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ABSTRACT 
Synthetic generation of streamflow data facilitates the 

planning and operation of water resource projects. 

Significance of streamflow forecasting for intermittent river 

increases many fold in order to use available water yearlong 

for multipurpose water resources project. In the present study, 

monthly streamflow data has been used for intermittent river 

Goi in Narmada river basin. The performance of stochastic 

stream flow generation models– seasonal autoregressive 

integrated moving average (SARIMA) and Thomas-Fiering 

model are compared with Artificial Neural Network (ANN) 

approach. The performance of these models is evaluated on 

the basis of root mean square error (RMSE) and coefficient of 

determination (R2). The study reveals that SARIMA performs 

better than Thomas-Fiering and ANN models. Thomas Fiering 

model is least reliable model among other two models. 

However Thomas-Fiering model performed well in case of 

high flow prediction whereas SARIMA and ANN performed 

well for lower and moderate flow. The predicted data can be 

used for the small hydropower projects development.  
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1. INTRODUCTION 
Streamflow prediction plays vital role for water resource 

project planning, operation and management. Short term 

forecasting for hourly or daily period forecasting is important 

in flood mitigation whereas long term forecasting like 

monthly, seasonal or annual forecasting helps in operation of 

multipurpose water resource projects like irrigation water 

management, municipal water supply, small hydropower and 

drought mitigation. Since the streamflow data has all the basic 

information related to flow regime, it helps for designing of 

water resource structures. These water resource structures are 

designed considering severity and undulation of streamflow 

and profound lack of long and continuous data availability 

lead the apprehension for prediction model development. As 

the streamflow is purely random process and has significant 

variability in time and space, the prediction model has to be 

accurate and less uncertain.   

The prediction models can be categorized two class (a) 

knowledge driven models and (b) data-driven models. 

Knowledge driven models are successfully implemented for 

known physical catchment characteristics like area, shape 

slope, stream-length, altitude etc. Rainfall-runoff modeling 

and empirical relations are paradigm of such models. On 

contrary data driven or black box model, do not consider the 

internal mechanism of system between input and output of 

data. These models execute well even with the limited 

availability of physiographic catchment information. Artificial 

intelligence techniques, regression models and stochastic 

models are the type of black-box or data-driven models.  

Stochastic processes can be either linear or nonlinear 

processes. For linear stochastic processes like ARIMA (auto 

regressive integrated moving average), correlation coefficient 

is considered as reliability criteria (Haan, 1977). Researchers 

preferred ARIMA model due to its systematic procedure of 

estimation (i) identification, (ii) estimation and (iii) diagnostic 

checking which was described by Box and Jenkins (1976). 

Exclusively ARIMA and its seasonal variation were applied 

for streamflow prediction of univariate time series recently by 

Abrahart and See (2000) and Yürekli et al (2005). Velicer and 

Harrop (1983) worked on the adequate number of 

observations required to build an accurate model, further Wei 

(1990) found that ARIMA model efficiently predicted for 

more than 50 observations. Efficient execution and prediction 

by ARIMA model requires plenty of research experience 

since it is a complex modeling technique. This is the other 

drawback associated with this technique.  

Regression based technique i.e. Thomas-Fiering model is 

monthly prediction model, developed by Thomas and Fiering 

(1962). In recent time, Kurunç¸ el al. (2005) found the 

Thomas Fiering models is successful tool for water quality 

prediction for Yeşilɩrmak River. Martins et al. (2011) worked 

on streamflow prediction using Thomas-Fiering models for 

long term prediction. Arselan and Cheleng (2012) used 

Thomas Fiering model for streamflow prediction after 

removal of persistence and found that this model works 

effectively specially for drought time.  

Artificial intelligent technique, ANN has the ability to 

estimate the desired accuracy that makes this technique 

extensively useful for streamflow prediction. ANN has been 

successfully employed for many hydrological applications 

like rainfall-runoff modeling, water surface level prediction, 

ground water level prediction and streamflow prediction. Past 

research validates the transcendence of ANN over 

conventional stochastic and regression models for univariate 

streamflow time series. Huang et al. (2004) concluded that 

ANN provides better forecasting performance than ARIMA 

model and ANN is a conclusive approach and it does not 

explain randomness of streamflow processes. Ahmed and 

Sarma (2007) worked on the performance of ANN over 

traditional stochastic models- ARMA and Thomas Fiering 

models and found that ANN is superior to stochastic models.   

