
International Journal of Computer Applications (0975 – 8887)

Volume 112 – No. 7, February 2015

30

Formal Conceptual Framework for Structure of Context

of Component-based System for Designing Robust

Software Systems and Metrics

Meenakshi Sridhar
Department of Computer Science and

Applications,
M. D. University, Rohtak-124001, Haryana (India).

Nasib Singh Gill
Department of Computer Science and

Applications,
M. D. University, Rohtak-124001, Haryana (India).

ABSTRACT

For defining a set of unambiguous and language-independent

metrics and other relevant concepts, the need for definition of

a formal conceptual framework of the context/environment,

particularly for safety-critical environments, has earlier been

recognized and emphasized. In this paper, a formal conceptual

framework is proposed for defining metrics and other relevant

concepts for a component-based system, in which, instead of

component, assembly—a slightly modified and more general

concept—is taken as a basic building block for design and

development of software. The paper discusses a formal

conceptual framework for the structure of context for a

component-based system. In another paper, a formal

conceptual framework for the dynamics/ behaviour within the

context of a component-based system is discussed.

General Terms

Component-based Software Engineering (CBSE), Formal

Methods in Software Engineering.

Keywords

Component, Assembly, Formal Conceptual Framework.

1. INTRODUCTION
The advantages of using measurements/ metrics in software

development are well-known and need not be recalled here.

However, the need for formal, precise and complete

definitions for metrics is not so well publicised. There is

possibility of harmful consequences if metrics are expressed

only informally [1, 2, 3].

In respect of formalization of definitions of metrics so as to

overcome problems due to informal, imprecise or incomplete

definitions of metrics; some important approaches and

methods are proposed in [1, 4, 5, 6, 7, 8, 9, 10]. These

contributions contain essential ideas for developing a

standardised formal conceptual framework of the problem

domain under consideration, which can be used for defining

measurements/ metrics—for both object-oriented as well as

for component-based systems—so that all measures/metrics

based on the framework be expressed in a fully consistent,

non-redundant, unambiguous and fully operational manner.

The contributions are based on the implicit assumptions that

(i) the problem domain is part of a perfect world (i.e. it is a

deterministic, static etc world) and that (ii) knowledge of the

problem domain possessed by the system is also perfect (i.e.

system’s knowledge of the problem domain is precise,

complete, consistent, monotonic, factual, with agents having

single shareable intelligence etc.).

On the basis of the seminal ideas used in these papers, a

formal conceptual framework for the structure of context of a

component-based system is proposed here. In another paper, a

formal conceptual framework for the dynamics within context

of a component-based system is discussed. The approach

followed is essentially the one proposed in [1]. The reason for

choosing the approach as the basis of the work is that even by

starting with a model based on assumptions of a perfect world

with a perfect view of it, more realistic models and robust

solutions can gradually be developed by incorporating both

imperfections (e.g. randomness) of problem domain and of its

knowledge (e.g. incompleteness/impreciseness). It can also be

extended when the problem domain is dynamic and /or

involves multi-agents. Another advantage of the approach is

scalability—it allows easy extension of the system when some

atomic elements need to be considered later as composed also.

For example, an employee of an organization may be initially

considered as atomic, with some specific attributes. However,

the same employee as a patient in the clinic of the

organisation may have to be considered as a set of organs,

each organ with its own attributes. The approach facilitates

this type of extension of a system.

Next, the structure of the remainder of the paper is outlined.

The next section entitled ‘Related Work’ briefly describes a

cross-section of the relevant literature. Section 3, which is the

core of the paper, contains the details of the proposed formal

conceptual framework. Its five subsections contain the details

respectively of (i) meta-model for set of system entities (ii)

mathematical specification of system entities (iii)

mathematical specification of properties of system entities (iv)

mathematical specification of relations between system

entities, and (v) definitions & mathematical specification of

properties of relations between system entities. Finally, the

Section 4 concludes the presented work.

2. RELATED WORK
The reviewed literature covers issues, including foundational

ones, related to various aspects of formalization of

specification, design and measurement of software for

different types of environments and for providing different

types of services. The review includes outline—given below

in chronological order—of the essential ideas

involved/proposed in each of the contributions mentioned

earlier, and additionally, in [11, 12, 13, 14, 15, 16]

In [4, 5] the need for more theoretical emphasis in software

system measurement is emphasised, the lack of which—

according to them—leads to inconsistent definitions of

relevant concepts. In this respect, they propose a mathematical

framework based on set theory and graph theory, which is

generic and rigorous, for defining several important

measurement concepts including those of complexity,

cohesion, coupling and size.

International Journal of Computer Applications (0975 – 8887)

Volume 112 – No. 7, February 2015

31

 In [12] a general framework is proposed for formalizing a

subset of UML diagrams in terms of different formal

languages based on a homomorphic mapping between meta-

models describing UML and the formal language. The

framework—proposed in order to overcome the difficulty

because of the fact that UML comprises several different

notations with no formal semantics attached to the individual

diagrams—enables the construction of a consistent set of rules

for transforming UML models into specifications in the

formal language. Further, the paper describes the use of this

framework for formalizing UML to model and analyze

embedded systems.

