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ABSTRACT 

In this paper, a cooperative Continuous static game (F-CCSG) 

with fuzzy parameters in the cost function of the player is 

presented. Through the use of the α-level sets of fuzzy 

numbers, the F-CCSG is converted to the corresponding α-

CCSG and an extended Pareto optimality concept called the 

α-Pareto optimality is introduced. An algorithm for solving 

the α-CCSG is suggested. The algorithm is based mainly on 

the reference attainable point (ARP) method introduced by 

Wang et al., [20] and reference direction (RD) method 

introduced by Narula et al., [7]. One of the major 

improvement is the reduction of the number of iterations and 

hence the computational effort required to obtain the final 

solution. The stability of the first kind without differentiability 

corresponding to the final solution is determined. To clarify 

this approach, a numerical example is given for illustration..   
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1. INTRODUCTION 
Game theory is a useful tool for decision making in the 

conflict of interests between decision makers in order to select 

the best joint strategy for them through selecting the best joint 

desirability. Game theory has wide applications in the social 

life, economy, policy, engineering, sciences, biological 

sciences etc., (Navidi et al., [8] and Osborne [10]). 

Many decision making problems that arise in the real world 

need to be modeled as vector optimization problems (VOPs, 

Continuous static games are another formulations of VOPs 

(Tomas and Walter [15]) by considering the more general 

case of multiple decision makers, each with their own cost 

criterion. This generalization introduces the possibility of 

competition among the system controls, called “players” and 

the optimization problem under consideration is therefore 

termed a “game”. Each player in the game controls a specified 

subset of the system parameters (called his control vector) and 

seeks to minimize his own scalar cost criterion, subject to 

specified constraints. Several solution concepts are possible as 

Nash equilibrium concept Pareto-minimal concept, min–max 

concept, min–max counterpoint concept, and Stackelberg 

leader-follower concept (Tomas and Waller [15]). 

In their earlier work Sakawa and Yano [17] introduced an 

interactive decision making method for multi-objective 

nonlinear programming problem with fuzzy parameters both 

in the objective function and constraints. Osman [11] gave 

formulation of different parametric problems in continuous 

static games. Osman and El-Banna [12] introduced multi-

objective nonlinear programming problems with fuzzy 

parameters in the object functions. Osman et al., [13] studied 

continuous static games with fuzzy parameters both in the 

cost functions and constraints. They used the concept of 

Stackelberg leader with min–max followers solution to solve 

this problem. Osman et al., [14] introduced large scale 

continuous static games with fuzzy parameters both in the 

cost functions and constraints. El- Shafei [3] presented a 

solution method for Nash cooperative continuous static games 

by using interactive approach. Kacher and Larbain [5] 

introduced a concept of equilibrium for a non-cooperative 

game with fuzzy goals involving fuzzy parameters. This 

equilibrium is based on Zimmermann’s approach for solving 

linear multi-objective problems with fuzzy gals and the 

concept of N-S equilibrium introduced by Zhukovskii for a 

non–cooperative game with payoffs involving unknown 

parameters in the case of complete ignorance of their 

behavior. Navidi et al., [9] introduced a new game theoretic–

based approach for multi response optimization problem. 

They used the game theory approach via definition of each 

response as each player and factors as strategies of each 

player. Sakawa and Nishizaki [18] introduced two–persons 

Zero–Sum games with fuzzy multiple payoff matrices. They 

assumed that each player has a fuzzy goal for each of payoffs. 

Garagic and Cruz [4] utilized fuzzy set theory in order to 

incorporate the players' heuristic knowledge of decision 

making into the framework of conventional game theory or 

ordinal game theory. They defined a new approach to N-

person static fuzzy non cooperative games and developed a 

solution concept such as Nash for these types of games. Cruz 

and Simaan [1] proposed theory of ordinal games where, 

instead of payoff function the players are able to rank–order 

their decision choices against the choice by the other players. 

In this paper, a cooperative continuous static game with fuzzy 

numbers in the cost function of the player is introduced. The 

problem is converted to the corresponding deterministic 

problem. The solution of the deterministic problem is based 

on the attainable reference point introduced by Wang et al. 