The objective of this study is to predict long term (monthly) 

streamflow for intermittent river using SARIMA, Thomas-

Fiering model and ANN models. Evaluation of suitable and 

accurate prediction model is the preliminary step towards the 

development of small hydropower and multipurpose water 

resource projects. Prediction is effectual tool for the 

development of water resource projects as these projects 

requires minimum 30 years of the discharge data.  
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2. STUDY AREA 
The Narmada River originates in the Amarkantak plateau of 

Maikala range in the Madhya Pradesh (MP) state of India at 

an elevation of 1051 m above MSL and falls into the Gulf of 

Cambay in the Arabian Sea, after travelling 1312 km. The 

river basin is located between 72° 32’E to 81° 45'E longitudes 

and between 21° 20'N to 23° 45'N latitudes (NIH 2014). This 

river covers drainage area of 95726 sq. km. During monsoon 

season, peak discharges varies from 10,000 m3/s to 60,000 

m3/s (Kale et al., 1994). It is the largest west flowing river of 

the Indian peninsula. Goi River is an intermittent river of 

lower Narmada River basin, covering 787 km2 catchment 

area. The gauging site Dhulsar on Goi River is located at the 

latitude of 22°12'00'' and longitude of 74°52'00''. Discharge 

data of 8 years from June 2000 to May 2008 are available for 

this site considered in the present study. In this study, 8 years 

long monthly data has been used for synthetic data generation. 

The Narmada river basin and the study area are shown in the 

Figure 1. 

3. STREAMFLOW PREDICTION 
This study is analytical outcome of monthly streamflow 

prediction for intermittent river in Goi River in Narmada 

River basin using ARIMA, Thomas Fiering and ANN models.  

The river flow is recorded twice or thrice on daily basis, but 

mean monthly discharge is taken into account in the study. 

3.1. Data Preparation 
The requisite criterion for synthetic generation model is 

normality condition. Standardization and Box-Cox 

transformations are two methods for converting any time 

series to normal time series. In this study, the Box-Cox 

transformation method has been preferred for normalization. 

The Box-Cox transformation given in Eq. (1) is applied for 

monthly flow period to make the data applicable for ANN 

model, as this method fails for zero discharge. After ANN 

model fitting and prediction the data is transformed to original 

form.   
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Where, W is power transformed series and λ is transformation 

parameter, calculated by optimization for satisfying the 

normality condition. 

3.2 Flow Duration Curve for Hydropower 

Potential Assessment 
Figure 2 shows the cumulative probability distribution 

functions or flow duration curve (FDC) for Dhulsar gauging 

site. According to Vogel & Fennessey (1994) FDC is a 

cumulative frequency plot that shows the percentage of time 

that discharge in the stream is equaled or exceeded during a 

specific time. In FDC, the discharge corresponding to the 

particular percentage exceedence of time is known as 

dependable discharge. The power generation by hydropower 

plant can be estimated using following Eq. (2) 

 

Figure 1: Narmada River basin showing major gauging sites, dams and barrage, India WIRS, (2014).
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Where P =power (KW); Q =discharge (cumecs); H = net 

available head; and  =overall turbine and generator 

efficiency.  For estimation of annual energy generation, the 

flow duration is divided into firm energy, secondary energy 

and dump energy as shown in Figure 2. Firm energy (EF) 

generation takes place on the basis of firm discharge which is 

75% dependable flow, whereas secondary energy (ES) is 

generated at 50% dependable flow. Peak discharge (0-25% 

dependable flow) is not available throughout the year, so it 

comes under dump energy.      

Total energy,  
S

E
F

E
T

E                Eq. (3) 

Firm energy,  

)243651(10081.9  QH
F

E          Eq. (4) 

As the study area is for intermittent river, the availability of 

the discharge for harnessing hydropower will be available in 

the monsoon months only. Because of this reason overall 

performance of the plant can reduce up to 50%. The other 

factors that may reduce the generation capacity are time 

required for operation and maintenance, silt problem at site 

etc.  