[7] discusses problems arising out of, on one hand, the use of

some natural language in defining software metrics, and on

the other hand, problems arising out of the exclusive use of

some formal language for the purpose. In this respect, they

propose an approach for formal definitions of object-oriented

(O-O) metrics based upon the UML meta-model. The

approach allows unambiguous metrics definitions, which in

turn help in increasing tool support for O-O metrics, and also

for establishing comparisons among sets of metrics.

According to the abstract of the paper, in [8] a technique is

described for formalizing metrics, built upon the UML 2.0

meta-model and using OCL as a metrics definition language

for COTS-based architectures. As a proof of the concept, an

example based upon a set of reusability metrics for fine-

grained JavaBeans components is presented. Further, [9, 10]

give formal and executable definitions respectively (i) of

metrics to assess quality attributes of CORBA components

and assemblies and (ii) of composition assessment metrics for

CBSE, using an extension of the CORBA Component Model

meta-model as the ontology for describing component

assemblies. The definitions allow for independent scrutiny of

such metrics, essential to increase practitioners’ confidence on

predictable quality attributes.

In [13] is proposed a formal mathematical model covering

design artefacts in service-oriented (SO) systems and their

structural and behavioural properties. The model is proposed

in view of the fact that there is no precise formal definition of

what constitutes a Service-Oriented system, and also the

design principles of Service-Oriented Computing are not well

understood. This model is expected to promote a better

understanding of SO concepts, and in particular, it may enable

the definition of structural software metrics in an

unambiguous and formal manner.

In [16] Service Dynamic Description Logic (SDDL) is

proposed for representing and modelling the dynamic aspects

of web services. Representation of the dynamic aspects in

web services is no less important than the representation of

static information. In this respect, the authors have introduced

three basic reasoning services in the proposed formal

framework to support the discovery and composition of web

services.

According to the provided abstract, [15] describes the state of

the art in the industrial use of formal methods, concentrating

on their increasing use at the earlier stages of specification and

design. Based on this, the authors discuss the issues

surrounding the industrial adoption of formal methods.

Finally, from futuristic point of view, they describe the

development of a Verified Software Repository, part of the

worldwide Verified Software Initiative.

In [1] is defined a conceptual framework—based on the

formalism of algebraic sets and relations—for defining

concepts including those for metrics for component-based

systems. The metrics so defined are unambiguous,

straightforward and language independent.

According to the provided abstract, in [14] a formal

framework for component based embedded systems is

proposed. Resorting to such a framework, the soundness,

congruence and completeness of system structures and

behaviours can be derived. The framework involves various

Models of Computation (MoC) reflecting interacting rules and

operational semantics for system behaviours and a formal

language specifying definitions, axioms, transition rules or

equations/inequations for MoC as a meta-model. The formal

language is composed of extended process algebra (EPA) and

ordinary differential equations (ODE), both concerning

discrete time and continuous time behaviours.

 In [11] attention is drawn to the problems arising out of a

large number of component models having been developed

over the past decade, with many similarities but with many

principle differences and unclear concepts. In order to

overcome the problem, they discuss and characterize some

fundamental principles for framing component models and

provide a Component Model Classification Framework based

on these principles. Further, using the framework they classify

a number of component models.

 Also, [17, 18, 19, 20, 21, 22, 23] contain many important

ideas relevant to developing of formalized frameworks for

component-based systems.

3. CONCEPTUAL FRAMEWORKS
The reported work is an extension—in respect of formally

defining metrics for component-based systems—of some of

the contributions mentioned in the previous section. A meta-

model of the context for component-based systems is

proposed in which (i) assembly (to be defined) instead of

component, is taken as basic unit for the definition of the

framework and in which (ii) the properties of relations among

components/ assemblies, are formally defined, in addition to

formally defining entities of the context, their properties, and

relations between them.

Instead of the set of components, it is proposed to take

fundamental/foundational set as SA, the set of Assemblies—

which initially consists of the available components or some

subset of it from which the (complete) software is expected to

be developed—to provide all the services required to be

provided. An assembly is a software entity, which may not be

a component (i.e. it is not necessary that it conforms to the

component model considered for the purpose), but, which may

be obtained through composition which uses information

only about provided and received interfaces(e.g. horizontal or

partial vertical composition). The composition process

initially starts only with some of the given components, and

later uses recursively assemblies and components so obtained

so as to finally yield required software [11].

The advantage of using set of assemblies instead of set of

components, is that during the component-based development

of the required software, the process of composition of two

components/ assemblies may be considered as composed of

two mega-steps: (i) after selecting a set of components for

composition, an assembly—which may not necessarily

confirm to the underlying component model or may not be a

component completely fitting the requirement of the required

software S—may be developed, through composition, just on

the basis of their provided interfaces (PI’s) and required

interfaces (RI’s) and then evaluating the assembly so

International Journal of Computer Applications (0975 – 8887)

Volume 112 – No. 7, February 2015

32

obtained, and (ii) converting, through

adaptation/customization, the assembly into a component

according to the considered component model and fitting the

requirement of the required software S. However, after the

first mega-step, it may be found that either (i) currently the

assembly may not lead to the required software, but later it

may or (ii) there is another assembly, already obtained, which

has better evaluation than the currently obtained assembly in

respect of obtaining the required software S. Then, instead of

discarding such an assembly, and treating the effort invested

in it as wasted, the assembly so obtained is stored. Later on,

after some cycles of development, if an earlier developed

assembly may be found useful, then at that stage, the second

mega-step of converting the assembly into a component may

be applied. Similar approach is also suggested in [21].

