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ABSTRACT 
The loss of positiveness of the second order work  (SOW) 
induce the loss of uniqueness of the solution of the small 
strain boundary value problem as it is shown in the literature, 
and therefore, the onset of strain localization bands in the 
studied material. This paper is devoted to study the mini-CloE 
Drüker-Prager model. The results showed that non-associated 
model, although isotropic, can be the seat of strain localization 
in contrary to its counterpart associated isotropic model. In 
addition, the anisotropy is a factor encouraging the onset of 
strain localization. In fact, it makes the associated model 
subject of losing the positiveness of the SOW and accentuates 
the negativity of the SOW of the non-associated model. These 
results are similar with those established for the mini-CLoE 
von Mises and Mohr Coulomb models and those known for 
the elastic-plastic materials.        
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1. INTRODUCTION 
The localization of the strain in the narrow bands is a common 
phenomenon for various materials. It expresses the transition 
from the diffuse mode of the strain to a localized one when 
these materials are sufficiently deformed in the inelastic 
phase. 

In theory the strain localization is often seen as a loss of 
uniqueness of the solution (bifurcation) of the boundary value 
problem. Theoretical developments showed that if the second 
order work is negative then the solution loses its uniqueness. 
This paper focuses on the loss of uniqueness in the case of the 
Drücker-Prager min-Cloe model in relation with the various 
features of the model. 

2. CLOE MODEL 
Cloe model (acronym of the concepts of consistency and 
Explicit localization) developed by Chambon [1,2] is one of 
the incremental nonlinear constitutive equations. It is 
characterized by the fact that the strain rate is not separated 
into an elastic part and inelastic one. The development of this 
model aims the following two purposes: 

  The consistency to the boundary surface reflecting the 
absence of discontinuity of the response of the law, and 
lack of access to stress states outside the boundary. 

   The definition of an explicit localization criterion without 
using a linearization. 

Drücker-Prager mini-CLoE model 
Theoretical developments of the Cloe model are difficult to 
implement. So, heuristic models so-called 'mini-Cloe' 
associating to the limit surface the classical boundary surfaces 
like: Von Mises [3], Mohr Coulomb[4] and Drücker-Prager 
[5],  have been developed. These models with low number of 
parameters help to better understand how CLoE laws work. 
This paper is devoted to the study of the Drücker-Prager mini-
CLoE model. 

2.1. Constitutive equation 
CLoE models are constructed on a unique and non-linear 
relation between the stress rate and the strain rate. A non-
linear relation is considered: 

      :A b      (1) 

  is the objective derivative of the Cauchy stress,   is the 

strain rate with norm :     . 

A  and b are constitutive tensors of fourth and second-order. 

These tensors depend on the assumed state variables of the 
material considered. 

2.2. Limit surface 
CLoE laws include explicitly a limit surface which splits the 
stress space into two areas: the area of permissible stress states 
and the area of prohibited stress states. 
The studied mini-CLoE law in the paper integrates the 
Drücker-Prager yield surface as a limit surface. This surface is 
a cone centered on the trisector of stress space (Figure 1). The 
equation of this limit surface, in the case of non-cohesive 
materials, can be written in the form: 

 ˆ tan 0f II I      (2) 

Where I  is the first invariant of the Cauchy stress and ˆII  is 

the second invariant of the deviatoric part of the Cauchy 
stress: 

11 22 33I      , ˆ
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I
I   . ( I is unit second-order 

tensor) and 2 2 2
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aj : The half angle of the cone, connected to the internal 

friction angle in compression jc by:  
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Figure 1. Drücker-Prager limit surface in stress space. 

We first define the three basis which we will use: 

The first one is the basis of the tensors associated with the 
components of the axis i, j and k of the physical space which 
we choose coincide with the directions of the principal 
stresses. 

The second order tensor   is then expressed in the basis 
denoted  , defined by the second order tensors 
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The second basis is defined by involving stress invariants. 
This basis, noted  , defines the plane orthogonal to the 
trisector containing the considered stress state. It is defined by 
the following second order tensors 1 2 3 4 5 6( , , , , , )i i i e e e : 
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These tensors are the six elements of an orthogonal basis for 
the second order tensors. 