 

Figure 2: Cumulative Probability Distribution Function 

for Dhulsar Gauging Site (Flow Duration Curve) 

4. MONTHLY TIME SERIES ANALYSIS  
The present study is carried out to estimate the performance 

of ANN over the conventional forecasting models like 

SARIMA and Thomas-Fiering models. The efficiency of 

these models are compared using root mean square error 

(RMSE) and regression coefficient (R2), as explained in later 

sections. 

4.1 Thomas-Fiering Model 
Thomas Fiering model (Thomas and Fiering, 1962) is 

monthly synthetic data generation model and useful in 

operation related studies of multipurpose water resource 

project. The transformed historical streamflow in month, m 

and year, y is given by
ymq ,

. The repetitive relation for 

synthetic monthly data 
ymq ,

 generation is as follows;  
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   Eq. (5) 

where 
m

q  is average of observed historical monthly 

streamflow series for month m; 2

ms  is variance of observed 

monthly streamflow for month m; 
ym,  are independent 

standard normal random variables and mr  is correlations 

between month m and m+1 of the observed streamflow. In 

the above equation, 
ymq ,1

is understood to be 
1,1 yq when 

m = 12. The synthetic generated monthly flow is transformed 

to original form using the Eq. (6).  

 ymqymQ ,exp,             Eq. (6) 

Thomas Fiering model is based on 12 regression equations 

having statistical properties of the discharge time series, like 

standard deviation, average and correlation coefficient. 

4.2 Seasonal-Autoregressive Integrated 

Moving Average (SARIMA) Model 
Autoregressive Integrated Moving Average (ARIMA) model 

is a stochastic model that has random elements of past 

observations and random errors. The streamflow time series 

has four components namely trends (T), periodicity (P), 

dependency (D) and independency (Vt). Trends in the 

streamflow time series can be determined using Mann- 

Kendall test. Fourier transformation is applied for removal of 

periodic components. The remaining two components, 

dependent and independent components are collectively 

known as stochastic components. The stochastic model, 

ARIMA, is applicable for streamflow prediction. The 

original process that generates the streamflow using ARIMA 

is given in Eq. (7), 
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               Eq. (7) 

ARIMA (p, d, q) is a non seasonal synthetic data generation 

model. Here p is the order of auto-regression, d is the amount 

of differencing, and q is the order of the moving average. The 

ARIMA process turns simply into autoregressive (AR) model 

if the moving average (MA) component is unavailable and 

vice-versa. The time series has to be stationary for ARIMA 

modeling. Differencing or standardization turns non-

stationarity into stationarity. For stationary time series 

autocorrelation function (ACF) and partial autocorrelation 

function (PACF) should lie in between upper and lower limit 

of confidence. ARMA model transforms into ARIMA 

models when the time series is non-stationary and 

differencing is non zero (d≠0). Linear differencing operator 

(Δ) is illustrated in Eq. (8) 
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Stationary time series (Wt) obtained after dth difference (Δd) 

for St, is mentioned in Eq. (9) 

  tS
d

BtS
d

tW  1                          Eq. (9) 

Eq. (10) is the general form of the general form of ARIMA 

(p, d, q)  

     tBqtS
d

BBp  1                Eq. (10) 

If the ARIMA (p,d,q) does not fits well then for monthly 

time series fitting and forecasting leads toward the SARIMA 

(p,d,q)(P,D,Q)m process. Here m=12 for monthly streamflow 

time series. SARIMA solution for St is shown in the 

following Eq. (11), 

        t
m

BmBqtS
dD

m
m

BmBp      Eq. (11) 

The Box–Jenkins (1976) presented a methodology that 

includes three iterative steps (i) Model identification, (ii) 

Parameter estimation and (iii) Diagnostic checking of fitted 

parameters as shown in Figure. 3. 

Pankratz (1983) prepared a guideline for model identification 

on the basis of shape and characteristics of autocorrelation 

function (ACF) and partial autocorrelation function (PACF) 

as shown in Table 1.  