In order to formally represent the structure of the problem

domain, four types of sets for the meta-model are defined, viz.

(a) set of entities (in this case, assemblies etc.), (b) set of

properties of entities, (c) set of relations between entities and

(d) set of properties of relations between system entities.

Further, in order to represent in the meta model, the

dynamics/behaviour of the problem domain, one need to also

include some mathematical entities to represent various

operations like composition of two components/ assemblies to

get a new component/assembly, or to represent operations for

adding or deleting interfaces from a component or a set of

components to get the set of interfaces of a new component/

assembly. The matter relating to mathematical modelling of

various operations like composition have been discussed in

another paper.

Next, the task of formally defining the meta-model, for the

structure of the context of the system under consideration, is

initiated with the following semi-formal (partly expressed in

natural language) definition.

3.1 A Meta Model for Set of System Entities

(SSE)
Definition 1: (A meta-model for the Structure of Set of

System Entities) The 4-tuple

(E, Prop (E), Rel (E), Rel-prop (E)) is called a structural meta-

model for Set of System Entities (SSE), where

a. E represents the set of system entities (in this work, an

entity ai is an assembly or a component);

b. Prop (E) denotes the set of the properties of the elements

from E;

c. Rel (E) denotes the set of relations between the entities

constructed out of elements of E, and

d. Rel-prop (E) denotes the set of properties of the relations

between the entities constructed out of elements of E.

In the ensuing sections, the semi-formal definitions given

above of E, Prop (E), Rel (E), Rel-prop (E) are formalized in

terms of mathematical concepts of set and relation.

For the definition of the meta-model, it is assumed that a

software system S is required to be developed to provide all

the services from the set, say, Serv, of services. Further, for

this purpose, it is also assumed that initially a set of

components, say CR, is given. And further, on the basis of

judgement, a subset Comp (S) of CR, is selected to develop the

required software S.

As a first step for formalization, an identifier need to be

associated with each of the entities, property of an entity,

relation between any two entities and property of a relation

etc., and also, to each of the sets, which may be required in the

discussion of these entities, of relations and of properties.

Let Si, i=1 to n, be the identifiers associated with required

services, and let Cj, j= 1 to m, be the identifiers associated

with the initially provided components. Then, formally,

Serv = {S1, S2, …., Si, …., Sn} ; CR = {C1, C2, ….., Cj, ….., Cm}

In view of the fact that, the proposed meta model can be

further extended to include formal conceptual framework of

the behaviour/ dynamics of the problem domain through

various operations on the underlying set CR., which then

evolves into larger sets, and finally into the required software

S; the set SA, of assemblies is considered, that represents the

evolving (dynamically changing) set, the initial value of

which is CR. However, a member of SA may be restricted to

be a component only, where it is either an initially given

component or is obtained by composing two members of SA.

Also, let Assemb (S), the initial value of which is taken as

Comp (S), denote the set of selected assemblies at a particular

point of time, to construct the required software S. Each of the

sets to be defined below evolves as SA evolves.

3.2 Mathematical Specification of System

Entities

An assembly can be defined in terms of its provided interfaces

(functionalities, services), its required interfaces (contexts)

and the dependencies between the two types of interfaces. For

the purpose of formalization, let

pia,k , k = 1 to p and ria,l , l = 1 to q respectively denote

identifiers associated with provided interfaces of assembly a,

and required interfaces of assembly a. Then, PIa, the set of

provided interfaces of assembly a, can be formally expressed

as PIa = {pia,l, pia,2, .., pia,k, .., pia, p}, and RIa, the set of

required interfaces of assembly a can be formally expressed as

RIa ={ria,1, ria,2, .., ria,l, .., ria,q}. By taking unions of the sets

PIa for a ∈ SA, one can formally define the set of all provided

interfaces of SA, which may be denoted by PI(SA). Similarly,

the set of all required interfaces, to be denoted by RI(SA), can

be formally defined. The set union of the PI(SA) and RI(SA)

formally defines the set of all interfaces of SA, and will be

denoted as I(SA). Similarly, PI(Serv), RI(Serv) and I(Serv),

respectively denoting the set of all interfaces provided by

Serv, the set of all interfaces required by Serv and the set of

all interfaces of Serv can be formally defined.

Further, each interface of an assembly, component or service,

is specified by its parameters. Let pa, i, i = 1 to r be the

identifiers associated with assembly/component/service a.

Then, set of all parameters of a, denoted by Parama, is

formally specified as Parama = {pa, 1, pa, 2, …, pa, i , …, pa, r}.