[20] and the reference direction method introduced by Narula 

et al., [7]. One of the major improvements is the reduction of 

the number of iterations and hence the computational effort 

required to the final solution. The stability set of the first kind 

corresponding to the final solution is determined.  

The paper is organized as in the following sections: In section 

2, a fuzzy cooperative continuous static game is introduced as 

specific definition and properties. In section 3, an interactive 

approach for solving the problem considered in section 2. In 

section 4, the stability set of the first kind without 

differentiability is determined. In section 5, a numerical 

example is given to clarify the approach given in section 3 

and also to clarify the stability set determined in section 4. 

Finally, some concluding remarks are reported in section 6. 
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2. PROBLEM FORMULATION 
Consider the following cooperative continuous static game 

(FCCSG) with m players involving fuzzy parameters in the 

cost function as  

(FCCSG) min fi(x, u, 𝑣 𝑖),     i =  1,2, . . . , m 

Subject to𝑔𝑗  x, u = 0,     j =  1,2, . . . , n, 

x Є X =    x ЄRs: hl x, u ≥  0, l =  1,2, . . . , r , 

Wherefi(x, u, 𝑣 𝑖),     i =  1,2, . . . , m are convex functions on 

𝑅𝑛 × 𝑅𝑠, hl x, u , l =  1,2, . . . , r, are concave function on 

𝑅𝑛 × 𝑅𝑠, and 𝑔𝑗  x, u , j =  1,2, . . . , n are convex functions on 

𝑅𝑛𝑥𝑅𝑠 . It is assumed  that there exist a function 𝑢 =  𝜑 𝑥 .  
If 𝑔𝑗  x, u , j =  1,2, . . . , n are differentiable then the Jacobian 

 
𝜕𝑔𝑗 (𝑥 ,𝑢)

𝜕𝑢𝑘
 ≠ 0; j, k = 1,2,...,n is a neighborhood of a solution 

point  𝑥, 𝑢 , 𝑣 𝑖 = (𝑣 𝑖 , … , 𝑣 𝑚 ) represent a vector of fuzzy 

parameters that assumed to be characterized as the fuzzy 

numbers (Dubios and Prade [2]). The real fuzzy numbers 

𝑣 𝑖  , 𝑖 = 1,2, . . . , 𝑚 form a convex continuous fuzzy subset of 

the real line whose membership function 𝜇𝑣  𝑣𝑖 , 𝑖 =
1,2, . . . , 𝑚 is defined (kassem and Ammar [6]). Here 

differentiability assumptions are not needed for the 

functions𝑓𝑖 𝑥, 𝑢, 𝑣 𝑖 , 𝑖 = 1,2, . . . , 𝑚and 𝑙 𝑥, 𝑢 , 𝑙 = 1,2, . . . , 𝑟. 

Also, it is assumed the set Х is a regular and compact (i. e., 

bounded and closed). 

Definition 1. (Dubios and Prade [2]). The α–level set of the 

fuzzy numbers 𝑣 𝑖  , 𝑖 = 1,2, . . . , 𝑚 is defined as the ordinary set 

∟𝛼  (𝑣 ) for which the degree of their membership functions 

exceed the level α : 

∟𝛼 𝑣  = {𝑣: 𝜇𝑣 𝑖
 𝑣𝑖 ≥ 𝛼 , 𝑖 = 1,2, . . . , 𝑚} 

For a certain degree of α, FCCSG can be rewritten as in the 

following non fuzzy form (Rockafellar [16]) 

(α – CCSG)min𝑓𝑖 𝑥, 𝑢, 𝑣𝑖 , 𝑖 = 1,2, . . . , 𝑚 

Subject to   𝑔𝑗  𝑥, 𝑢 = 0 , 𝑗 = 1,2, . . . , 𝑛, 

𝑥 ∈ 𝑋 =  𝑥 ∈ 𝑅𝑠: 𝑙 𝑥, 𝑢 ≥ 0 , 𝑙 = 1,2, . . . , 𝑟 , 

𝑣𝑖 ∈ ∟∝ 𝑣 𝑖 , 𝑖 = 1,2, . . . , 𝑚 

Definition 2 :𝑥 ∈ 𝑋 , 𝑣 𝑖 ∈ ∟∝ 𝑣 𝑖 , 𝑖 = 1,2, . . . , 𝑚 is said to be 

on α–Pareto optimal solution to the problem (α – CCSG), if 

and only if there does not exist another𝑥 ∈ 𝑋 , 𝑣𝑖 ∈
∟∝ 𝑣 𝑖 , 𝑖 = 1,2, . . . , 𝑚 such that :  