Table 1: Guidelines to identify model parameters on the 

basis of ACF and PACF (Machiwel and Jha, 2012) 

   S. 

No 

Model 

parameter 

Characteristics 

of  ACF 

Characteristics 

of PACF 

1 

One 

autoregressive 

(p) 

Exponential 

decay 

Spike at lag 1,no 

correlations for 

other lags 

2 

Two 

autoregressive 

(p) 

A sine-wave 

shape pattern or a 

set of exponential 

decays 

Spikes at lags 1 

and 2, no 

correlation for 

other lags 

3 
One moving 

average (q) 

Spike at lag 1, no 

correlation for 

other lags 

Damps out 

exponentially 

4 
Two moving 

average (q) 

Spikes at lags 1 

and 2 no 

correlation for 

other 

A sine-wave 

shape pattern or a 

set of exponential 

decays lags 

5 

One 

autoregressive 

(p) and one 

moving 

average (q) 

Exponential decay 

starting at lag 1 

Exponential decay 

starting at lag 1 

Das (2000) mentioned that autocorrelation function kr  and 

partial autocorrelation function 
kk ,.  are the keys to identify 

p and q value for a reasonable ARIMA model. The ACF and 

PACF equations are mentioned in Eq. (12) and Eq. (13) 

  
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
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1
                  Eq. (12) 

Where, kr  is an autocorrelation function at k lag; Y  is the 

mean value of time series 
tY  and N is data length.  
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,



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Where, 
kk , is partial autocorrelation function at lag k; kr

is autocorrelation function at lag k; and 
jk , = 

jkkkkjk   ,1,,1  ;  where j = 1, 2,. . ., k−1. 

For tentative model selection, ACF and PACF are to be 

plotted against lag k. ACF helps to identify the value of q 

whereas PACF is useful for identification of order of p. 

Among various combinations of p and q, the best ARIMA 

model can be selected on the basis of minimal Akaike’s 

information criteria (AIC)  (Akaike, 1978) as given in Eq. 

(14) 

   
1

1
2

*
ln2






n

qp
MLAIC               Eq. (14) 

 

Figure 3: Schematic representation of the ARIMA 

methodology for time series modelling 

Schlittgen and Streitberg (2001) mentioned that AIC always 

estimates right order (p and q) of models whereas BIC is 

suitable for larger sample size. The other criterion for model 

selection is residual analysis using ACF and PACF. The 

residual for the best fitted model should lie in between the 

upper and lower limit confidence bound. The residuals 

should be independent, normally distributed and random.  

The other minimization function is Bayesian Information 

Criterion developed by Brockwell and Davis (1991) and can 

be expressed as given in Eq. (15) 
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4.3 ANN Model 
ANN works as biological nervous system to pass the 

information. Neurons are the units of neural network system 

that are properly arranged in layers. The common ANN 

structure has three layers (i) input layer, (ii) hidden layer and 

(iii) output layer. Each layer has different number of nodes. 

Input layer has single node to receive input data and it does 

not modifies or processes data.  

 

Figure 4: Neural Network architecture and working 

It duplicates the signal according to multiple outputs to feed 

hidden layers. The second step in neural network computing 

is processing in hidden layer. This layer is the workstation of 

neural network structure. Here input signals are multiplied by 

weights that are set of encoded numbers stored in hidden 

layer as shown in Figure 4Figure 4. Hidden layer has ability 

to manipulate data for proper selection of weights. The 

values of weights are added and then this single value passes 

through transfer function. The output layer has several 

numbers of nodes and that also uses transfer function. In this 

study, tan-sigmoid transfer function is used. This transfer 

function significantly transforms all the input values that lie 

between -∞ to +∞ into -1 to 1. The mathematical and 

graphical representation of tan-sigmoid function is shown in 

Eq. (16) 

 
 

1
2exp1

2
)(tan 




is
issigisf                Eq. (16) 

where  


n

i iii xws
1

 is the input signal referred as the 

weighted sum of incoming information. Burian et al. (2001) 

found that as the number of nodes in hidden and output 

layers decreases, prediction accuracy increases. The input 

data set is divided into three portions for training, validation 

and testing. The objective to train input data is to reduce 

global error as mentioned in Eq. (17) 





n

n
n

n 1

1
  and  




i

i
iTiOn

1

2

2

1
     Eq.(17) 

Where, n is number of training iteration, n  is error at the 

end of training n, i is number of output nodes, Oi is neural 

network output and Ti is training output. Adjustment of 

weight and biases reduces the error while training. Karul et 

al. (2000) found that Levenberg-Marquardt algorithm is 

suitable for second order training speed problem as it 

requires a greater amount of memory than other algorithms. 