By taking set union of appropriate Parama’s, each of

Param (SA), the set of all parameters of SA; and

Param (Serv), the set of all parameters of Serv, can also be

formally defined.

Based on the above definitions and notations, the set of

system entities is formally defined as in Equation (1) below:

E = SA ∪ Serv ∪ I(SA)∪ I(Serv) ∪ Param (SA) ∪ Param (Serv) .… (1)

In addition to the sets included in E, some other (auxiliary)

sets will also be used for defining or explaining the involved

ideas. Two of such sets are

(i) Types, which in the current context may be taken as

Types = {A, I, P}, where A denotes type of an element of

SA or of Serv, I denotes type of an element of I (SA) or of

International Journal of Computer Applications (0975 – 8887)

Volume 112 – No. 7, February 2015

33

I (Serv), and P denotes type of an element of

Param (SA),or of Param (Serv). Types may be modified

after taking into consideration future developments in

CBSE.

(ii) Val (E), denoting the set of all values that may be

associated with a property of an assembly, interface or

parameter in E. The set Val (E) can only be decided and

computed during the actual process of developing

software using component-based approach (CBSE).

During the discussion of mathematical specification of

properties of system entities, the method of calculating

Val (E) will be discussed.

Through equation (1) above, the first element of 4-tuple

meta-model (E, Prop (E), Rel (E), Rel-prop (E)) is formally

defined. Next, the second element Prop (E) of the meta-model

is described in mathematical terms.

3.3 Mathematical Specification of

Properties of System Entities
In view of the fact—that the properties of three types of an

element belonging to either of sets

SA, Serv, I (SA), I (Serv), Param (SA) and Param (Serv),

though may not be identical yet are similar, and some

properties are common to all three types—first, the

mathematical specification of these common properties for a

generic type T, is discussed, where, T may denote, at one time,

either set SA(or set Serv), set I (SA)(or set I(Serv)), or set (or

set Param(Serv)). Then, mathematical specification of each of

the three types is discussed individually.

In this connection, it may be noted that for all elements of a

particular type of entities, the properties are the same;

whereas, for two elements of different types, properties may

be different.

For the purpose of discussion of mathematical specification of

the properties of the generic type T, let

 EnT denote the set of entities of type T with

EnT = {eT1, eT2, …, eTj, ,eTtn }, where tn is the

number of entities in the set EnT.

 PEnT denote the ordered set of properties of elements of

EnT with PEnT = (PT1, PT2, …, PTi, …., PTtm), where tm

is the number of properties of any entity in EnT.

 V-PEnT (i) denote the set of values of

Property PTi, 𝑓𝑜𝑟 𝑖 = 1, 2, … . , 𝑡𝑚, where

V-PEnT (i) = { vi1, vi2, … , vik, … , vi ni}, and ni is the

number of values of property PTi. Then

 V-PEnT, the set of values associated with all properties

of an entity of Type T, is given by the equation:

V-PEnT = ∪ V-PEnT (i), where union is taken over

properties PTi, i= 1 to tm, of an entity T

 For the purpose of defining Val (E), the set of all possible

values of properties of elements in E, let V-PEnT be

denoted as

V-PEn(T), in which T is explicitly taken as parameter.

Then Val (E) =∪ V-PEn (T) , where union is taken over

all types T of elements of E

At any point of time, to each entity eTj and property PTi, a

unique value vik is associated, for some k= 1, 2, … , ni. This

may be mathematically specified as: value (eTj, PTi) = vik . It

may be further expressed as the function

 Fun-Pro-Val-T-i : EnT V-PEnT (i), for property PTi, for all i’s

. This may be further generalized to the function

 Fun-Pro-Val-T: EnT V-PEnT (1) × V-PEnT (2) × …… × V-PEnT (m)

 = (let) Ordered-V-PEnT

In the above, for simplification of notation, the type name T is

used as suffix of various names such as

EnT, PEnT, V-PEnT etc. However, T is to be used as

parameter in the further discussion, therefore, instead of

EnT, PEnT, V-PEnT (i), V-PEnT, Ordered-V-PEnT and

Fun-Pro-Val-T, the notations respectively En (T), PEn (T),

V-PEn (T, i), V-PEn (T), Ordered-V-PEn (T) and

Fun-Pro-Val (T), will be used.

Definition 2 The 5-tuple given by Equation (2) below

 Prop-Specification (T) =

 [T, En (T), PEn (T), V-PEn (T), Fun-Pro-Val (T)] .… (2)

 is called a properties-specification corresponding to type T.

By varying 𝑇, En (T), PEn (T), V-PEn (T) and

Fun-Pro-Val (T), different specifications for type T are

obtained.

Next, property specification of each of the individual type of

entities, viz. SA (or set Serv), set I (SA) (or set I(Serv)), or set

Param (SA) (or set Param(Serv)), is discussed, which

respectively denote Set of assemblies, Set of Interfaces of

assemblies and Set of parameters of interfaces of assemblies.

Let A, I and P denote abbreviated names respectively of the

types SA, I(SA) and Param(SA).