𝑓𝑖 𝑥, 𝑢, 𝑣𝑖 ≤ 𝑓𝑖 𝑥 , 𝑢, 𝑣 𝑖 , 𝑖 = 1,2, . . . , 𝑚, 

With the strict inequality holding for at last one 𝑖, where the 

corresponding values of the parameters 𝑣 𝑖  , 𝑖 = 1,2, . . . , 𝑚 are 

called α-level optimal parameters. 

From the α–Pareto minimal solution concept to the (α–CCSG) 

problem, one can prove that a point 𝑥 ∈ 𝑋 is an α–Pareto 

minimal solution to (α – CCSG) problem if and only if 𝑥  is an 

α-Pareto optimal solution to the following α–multi objective 

optimization problem (α–MOP) 

(α–MOP) min 𝐹𝑖 𝑥, 𝑎𝑖 , 𝑖 = 1,2, . . . 𝑚 

Subject to 𝑥 ∈ 𝑋 =  𝑥 ∈ 𝑅𝑠 ∶  𝐻𝑙 𝑥 ≥ 0, 𝑙 = 1,2, . . . , 𝑟 ,  

𝑎𝑖 ∈ ∟∝ 𝑎 𝑖 , 𝑖 = 1,2, . . . , 𝑚, 

where 𝐹𝑖 𝑥, 𝑎𝑖 , 𝑖 = 1,2, . . . , 𝑚, are convex functions on 

𝑅𝑠 × 𝑅𝑚 , and 𝐻𝑙  1 × 1, 𝑙 = 1,2, . . . , 𝑟 are concave functions 

on 𝑅𝑠, and  

𝐹𝑖 𝑥, 𝑎𝑖 = 𝑓𝑖 𝜑 𝑥 , 𝑥, 𝑣𝑖 , 𝑖 = 1,2, . . . , 𝑚, 𝐻𝑙(x) =
𝑙 𝜑 𝑥 , 𝑥 .  

Definition 3.  

 Let 𝜑𝑗  𝐵 = inf{𝐹𝑖 𝑥, 𝑎𝑖 , 𝑖 = 1,2, . . . , 𝑚 ∶  𝐹𝑖(𝑥, 𝑎𝑖) ≤

𝐵𝑖 , 𝜇𝑎𝑖
(𝑎 𝑖) ≥∝, 𝑖 = 1,2, . . . , 𝑚}and 𝐵 ∈ 𝑅𝑚 . Then, α-MOP is 

said to be stable if 𝜑𝑖(0) are finite and there exist scalars ∟𝑖  

such that: 

𝜑 𝑖 0 −𝜑 𝑖  (𝐵)

  𝐵  
≤ ∟𝑖 , for all 𝐴 ≠ 0, 𝑖 = 1,2, . . . , 𝑚. Here, α–MOP 

is as summed to be stable.    

3. AN INTERACTIVE APPROACH  
Please In this section, an interactive approach for solving the 

(α–CCSG) can be stated as in the following steps: 

Step 1: Ask the decision maker (DM) to specify the initial 

value of α,  (0 < α < 1) to formulate the problem (α–MOP). 

Step 2: Find F i  , i = 1,2, … , m, by solving the following 

problem (P1)max  yi,  i = 1,2, … , m 

Subject to Fi x, ai ≥ yi , i = 1,2, … , m, x ∈ X; ai ∈
∟∝ a i , i = 1,2, … , m, yi ∈ R, i = 1,2, … , m 

Step 3: Give an initial reference point. DM provides on initial 

attainable reference point F° such that F° > F . let I =
{1,2, … , m}, I° = I, P =0 (number of iterations). 

Step 4: Search for an α–Pareto optimal solution. 