The third basis, called deviatoric basis and denoted  , is 
defined to reflect the evolution of the phase   in the 
deviatoric plane. The basis   is defined by tensors 

1 4 5 6( , , , , , )i p q e e e , where 
ˆ

ˆ
p




 , q is such that 1q  and 

0p q  . 

Lode angle d is defined such that 2 3cos sinp i i    and 

2 3sin cosq i i    . 

To simplify calculation, a change of the basis in the principal 
stresses space is performed, from the stress basis to the  

deviatoric stress basis. 

This change of the basis is justified by the fact that the 
Drücker-Prager limit surface is independent of the third stress 
invariant, i.e. the Lode angle. This change of the basis is 
carried out only on the subspace of dimension 3 related to the 
principal stresses, and can then be reduced to the following 
formulation: 

 ˆ

311 11

| ( ) 22 223

33 00
  

I

II
s

Q s






 




 
    
      
       

 

 (3) 

With ( ) Q   a fourth-order transition tensor from the  basis 

to the  basis defined as following: 

 

2 cos 2sin1

3 6 6

cos sin cos sin1
63 6 2 2

cos sin cos sin1
63 6 2 2

( )

0 0 0

0 0 0

0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 Q

 

   

   



 
 

   
 

      
 
 
  
 

 (4) 

2.3. Flow rule 

The flow rule involves the dilatancy angle. It is defined by: 

 ˆ tan 0g II I      (5) 

With  ay being the dilatancy angle. 

If   f = g (i.e. j=y), the concerned material is called associated 

material by analogy to classical plasticity. 

It is possible to write a simple formulation of the flow rule 
based on strain rates: 

 .
g 






  (6) 

2.4. Invertibility  

It reflects the fact that for a given stress rate there exists one 
and only one corresponding strain rate. Chambon et al. [6] 
showed that invertibility is ensured if 1b  . This is sketched 

by the Gudehus[7] graphical representation in figure 2. 
 
 
 
 
 
 
 
 
 

Figure 2. Invertibility of the CLoE model. 

2.5. Consistency at the limit surface 

For the stress state lying on the limit surface, consistency 
means that no outer stress rate response can be generated by 
the constitutive equation. This condition is written as: 

 0
f 



 


  (7) 

Another form of this condition involving the constitutive 
tensors A  and b is established by Chambon et al. [8]: 

 :
f

A b
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The constitutive tensors A  and b  

• The tensor b  

For an isotropic stress state, the tensor is assumed to be zero 
(i.e. the behavior is reversible). For a stress state lying on the 
limit surface, the tensor b is determined from the flow rule 

lim 1b  . We deduce that: 

 
2 2

tan 1
lim 1 tan 1 tan

0 0 0 0T b 

 



 

 

 

    
 

 (9) 

The evolution of the tensor b is chosen as linear function of 

the invariants ratio ( ˆ /II I  ) between the isotropic state on 

the trisector of stress space ( 0b  ) and the final state of the 

limit surface ( limb b  ). 

 ˆ
lim

1

tan

II
b b

I


 
     (10) 

• The tensor A  

For an isotropic stress state, A  is chosen similar to the 

isotropic elastic tensor: 
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Where 
(1 )(1 2 )

E
 


 

  and 
2(1 )

E





are the Lamé 

coefficients expressed in terms of Young's modulus E and 
Poisson's ratio . The shear moduli gi are functions of the 

elastic shear modulus 
2(1 )

E
G





 and of intrinsic parameters 

i used to calibrate the onset of the strain localization and the 
orientation of the shear band [9]: 
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For a stress state on the limit surface, a rotation  of the 
isotropic tensor A is necessary to comply with the consistency 

condition at the limit surface. Therefore, we perform a change 
of basis of the isotropic tensor, from of the principal stresses 
basis  to the deviatoric basis , followed by a rotation  

therein.  
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Hence the expression of 
DA : 
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The evolution of the rotation of angle  is chosen as that of b
between   = 0 and  = lim: 
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The lim angle is obtained from the consistency equation (8) to 
the limit surface: 

 lim

tan
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tan 3 2 1
tan ,

tan .tan 2 1 2

R
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 (17) 