It may be noted that Prop-Specification given below for each

type is merely an illustration and that it is not exact and

complete. Rather, it cannot be exact and complete in view of

the facts that attributes/ qualities of each of assemblies,

interfaces and parameters cannot be fixed in advance as these

heavily depend on the specific requirement and usage context.

Therefore, the exact and complete specification of attributes

of each of these is determined by the team of designers and

potential users of the system as per requirements and context.

Also, it may be noted that non-functional attributes, and

particularly the quality attributes like reliability, reusability,

performance and security etc. are not of ‘all-or-none’ or ‘true-

or-false’ type, rather these attributes can be specified only

imprecisely. Hence these attributes are better modelled by

Fuzzy Theory. The issues related to imprecision of quality

attributes will be discussed and modelled in some later

communication.

In the light of the above discussion, description of the

Prop-specification for various entities, beginning with the

type Set of Assemblies, is given below.

Definition 3 Prop-specification for entity type Set of

Assemblies: The 5-tuple

Prop-Specification (A) = [A, SA, PEn (A), V-PEn (A), Fun-Pro-Val (A)]

is called specification of properties for entities of type Set of

Assemblies, where

 𝑃𝐸𝑛 (𝐴) = {CMM-Level-of-Vendor, Cost, Version,

Percentage-as-required-software, Component-model,...};

 V-PEn (A) (for simplicity, instead V-PEn-A is used) is

specified by the following equations

o V-PEn-A (CMM-Level-of-Vendor) =

International Journal of Computer Applications (0975 – 8887)

Volume 112 – No. 7, February 2015

34

{Initial, Managed, Defined, Optimized,

Quantitatively}

o V-PEn-A (Cost) = [Lowest, Highest], range of cost

values ;

o V-PEn-A (Version) = {Vi: i = 1,2, …, n}, where n is

the number of the last version

o V-PEn-A (percentage-as-required-software) =

[0,100], any real number between 0 and 100;

o V-PEn-A (component model) =

 {DCOM, CORBA, EJB}

 Fun-Pro-Val (A) (for simplicity, instead Fun-Pro-Val-A is

used), is specified, for each particular instance, e.g.

o Fun-Pro-Val-A ((CMM-Level-of-Vendor) =

Quantitatively;

o Fun-Pro-Val-A (Cost) =

$ 20 million, Lowest ≤ $ 20 million ≤ Highest

o Fun-Pro-Val-A (Version) = V3, where 3 ≤ n

o Fun-Pro-Val-A (percentage-as-required-software)

= 34

o Fun-Pro-Val-A (component model) = CORBA

 (the values on R.H.S’s are only as

illustrations)

Other data, e.g. in respect of environment in which the

assemblies are used, can be added later on during the design

process. As is mentioned earlier, and as is exhibited by the

above illustration, one of the advantages of this model is that

it has the scalability property.

Next, the Property specification for the entity type Set of

Interfaces is discussed.

Definition 4 Prop-specification for entity type Set of

Interfaces: The 5-tuple,

Prop-Specification (I) = [I, I (SA), PEn (I), V-PEn (I), Fun-Pro-Val (I)],

is called specification of properties for entities of type Set of

Assemblies, where

 PEn (I) = {Kind, Functionality};

 V-PEn (I) (for simplicity, instead V-PEn-I is used) is

specified by the next two equations

o V-PEn-I (Kind) = {operation, event};

o V-PEn-I (Functionality) =

 {provided, required}.

 Fun-Pro-Val (I) (for simplicity, instead Fun-Pro-Val-I is

used) is specified, for each particular instance, e.g.

o Fun-Pro-Val-I (kind) = event;

o Fun-Pro-Val-I (Functionality) = provided

Next, the Property specification for the entity type Set of

Parameters is discussed.

Definition 5 Prop-specification for entity type Set of

Parameters: The 5-tuple,

 Prop-Specification (P) =

 [P, Param (SA), PEn (P), V-PEn (P), Fun-Pro-Val (P)]
,

is called specification of properties for entities of type Set of

Param (SA), where

 PEn (P) = { Kind, Type, Aggregation, Access};

 V-PEn-P (P) (for simplicity, instead V-PEn-P is used) is

specified by the next two equations

o V-PEn-P (Kind) =

 {external, return-value, argument};

o V-PEn-P (Type) =

 {predefined, user-defined, library};

o V-PEn-P (Aggregation) = {simple, array, file};

o V-PEn-P (Access) =

 {read-only, write-only, read-write}.

 Fun-Pro-Val-P (P) (for simplicity, instead

Fun-Pro-Val-P is used) is specified, for each particular

instance, e.g.

o Fun-Pro-Val-P (Kind) = argument;

o Fun-Pro-Val-P (Type) = predefined;

o Fun-Pro-Val-P (Aggregation) = file;

o Fun-Pro-Val-P (Access) = write-only.

3.4 Mathematical Specification of Relations

between System Entities
Next, the third element Rel (E) of the proposed 4-tuple meta-

model (E, Prop (E), Rel (E), Func (E), Rel-prop (E)) is

described in mathematical terms.

As mentioned earlier in respect of Prop-Specification, the

description of specification of relations given below is also

merely an illustration and that it is not exact and complete.