Let λi = 1 (Fi
p

− F i) , i = 1,2, … , m, and solve the following 

problem 

 P2 Lex min{ηi ,   Fi x, ai − F i 

m

i=1

} , i = 1,2, … , m 

Subject to λi Fi x, ai − F i ≤ ηi , i = 1,2, … , m, 

x ∈ X, ai ∈ ∟∝ a i , i = 1,2, … , m, 0 ≤ ηi ∈ R, to obtain an 

optimal solution (xp , ap). 

Step 5: Determine the termination conditions, WhenF(xp , ap) 

is satisfactory to the DM. let  x, a = (xp , ap) be the final 

solution and go to step 7. When F(xp , ap) is not satisfactory 

and F xp , ap = Fporp = m, there is no Pareto optimal 

solution to (α–MOP). Otherwise go to step 6. 

Step 6: Modify the reference point: 

(i) The DM chooses dp  in Ip  such that Fdp
 is an 

unsatisfactory objective in  Fi : i ∈ Ip  at F xp , ap . Let 

Ip+1 = Ip {dp} . Separate Ip+1 into two parts:  

Ip = {i ∈ Ip+1: Fi(xp , ai
p

) < Fi
p

and DM wishes to release the 

value of Fi  at F(xp , ai
p

), and I2
p

= Ip+1 I1
p . 

(ii) For i ∈ Ip , the DM provides ∇i
p
, the amount to be relaxed 

for Fi  at (xp , ai
p

), such that ∇i
p
∈  0, Fi

p
− Fi xp , ap  . Let 

Fi
p+1

= Fi xp , ai
p
 + ∇i

p
.   Fori ∈ I2

p
,   letFi

p+1
= Fi xp , ai

p
 . 

For i ∈ Ip Ip+1 ,   letFi
p+1

= Fi
p

. 

(iii) In the case that Fi
p+1

= Fi xp , ai
p
  for all i ∈ Ip  dp  , 

return to (i) to separate Ip+1again or to (ii) to increase the 

amount to be relaxed for some Fi , i ∈ I1
p

 at Fi xp , ap , if the 

DM wishes to do so. Otherwise, stop and there is no α–Pareto 
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optimal solution. In the case that Fi
p+1

≠ Fi(xp , ai
p

) for some 

i ∈ Ip  dp  , go to (iv). 

 iv  let d = dp , Fi
1 = Fi

p+1
, i = 1,2, … , m, i ≠ dp , and solve 

the following problem  P3 min Fd x, ad  

Subject to Fi x, ai ≤ Fi
1 , i = 1,2, … , m; i ≠ d 

x ∈ X, ai ∈ ∟∝ a i , i = 1,2, … , m, 

to obtain an α–optimal solution (x1p
, a1p

). When 

Fdp
 x1p

, a1p
 = Fdp

 xp , adp

p
 orFdp

 x1p
, adp

1p
  for Fdp

is not 

Satisfactory to the DM, return to (ii) to increase the amount to 

be relaxed for some Fi , i ∈ I1
p

at (xp , ap) if the DM wishes to 

do so. Otherwise, stop and there is no α–Pareto optimal 

solution. When 

Fdp
 x1p

, adp

1p
 ≠ Fdp

 xp , adp

p
 andFdp

 x1p
, adp

1p
  for Fdp

 is 

satisfactory to the DM he/she) provides ∇dp

p
, the largest 

amount to be improved for Fdp
atF xp , ap ,  such that 

∇dp

p
∈  0, Fdp

 xp , adp

p
 − Fdp

 x1p
, adp

1p
  .  Let 

Fdp

p+1
= Fdp

 xp , adp

p
 − ∇dp

p
. 

(v) If Fdp

p+1
< Fdp

 x1p
, adp

1p
 , letp = p + 1 and return to (iii).  

Otherwise, let(xp+1, ap+1 =  x1p
, a1p

 , letp = p + 1  and 

return to (iv) when  x1p
, a1p

  is an unique optimal solution of 

(p3) or let  x1p
, a1p

  be an optimal solution of the following 

problem.  p4 min ηi ,   i = 1,2, … , m 

  Subject to  

λi Fi x, ai − F i ≤ ηi  , i = 1,2, … , m, x ∈ X, ai ∈ ∟∝ a i , i =

1,2, … , m, 0 ≤ ηi ∈ R. 