 

3. EXISTENCE AND UNIQUENESS OF 
THE SOLUTION 

Within the framework of elastic-plastic laws, under the 
assumption of small transformations, Hill [10] for associated 
materials and Bigoni and Hueckel [11] for non-associated 
materials showed that the uniqueness of the solution of the 
boundary value problem speed is ensured if the SOW is 
positive. Chambon and Caillerie [6] did the same for CLoE 
laws in small deformations. In the light of those results, the 
study of the existence and uniqueness of the solution of the 
rate boundary value problem in this paper is done through the 
study of the sign of the SOW. 

3.1. Second order work (SOW) 
The second order work is defined by:  

 : : : :W A A b              (18) 

We consider a strain rate   of norm equal to 1 ( 1  ) : 

 1 1 2 3 4 4 5 5 6 6a i a p a q a i a i a i        (19) 

 2 2 2 2 2 2
1 2 3 4 5 6 1a a a a a a       (20) 

This leads to the general formulation of the second order 
work:  

 
2 2
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2 1 21 2 22 3 4 1 5 2 6 3

( ) ( )

( ) 2 2 2 2

W a A a A a a A A a b A b A

a b A b A a a g a g a g

      

      
(21) 

Where:  
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3.2. Study of second order work sign 
For the isotropic stress state, we have:  0b  , q = 0 and 

ig  , therefore: 

 2 2 2 2 2 2
1 11 2 3 4 5 62 ( )W a A a a a a a       (23) 

The SOW is then strictly positive, regardless of the load. 

For other stress states, minimizing the SOW under the 
condition (20) is performed by introducing a Lagrange 
multiplier . The expression L to be minimized is: 

 ( 1) 0L W       (24) 

Hence the system of equations:  
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Therefore the extremals are obtained for: 

 Situation 1 :  l ¹ -2m and l ¹ -2g  (w = 0 or w ¹ 0) and 
2 2 2 2

3 4 5 6 0a a a a     and 2 2
1 2 1a a    

 
2 2

1 11 2 22 1 2 12 21

1 1 11 2 12 2 1 21 2 22

( )

( ) ( )

W a A a A a a A A

a b A b A a b A b A

   

      
 (25) 

In this case, isotropic or anisotropic nature of the model does 
not affect the SOW. 

To investigate the influence of non-associated nature of the 
model, we write: 

 1 cos( )b r    , 2 sin( )b r     with / 2      (26) 

And: 1 cos( )a      ,    2 sin( )a     (27) 

With  measuring the "offset" from the flow rule. 

And the SOW is: 

 
 
 

/ 2 .cos( ) cos( ) cos

sin( ) sin( ) sin

W R r

r

      

     

    

    
 (28) 

Figures 3 and 4 represent the evolution of the SOW with 
respect to the strain rate (i.e. according to ) of the associated 
model on the limit surface (r = 1) for various values of 
Poisson's ratio  and  different values of  the friction 
function (within the allowable margin [12]). The simulations 
show that the minimum value of the SOW is null and it is for 
the direction of the strain rate corresponding to the flow rule       
( = 0). The boundary value problem keeps its uniqueness 
and the strain localization is therefore excluded. 

 

    
Figure 3. SOW on limit surface versus strain rate for 

associated model for different values of Poisson ratio n. 
 

 
Figure 4. SOW on limit surface versus strain rate for 

standard model for different values of the friction angle 

j. 
 

The same simulations have been renewed for non-associated 
model for different pairs of the functions (,) and then for 
various values of Poisson's ratio . The results sketched in 
figures 5 and 6 show clearly that the SOW loses its positivity 
on a  range. The value of the SOW for  = 0 is always zero, 
but it is no longer the minimum. 

       
Figure 5. SOW on limit surface versus strain rate for non‐

associated model for different values of the angles (j,y). 
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Figure 6. SOW on limit surface versus strain rate for non‐

associated model for different values of Poisson ratio n. 