Rather, it cannot be exact and complete in view of the various

factors mentioned earlier. Therefore, the exact and complete

specification of all the required and relevant relations can only

be determined by the team of designers and potential users of

the system as per requirements and context.

Next, formal specification of two types of relations, viz. (i)

dependency relations and (ii) connection relations, is given in

terms of mathematical terms. Main differences between the

two types of relations are

 (a) Dependency relations are discussed in terms of

interfaces viz. r and p etc. , whereas, connection relationships

are between assemblies/components viz. c and d,

 (b) In the case of dependency relation, for a given interface

p ∈ PIa , any r ∈ RIa, may be in dependency relationship. But,

in case of connection relationship, for a given

assembly/component c which for providing an interface say p,

requires an interface say r, where r may be provided by many

assemblies/components di’s. However, during development, a

particular assembly/component, say, d3 is selected and actually

used for providing r. Then, on this ground, c is said to be in

connection relationship with only d3, and not with other di’s.

http://en.wikipedia.org/wiki/Less_than_or_equal_to
http://en.wikipedia.org/wiki/Less_than_or_equal_to

International Journal of Computer Applications (0975 – 8887)

Volume 112 – No. 7, February 2015

35

 (c) Dependency relations can be determined independent of

the development process, but connection relations are

established only during the development process.

Definitions & Notations 6 (for dependency relations):

(i) For a given assembly a ∈ SA, and for p ∈ PIa and r ∈ RIa,

the ordered pair (p, r) is called a dependency for the

assembly a, if the provided interface p requires interface r

from some other assembly for providing its service.

(ii) Further, let DRa denote the relation from PIa to RIa, i.e.

DRa⊆ PIa × RIa and is defined as the set

 DRa =

{(p, r) ∈ PIa × RIa: (p, r) is a dependency for assembly a}

As per convention, (p, r) ∈ DRa is also written as

p DRa r.

(iii) DR (SA) = ∪ DRa, is the set of all dependencies for the

entity SA, where union is taken over all a ∈ SA

Remark: In respect of the above definitions, it is important to

note that there may be interfaces in PIa without dependencies,

and hence may not appear in DRa or DR (SA). The service of

such an interface is the service that handles input data.

For each assembly a, the set of dependencies DRa, may be

represented as a matrix/table. For example, PIa = {p1, p2} and

RIa = {r1, r2, r3} with DRa = {(p1, r1), (p1, r3), (p2, r2), (p2, r3)}

may be represented as the following table:

Table 1. Table representation of dependency relation

DRa r1 r2 r3

p1 X X

p2 X X

Next, connection relationship is discussed. In this regard, from

earlier discussion, it may be recalled that

 connection relationships are between

assemblies/components viz. c and d,

 connection relations are established only during the

development process, and

 for providing an interface say p by an

assembly/component c, if an interface say r is required,

then r may be provided by many assemblies/components

𝑑𝑖’𝑠. But, if a particular assembly/component, say, d3 is

selected and actually used for providing r, then, on this

ground, c is in connection relationship with only d3, and

not with

other 𝑑𝑖’𝑠.

Next, various types of connection relations between

assemblies/components and sets of these relations, are

formally defined.

Definitions & Notations 7 (for connection relations):

i. Let c, d ∈ Assemb (S) and r ∈ RIc, then assembly 𝑐 is

said to be in-connected-through-r-with-assembly d

within the system S, if r ∈ PId and 𝑐 uses the required

interface 𝑟 from 𝑑. The relation is denoted by

c In-connected-in-S (r, d). Also, the fact may be

expressed as (c, (r, d)) ∈ In-connected-in-S.

Further,

In-connected-in-S

 ⊆ Assemb (S) × (RI (SA) × Assemb (S)) and

In-connected-in-S = {(c, (r, d)): c, d ∈ Assemb (S) and

 ∃ r ∈RI (SA) such that

c is in-connected-through-r-with-assembly d}.

ii. Let c, d ∈ Assemb (S), then c is said to be

in-connected-to-assembly d within the system S, (this

time r is not explicitly mentioned in the name of the

relation) if there is an r∈RIc such that r ∈PId and c uses

the required interface r from d. The relation is denoted

as c In-connected-in-S-to-assembly d. Also, the fact may

be stated as (c, d) ∈ In-connected-in-S-to-assembly.

Further,

 In-connected-in-S-to-assembly ⊆ Assemb (S) × Assemb (S)

and In-connected-in-S-to-assembly =

{(c, d)): c, d ∈ Assemb (S) and ∃ r∈RI (SA) and

c is in-connected-through -r-with-assembly d}.

iii. Let Set-in-connected-in-S-to-c = {(r,d): r ∈ RIc and d ∈

Assemb (S) and c in-connected-through-r-to-assembly

d} be the set of all used in-connections of

c ∈ Assemb (S).

iv. Let c ∈ Assemb (S). For p ∈ PIc,

In-connected-in-S-to-c-for-provided (p) =

{(r, d): (r, d) ∈ Set-in-connected-in-S-to-c ∧ (p, r) ∈ DRc}
, be the set of all in-connections of assembly c for the

provided interface p.