Letp = p + 1 and return to (iii). If Fdp

p+1
≥ Fdp

 x1p
, adp

1p
 ,  

 letp = p + 1 and return to step 4. 

Step 7: Determine the stability set of the first kind  S(x, a). 

4. THE DETERMINATION OF THE 

STABILITY SET OF THE FIRST KIND   
The determination of the stability set of the first kind 

corresponding to  x, a  is determined by applying the 

following conditions: 

δi ai , c2i , i = 1,2, … , m 

β
i
 c1i , ai , i = 1,2, … , m 

δi , βi
≥ 0,  c1i , c2i ∈ R,  c1i , c2i ∈ ∟∝ a i , i = 1,2, … , m 

Consider the following three cases: 

Case 1: δi > 0, i ∈ J1 ⊂  1,2, … , m , δi = 0, i ∉ J1. 

β
i

> 0, i ∈ J2 ⊂  1,2, … , m , β
i

= 0, i ∉ J2. 

Let M be the set of all proper subsets of {1,2,…,m}.Then 

SJ1 ,J2
(x, a) is given by: 

SJ1 ,J2
(x, a) = {(c1, c2) ∈ R2m : c2i = ai , i ∈ J1 , c2i ≤ ai , i ∉

J1;  c1i = ai ,    i ∈ J2, c1i = ai , i ∉ J1}. 

Hence S1 x, a = UJ1 ,J2
, SJ1 ,J2

 x, a  

Case 2: δi , βi
= 0 , i = 1,2, … , m. Then  

S2 x, a = {(c1, c2) ∈ R2m : c2i ≥ ai , i = 1,2, … , m; c1i ≤
ai , i = 1,2, … , m}and 

Case 3: δi , βi
> 0, i = 1,2, … , m. Then 

S3 x, a = {(c1, c2) ∈ R2m : c2i = ai , i = 1,2, … , m; c1i ≤

ai , i = 1,2, … , m}Thus S x, a = Uq=1
3 Sq x, a . 

5. NUMERICAL EXAMPLE  
Consider a tow player game with the following cost functions 

F1 x, a 1 =  x1 − a 1 
2 + (x2 − 1)2 

F2 x, a 2 =  x1 − 1 2 + a 2(x2 − 2)2, 

When player 1 controls x1 and player 2 controls x2; x1, x2 ∈ R, 

with x1 − 4 ≤ 0, x2 − 4 ≤ 0; x1, x2 ≥ 0 and with membership 

function 

µa i
(ai) =

 
 
 
 
 
 
 

0 −∞ < ai < ei1
ai − ei1

ei2 − ei1
ei1 < ai < ei2

1 ei2 < ai < ei3
a1 − ei4

ei3 − ei4
ei3 < ai < ei4

0 ei4 < ai < ∞

 i = 1,2 

let a 1 =  2,3,5,6  and a 2 = (4,5,9,10). Taking α=0.5 then 

a1 ∈ [2.5, 5.5] and a2 ∈ [4.5, 9.5] 

The equivalent (α – CCSG) becomes 

min F1 x, a1 = (x1 − a1)2 + (x2 − 1)2 

min F2 x1, a2 = (x1 − 1)2 + a2(x2 − 2)2 

Subject to   x1 − 4 ≤ 0, x2 − 4 ≤ 0, x1 ≥ 0, x2 ≥ 0, 

a1 ∈  2.5,5.5 , a2 ∈ [4.5,9.5]. 

Step 2: Solve problem (f1) to get F  

max yi   , i = 1,2 

Subject to (x1 − a1)2 + (x2 − 1)2 ≥ y1, 

(x1 − 1)2 + a2(x2 − 2)2 ≥ y2,x1 − 4 ≤ 0, x2 − 4 ≤ 0 

x1 ≥ 0, x2 ≥ 0, 

2.5 ≤ a1 ≤ 5.5, 4.5 ≤ 4.5 ≤ a2 ≤ 9.5, 

0 ≤ y1 ∈ R, i = 1,2. 