This algorithm solves the following Eq. (18) 

   e
T

JIJ
T

Jkxkx  1
                  Eq. (18) 

Here  1 kxkx  are the weight updating vectors to be 

computed, J is Jacobian matrix, µ is damping factor, e  is 

error vector that contains output error for each input vector. 

The damping factor µ is adjusted to zero after each iteration. 

When µ=0, the algorithm turns to Gauss-Newton algorithm 

where iteration starts giving insufficient reduction in 

residuals.  

All the mention steps for SARIMA application are performed 

using SPSS and gretl software packages. The ANN 

application for prediction is done using MATLAB 2013(a) 

software package. Matlab 2013(a) is used for the model 

fitting and prediction for Thomas-Fiering model.  

4.4 Performance Criteria 
Performance of model can be evaluated by performance 

criteria because prediction accuracy of any model is highly 

dependent on model structure, iterations and computational 

techniques. Abrahart and See (2000) applied five different 

global evaluation measures for comparison of performance of 

streamflow prediction model. These criteria are mean 

absolute error (MAE), root mean square error (RMSE), mean 

higher order error function for peak flow prediction, model 

efficiency, and percentage of predictions grouped according 

to degree of error. Karunanithi et al. (1994) suggested that 

two measures should be used in order to get different 

information about predictive ability of models. Keeping this 

in view, root mean square error and coefficient of 

determination has been used as performance measures in this 

study. 

1. Coefficient of determination  
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2. Root mean square error  

 



n

i
iFiY

n
RMSE

1

21
                                Eq. (20) 

Where,  iY  is the observed flow, iF is the output response 

from the models, Y  is the mean of the observed flow and F
is mean of forecasted flow. Karunanithi et al., (1994) stated 

that RMSE is a good criterion for indicating the goodness of 

fit at high and moderate streamflow time series. 

5. RESULTS OF STREAMFLOW 

PREDICTION MODELS 
Firstly talking about the results of Thomas-Fiering model 

fitting and prediction. As reported earlier, Thomas-Fiering 

model is a regression based prediction model that includes 

correlation coefficient, standard deviation and average 

discharge of consecutive months. Error! Reference source 

not found.Figure 5 shows that this model not only works 

well for low and moderate flow, but performs pretty well for 

high flow also.  
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Figure 5: Thomas-Fiering model fitting  

The statistics of the observed and estimated time series given 

in Table 2, shows that mean discharges of both time series 

are nearly similar but the standard deviation has notable 

difference. This result indicates fewer fluctuations in 

observed and estimated time series due to more similarity in 

moderate flow pattern than in high flow pattern.  

Table 2: Statistics of observed and calculated flow using 

Thomas-Fiering model 

Parameters Observed Modeled 

Mean 2.688318 2.638065 

Standard 

Deviation 
7.887753 5.581939 

R2 0.4055 

RMSE 6.5363 

The R2 =0.4438 is less for both modeled and observed time 

series indicating the moderate slope as shown in Figure 6. 

These statistical parameters prove that modeled time series 

has also done well. 

 

Figure 6: Regression plot between observed and fitted 

flow for Thomas Fiering model 

Now moving the discussion towards second selected 

stochastic model i.e. SARIMA. The model fitting and 

prediction are divided into three sequential steps; 

identification, estimation and prediction. The results of 

mentioned three steps are discussed in subsequent parts 

respectively.  