v. Let c ∈ Assemb(S), for p ∈ PIc, then

Set-assembly-in-connected-in-S-to-c-for-provided (p) =

{d: for some r ∈ RIc: (r, d) ∈ Set-in-connected-in-S-to-c ∧ (p, r) ∈ DRc}

, be the set of all in-connections-to-assembly of

assembly c for the provided interface p.

vi. Let c, d ∈ Assemb (S) and p ∈ PIc. Then assembly c is

said to be

out-connected-through-p-to-assembly d within the

system S, if p ∈ RId and assembly d uses p from

assembly c. The relation is denoted by

c Out-connected-in-S (p, d). Also, the fact may be

expressed as (c, (p, d)) ∈ Out-connected-in-S

Further,

Out-connected-in-S ⊆ Assemb (S) × (PI (SA) ×Assemb(S))

and

Out-connected-in-S = {(c, (p, d)): c, d ∈ Assemb (S) and

∃ p ∈ PI (SA)

such that c is out-connected-through-p-to-assembly d}

vii. Let c, d ∈ Assemb (S). Then assembly c is said to be

out-connected-to-assembly d within the system S, if

there is a p ∈ PIc such that p ∈ RId and assembly d uses

the required interface p from c. The relation is denoted

as c Out-connected-in-S-to-assembly d. Also, the fact

may be stated as

(c, d) ∈ Out-connected-in-S-to-assembly.

Further,

Out-connected-in-S-to-assembly ⊆ Assemb (S) ×

International Journal of Computer Applications (0975 – 8887)

Volume 112 – No. 7, February 2015

36

Assemb (S)

and

Out-connected-in-S-to-assembly =

 {(c, d)): c, d ∈ Assemb (S) and ∃ p ∈ PI (SA) and c is ou

t-connected-through-p-to-assembly d}

viii. Let Set-out-connected-in-S-to-c =

{(p, d): p ∈ PIc and d ∈ Assemb (S) and c out-connected-through-

p-to-assembly d} be the set of all out-connections of

c ∈ Assemb (S).

ix. Let c ∈ Assemb(S), for r ∈ RIc,

Out-connected-in-S-to-c-for-required (r) =

{(p, d): (p, d) ∈ Set-out-connected-in-S-to-c ∧ (p, r) ∈ DRc},
be the set of all out-connections of assembly c for the

required interface r.

x. Let c ∈ Assemb(S), for r ∈ RIc, then

Set-assembly-Out-connected-in-S-to-c-for-required (r) =

{d: for some p ∈ PIc: (p, d) ∈ Set-out-connected-in-S-to-c

∧ (p, r) ∈ DRc}, be the set of all out-connections-to-

assembly of assembly c for the required interface r.

The connection relationship may help in finding the optimal

assembly/ component di, for a given assembly/component c,

which contains maximum possible required interfaces for (i) a

particular required interface value for c and/or (ii) all the

required interfaces of component c. The above argument may

be used for defining suitable metrics.

3.5 Definitions and Mathematical

Specification of Properties of Relations

between system Entities
For the purpose of discussion in this sub-section, the

following formal definitions may be recalled that are used to

specify a k-ary relation. In addition, as is the practice in

RDBMS, tables are also used to specify a k-ary relation.

Definition 8 A k-ary relation 𝐿 over the sets X1, … , Xk is

a subset of their Cartesian product, written as

L ⊆ X1 × … × Xk. Further, if X1 = X2= … = Xi = … Xk,

then L is called a relation or k-ary relation in X1

Definition 9 In case k=2, generally, L is called a relation

from X1 to X2. As mentioned earlier, if X1 = X2, then L is

called a relation in X1.

Definition 10 A k-ary relation L over the sets X1, … ,Xk is a

(k + 1)-tuple L = (x1, …, xk, G(L)), where G(L) is a subset of

the Cartesian product X1 × … × Xk. Then G (L) is called

the graph of L.

Definition 11 A relation is said to be contained in (or is a

sub-relation of) a relation S ⊆ 𝑋1 × … × 𝑋𝑘 , if R is

a subset of S, that

(x1, x2, … xi, …, xk) ∈ R implies (x1, x2, … xi, …, xk)∈ S.

Further, if R and S are not equal as sets, then R is also said to

be strictly smaller than S. For example, as a relation on

numbers ‘>’ is strictly smaller than ‘≥’.

Definition 12 In Database Systems, a k-ary relation is

represented as an n×k matrix/table, where k is a constant

natural number and n is a variable natural number.

Using these definitions, next, the properties of relations

between system entities, are specified. In most of the

discussion below, Definition 8 or Definition 9 will be used.

3.5.1 Mathematical Specification of Properties of

Relations

 Set-of-relation-specification-methods =

{table, set-of-k-tuples, set-of-(k+1)-tuples, ……}; where

the value ‘table’ is used when the relation is in context of

Database Systems.