The SOW is negative on a  range for 1r b   (i.e. on the 

limit surface), which implies that it will continue to be so for 
the values of 1r b   (i.e. inside the limit surface) and for 

certain values of strain rate. Figure 7 clearly shows the areas 
on the plane (, r) where the SOW losses its positivity.  

 
Figure 7. Area of SOW negativeness for non‐associated 

model for different values of the functions (j,y). 

 Situation 2 :  l = -2g (gi = g)  

This implies 3 0a   and 2 2 2 2 2
4 5 6 1 21a a a a a     , a1 and 

a2 are determined from the first two equations: 

1 2

1 2

a a

a a
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. .cos . .sin , . .sin . .cos
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L M N

P R
 

Hence, the minimum value of the SOW: 

  
21 2

2
2

W 
  

    

2

2

NP LR MPR

LN M
 (29) 

Figures 8 and 9 show the evolution of the minimum value of 
TSO with respect to  parameter ( 1  for the isotopic 
model) measuring the anisotropy for the standard model for 
different values of Poisson's ratio  and different values of the 
friction function  (resp.) for the state of stress on the limit 
surface. We observe that even if the model is associated the 

SOW may become negative for values of    less than almost 
0.5. This result meets the results obtained for the Von Mises 
[3] and Mohr-Coulomb [4] mini-Cloe model. 

 
Figure 8. Minimum value of the SOW with 

respect of anisotropy for the associated model for 
different values of Poisson ratio n. 

 
Figure 9. Minimum value of the SOW with respect 
of anisotropy for the associated model for different 

values of the friction angle j. 

The same simulations are conducted for non-associated case. 
The results sketched in figures 10 and 11 show that even for 
an isotropic model ( =1) the minimum value of the SOW is 

negative. In addition, the SOW starts to become more 
negative from a value  of nearly 0.5. Again, these results are 

similar to those established for the Mohr-Coulomb mini-CLoE 
[4]. 

 
Figure 10. Minimum value of the SOW with 

respect of anisotropy for non‐associated model for 
different values of the angles (j,y). 
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Figure 11. Minimum value of the SOW with 
respect of anisotropy for non‐associated model 

for different values of Poisson ratio n. 

 Situation 3 :  l = -2m and w ¹ 0 ( ¹ 1)  

This implies 4 5 6 0a a a    and 2 2 2
3 1 21a a a   , 1a  and 

2a  are determined from the first two equations. The 

expression of the minimum value of the SOW takes a form 
similar to the previous case: 

 
21 2

2 1
2

W 
  

    

2

2

NP LR MPR

LN M
 (30) 

For the associated model the minimum value of the SOW is 
zero and for the non-associated one it is negative, reflecting 
the onset of strain localization band. 

 Situation 4 :  l = -2m = -2g (w = 0)  

2 2 2 2 2 2
3 4 5 6 1 21a a a a a a      , 1a  and 2a  are determined 

from the first two equations. The expression of the minimum 
value of the SOW is again the same as the two previous cases. 
Therefore, the same conclusions are reconducted: 

 
21 2

2 1
2

W 
  

    

2

2

NP LR MPR

LN M
 (31) 

4. CONCLUSION 

The results of the study of the loss of uniqueness of the 
boundary value problem involving Drücker-Prager mini-Cloe 
model showed that for an isotropic associated model, SOW 
keeps its positivity within the limit surface and therefore the 
uniqueness of the solution is preserved and any bifurcation is 
excluded. Once an anisotropy is introduced in the model, 
areas of the negativity of the SOW appear. For non-associated 
model, the SOW loses its positivity for a range of strain rates 
even for the isotropic case and anisotropy makes the model 
more susceptible to the occurrence of bands of strain 
localization. 

These conclusions are the same as those made for the Von 
Mises mini-Cloe model [3] and Mohr-Coulomb mini-Cloe 
model [4] and those well-known for classical  nonlinear 
elastic-laws (Bigoni and Hueckel [11], Désoyer and Cormery 
[13] Loret and Rizzi [14]). 
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