The solution is 

 x 1, x 2, a 1, a 2 =  0.4,2.75,3.8,4.6 , F  x 1, x 2, a 1, a 2 

= (2.9478, 14.967)T 

Step 3: Ask the DM to provide an initial reference point F° 

such that F° > F . 

F1
° ∈  14,17 ? 17,          F2

° ∈  3,5 ? 5  

F° = (5,17)T. 

Find λ1 = 0.333          λ2 = 0.47619 

Solve the following problem  

Lexmin {ηi ,   x1 − a1 
2 +  x2 − 1 2 − 5 

+   x1 − 1 2 + a2 x2 − 2 2 − 17 ,

i = 1,2 
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Subject to 
1

3
 (x1 − a1)2 + (x2 − 1)2 ≤ η1 

1

2.1
  x1 − 1 2 + a2 x2 − 2 2 ≤ η2 

x1 − 4 ≤ 0, x2 − 4 ≤ 0, x1 ≥ 0, x2 ≥ 0, 

2.5 ≤ a1 ≤ 5.5 , 4.5 ≤ a2 ≤ 9.5 

The solution is  x1
° , x2

° , a1
° , a2

°  =  0.4,2.75,3.8,4.6 T , 

F x°, a° = (14.4475 , 14.6225)T . 

The iteration result is: 

 x°, a° =  0.4 , 2.75 ,3.4 ,4.6 , 

F x°, a° =   14.4475,14.6225)T , 

Reference point and F are F° = (5 , 17)T , F = (2.95 , 14.97) is 

the solution satisfactory: Y/ N? Yes. To determine 

S 0.4, 2.75, 3.8, 4.6 , let us apply the following conditions: 

δ1(3.8 − c21 = 0, δ2 4.6 − c22 = 0 

β
1
 c11 − 3.8 = 0, β

2
 c12 − 4.6 = 0, 

δ1, δ2, β
1
, β

2
≥ 0,  c11 , c21 ∈ ∟∝(a i). 

We have J1kand J2k ∈  1,2 . For  J11 =  1 , δ1 > 0, δ2 = 0, 

For J2k =  2  , β
1

= 0, β
2

> 0, then 

SJ11 ,J21
=  0.4, 2.75, 3.8, 4.6 =   c1, c2 ∈ R4: c21 = 3.8, c22 ≥

4.6, c11 ≤ 3.8, c12 = 4.6 . 

For , J12 =  2 , δ1 = 0, δ2 > 0, for J22 =  1 , β
1

> 0, β
2

= 0 

Then  

SJ12,J22
 0.4, 2.75, 3.8, 4.6 =   c1, c2 ∈ R4: c21 ≥ 3.8, c22 =

4.6, c11 = 3.8, c12 ≤ 4.6 , 

For J13 =  1,2 , δ1 > 0, δ2 > 0, forJ23 = ф, β
1
, β

2
= 0, 

Then 

SJ13 ,J23
 0.4, 2.75, 3.8, 4.6 

=   c1, c2 ∈ R4: c21 = 3.8, c22 = 4.6, c11

≤ 3.8, c12 ≤ 4.6 . 

forJ14 = ф, δ1, δ2 = 0, forJ24 =  1,2 , β
1
, β

2
> 0 

Then 

SJ14 ,J24
 0.4, 2.75, 3.8, 4.6 

=   c1, c2 ∈ R4: c21 ≥ 3.8, c22 ≥ 4.6, c11

= 3.8, c12 = 4.6 . 

Thus  

S 0.4, 2.75, 3.8, 4.6 = Ut=1
4 SJ1t ,J2t

 0.4, 2.75, 3.8, 4.6   

6. CONCLUDING REMARKS 
In this paper, a cooperative continuous static game (F – 

CCSG) with fuzzy parameters in the cost functions of the 

player have been studied. An interactive approach based on 

the attainable reference point introduced by Wang et al.,[20] 

and the reference direction method introduced by Narula et 

al.,([7] has been applied to solve the deterministic problem (α 

– CCSG) corresponding to the F–CCSG. The stability of the 

first kind has been determined corresponding to the final 

solution. However, WINQSB package has been used to obtain 

the results. 
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