5.1 Identification (Model Identification 

ACF and PACF) 
The correlogram test of observed time series is appropriate 

approach to verify stationarity. The correlogram is the plot of 

autocorrelation function (ACF) and partial autocorrelation 

function (PACF) against lags. If time series is non-stationary 

then standardization or differencing are two approaches for 

stationary time series. For optimal order of differencing the 

standard deviation has to be minimal for the differenced time 

series. The order of differencing should be minimal to avoid 

over differencing. ACF and PACF plots. Figure 7 shows non-

stationarity in time series as ACF in not bounded in between 

the confidence interval. The notable feature of this ACF plot 

of Figure 7 is the presence of periodicity, that advice to add 

seasonality in ARIMA model, thus the ARIMA(p,d,q) 

process turns to seasonal ARIMA(p,d,q)(P,D,Q). 

5.2 Estimation and Testing (AIC and 

Residual analysis) 
As mentioned in previous section, there are three criteria for 

selecting best fit SARIMA. The first criteria is minimal 

Akike’s Information Criteria (AIC) and Bayesian information 

criterion (BIC), second criteria is stationary residual of 

selected model and third one is minimum RMSE 

(performance criteria). The best fit model should meet all the 

three criteria simultaneously. Different combinations of p, d, 

q, P, D and Q are tested for minimum AIC, RMSE and 

stationary residual correlogram. 

 

Figure. 7 ACF and PACF analysis of Dhulsar streamflow 

time series 

Figure 8 shows the stationarity for the residuals of ARIMA 

(0,0,0)(1,0,0), that proves that selected model is best 

prediction model among other SARIMA models. The 

seasonal ARIMA model equation can be written in three 

different forms as: differenced equation or as infinite sum of 

current and weighted previous values of error or as an infinite 

sum of weighted previous observations plus the current value 

of error (Martins et al., 2011). 

Suitable requirement for prediction helps to form the 

seasonal ARIMA equation. The differenced generalized 

equation for ARIMA (0,0,0)(1,0,0) is shown in Eq. (21)  

  ttSB 
12

12,11              Eq. (21) 

Where  
jtS 
= time series component j=0,1,2,...  

jt  = white noise in time series; j=0,1,2,…; 

   = Seasonal AR component of time series 

The Eq. 21 shows that only seasonal autoregressive 

component is present and other components are not present 

in the equation mentioned. The final values of estimated 

parameters of ARIMA (0,0,0)(1,0,0) are shown in Table 3. 

The Log-likelihood and AIC are minimum for this selected 

ARIMA (0,0,0)(1,0,0) model. 
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Figure. 8: Residual ACF and PACF for model ARIMA 

(0,0,0)(1,0,0) 

Table 3: Final model parameters estimated and model 

fitting statistics 

Model Fitting Parameters 

Types Coefficient 

SE 

Coefficient z p-value 

SAR1 0.4074 0.0906 4.492 0.00000705 

Constant 2.5376  1.2547   2.022 0.0431 

Model Fitting Statistics 

Log-likelihood -288.674 AIC 583.3473 

Hannan-Quinn 586.2788 BIC 590.6397 

Further assurance is required for independent, homoscedastic 

and normally distributed residuals that were tested using 

Ljung-Box test (1978). The results of Ljung-Box test indicate 

that all correlations are not different from zero at 95% 

confidence interval as shown in Table 4. This test also shows 

that the selected ARIMA (0,0,0)(1,0,0) models is most 

suitable model for monthly stream flow prediction.  

Table 4: Ljung-Box test statistic for residuals of selected 

model residuals 

p value DOF χ² value Critical value 

0.3934 11 4.575 11.6131 

0.2853 23 13.091 26.3362 

0.7032 35 22.465 30.1081 

0.9392 47 32.2676 33.0017 

5.3 Prediction 
Figure 9 is the time series plot, shows that ARIMA 

(0,0,0)(1,0,0) model follows the moderate flow properly, 

although there is weak prediction at high flow discharge. 

Even though the selected model performed well still there is 

lack of accuracy due to less availability of discharge data. 

The model prediction can only be said accurate when long 

period of data is available for validation. Figure 10 shows the 

regression plot between observed and ARIMA fitted 

discharge. The R2 = 0.6231 is satisfactory regression 

coefficient while RMSE = 6.1206 calculated lesser than 

Thomas-Fiering model. 

