almost perfect “out of 

the box” classifiers. We further find that this powerful machine 

learning algorithm has been to various fields like genetics, 

bioscience, neuro science etc, and some work was found in stock 

market and software engineering. But we do not find any work 

done with this in steel industry. 
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4. CONCLUSION 
The intension of this paper is to present a survey of current work 

related to defect prediction done and the future research 

directions in the field. As a result of the survey we conclude that 

statistics, decision tree and neural network are wide used ML 

algorithms of the purpose of fault diagnosis. Some recent works 

in Random Forest show that they give better performance than 

ANN and Single Decision Tree, as they are an ensemble of trees 

and hence is more accurate, but it is time consuming compared 

to other individual classification techniques. We also see that 

Random forest show better results than other machine learning 

algorithm and has been used widely in medicine and 

biotechnology area in recent years, but has not been evaluated in 

steel industry for fault diagnosis. This also show that there are 

various work with combination of two approaches like statistics 

with neural networks, but no work has been done with 

application of statistics and random forest. This analysis will 

serve as a guideline for pursuing future research related to fault 

diagnosis in steel. 
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