 

Figure 9: Streamflow fitting by ARIMA (0,0,0)(1,0,0) 

 

Figure 10: Regression plot between fitted and observed 

discharge for ARIMA model 

Now approaching towards the third selected data driven 

model i.e. ANN approach. In case of ANN model fitting and 

prediction, data is divided into various ratios for testing, 

validation and training purpose, with the delayed and hidden 

neurons. Initially the discharge is transformed to normally 

distributed data using Box-Cox transformation and after the 

ANN model fitting the dataset is transformed to original time 

series. Among other combinations of training, validation and 

testing ratios, the overall performance of model 75:15:15 

with 4 delays and 10 hidden neurons is found most suitable. 

The performance criteria RMSE is found as 8.084749 that is 

higher than the other two selected models but on the other 

hand R2 = 0.80993 is also highest. Figure 11 shows the time 

series plot of observed and ANN fitted data, indicates that 

fitted flow is following the observed flow for low and 

moderate flow, while in case of high flows, the performance 

is not satisfactory. 

 

Figure 11: Time series plot for ANN (75:15:15) model 

with 4 delay and 10 hidden neurons 

Figure 12 is regression plot between observed and fitted flow 

while data is divided for training, validation and testing. The 

regression coefficient for all the divided parts and overall 

data set is found very well. This proves that this model is best 

for prediction purpose  
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Figure 12: Regression plot of Train, validate and test 

streamflow discharge for ANN  

Figure 13 shows the prediction for next year using all 

selected models. The performances of all these selected 

models are listed in Table 5. It can conclude from Table 5 

that for model fitting and prediction ARIMA (0,0,0)(1,0,0) 

performed well. Figure 13 for one year prediction shows that 

Thomas Fiering model is performing fine even there is more 

fluctuations but ARIMA and ANN models are good for low 

and moderate flow.    

 

Figure 13: Time series plot of one year prediction 

using all selected forecasting models 

Table 5: Performance statistics for selected models 

 

Criteria 

Thomas 

Fiering 

Model 

ARIMA 

(0,0,0) 

(1,0,0) 

ANN 

(70:15:15) 

Model 

Fitting 

RMSE 6.5363 6.1206 8.084749 

R2 0.4055 0.6231 0.80993 

Prediction 

RMSE 1.6322 1.5909 1.9236 

R2 0.5816 0.9252 0.7317 

6. CONCLUSIONS AND 

RECOMMENDATIONS 
In the present study, comparative analysis of SARIMA, 

Thomas-Fiering and ANN model has been carried out. These 

models are found as most sophisticated extrapolation method 

for prediction. These models can predict any time series, with 

any pattern of change and do not require the forecaster to 

choose value of any parameter. The limitation with these 

models is the requirement of a long time series. These 

models are also known as Black Box model. Even the 

prediction is too accurate but these models do not guarantee 

the prediction accuracy. In this study, Thomas Fiering, 

seasonal ARIMA and ANN models were tested for monthly 

stream flow prediction. The performances of these models 

are tested using different performance criteria. The following 

conclusions are drawn in this study:  

1. Streamflow time series achieved stationarity after first 

order differencing that was confirmed by ACF and 

PACF analysis of difference time series. 

2. Even though many ARIMA models fit to the time series 

but the appropriate model can only be selected by 

residual analysis and Ljung-Box test, which declares the 

residual as stationary and independent. 

3. ARIMA(0,0,0)(1,0,0) is found to be the most suitable 

model among the other combinations of seasonal 

ARIMA.  

4. Thomas-Fiering model, regression based model, cannot 

work for lean period, so only 7 regression equations 

were used for successful prediction of streamflow.   

5. ANN is a nonlinear autoregression based technique, so 

Box-Cox Transformation is must for accurate 

prediction. 

6. ANN model with the 70:15:15, training, testing and 

validation ration and 4 delays and 10 hidden neurons is 

found the best among other ratios of testing, validation 

and training. 

7. ARIMA (0,0,0)(1,0,0) performed well among other 

models for the intermittent river prediction, as this 

model followed peak or high discharge more as 

compared with other models.  

8. As the development of water resources project requires 

30 years of discharge data, prediction is effectual 

method for data extension. The SARIMA is found 

appropriate prediction tool for monthly discharge data.   
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