 Set-of-relation-arities =

{unary, binary, ternary, quaternary}∪

{k-ary, with k being an integer ≥ 5}

Set-of-binary-relation-in-a-set-properties =

{transitive, reflexive, Irreflexive/ strict, coreflexive ,

symmetric , antisymmetric , asymmetric , transitive ,

total , trichotomous , equivalence, partial-order, total-order,

well-order, 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒, 𝑠𝑢𝑟𝑗𝑒𝑐𝑡𝑖𝑣𝑒, functional,… } .

Each of the properties can be written in the form of a

procedure.

 Further, if a member of set-of-relation-specification-

methods is ‘table’, i.e. when the relation is considered in

context of Database Systems,

then set-of-relation-as-in-database-properties

= {1NF, 2NF, 3NF, BCNF, ….}.

Each of the properties can again be written in the form of

a procedure.

4. CONCLUSION AND FUTURE WORK
In order to define unambiguous and language-independent

concepts, including software metrics, for component-based

software development; in this paper, a formal conceptual

framework for the structure of the problem domain is defined,

in which, instead of component, assembly—a slightly

modified and more general concept—is taken as a basic

building block for development of software. In another paper,

a formal conceptual framework for the dynamics/behaviour

within the problem domain is defined. The advantage of the

proposed framework is that it is more efficient than a

framework in which ‘component’ is necessarily taken as

building block. Another advantage of proposed framework is

its scalability. The definition of the proposed framework is

given under the assumption—common for most of the

software development endeavours so far—that the problem

domain and its knowledge, both are perfect. However, for

developing realistic models and robust solutions, it is essential

to take into consideration both imperfections of problem

domains (e.g. inherent randomness of domain) and of its

knowledge (e.g. incompleteness/impreciseness). The proposed

framework can be easily extended to the cases when the

problem domain is imperfect and/or knowledge of the

problem domain is imperfect, thereby providing solid

foundations for developing robust software.

5. ACKNOWLEDGEMENTS
Our thanks to Prof. Manohar Lal, SOCIS, IGNOU, New Delhi

(India) for his valuable suggestions.

http://en.wikipedia.org/wiki/Subset
http://en.wikipedia.org/wiki/Cartesian_product
http://en.wikipedia.org/wiki/Subset
http://en.wikipedia.org/wiki/Greater_than_or_equal_to
http://en.wikipedia.org/wiki/Reflexive_relation
http://en.wikipedia.org/wiki/Coreflexive_relation
http://en.wikipedia.org/wiki/Symmetric_relation
http://en.wikipedia.org/wiki/Antisymmetric_relation
http://en.wikipedia.org/wiki/Asymmetric_relation
http://en.wikipedia.org/wiki/Transitive_relation
http://en.wikipedia.org/wiki/Total_relation
http://en.wikipedia.org/wiki/Trichotomy_(mathematics)

International Journal of Computer Applications (0975 – 8887)

Volume 112 – No. 7, February 2015

37

6. REFERENCES
[1] C. Serban, A. Vescan and H. Pop, A Conceptual

Framework for Component-based System Metric

Definition,

9th RoEduNet IEEE International Conference 2010.

[2] N. Gill, and P. Grover, Component-Based Measurement:

Few Useful Guidelines, ACM SIGSOFT Software

engineering Notes, Vol. 28 Issue 6. November 2003.

[3] N. Gill, Importance of Software Component

Characterization For Better Software Reusability, ACM

SIGSOFT Software Engineering Notes Vol. 31 No. 1,

January 2006.

[4] L. Briand, S. Morasca and V. Basili, Property-based

Software Engineering Measurement, IEEE Transactions

On Software Engineering, Vol. 22, No. 1, January 1996.

[5] L. Briand, J. Daly and J. Wust, A Unified Framework for

Coupling Measurement in Object-Oriented Systems.

IEEE Transactions on Software Engineering, 25(1), 91-

121, 1999.

[6] R. Reiβing, Towards a model for object-oriented design

measurement. Proceedings of ECOOP Workshop on

Quantitative Approaches in Object Oriented Software

Engineering, 2001.

[7] A. Baroni, S. Braz and F. Abreu, Using OCL to

formalize object-oriented design metrics definitions.

Proceedings of ECOOP Workshop on Quantitative

Approaches in Object-Oriented Software Engineering,

2003.

[8] M. Goulão, F. Abreu, Formalizing metrics for COTS,

Department of Informatics, Faculty of Sciences and

Technology, New University of Lisbon,2825-114 Monte

de Caparica, Portugal, 2005a.

[9] M. Goulão, and F. Abreu, Formal Definition of Metrics

upon the CORBA Component Model. First International

Conference on the Quality of Software Architectures

(QoSA) 2005b.

[10] M. Goulão, and F. Abreu, Composition Assessment

Metrics for CBSE. In Proceedings of the 31st Euromicro

Conference - Component-Based Software Engineering

Track. Porto, Portugal: IEEE Computer Society, 2005c.

[11] Crnkovic, S. Sentilles, A. Vulgarakis, and M. Chaudron,

A Classification Framework for Software Component

Models, IEEE Transactions On Software Engineering,

Vol. 37, No. 5, September/October 2011.

[12] W. McUmber and B. Cheng, A General Framework for

Formalizing UML with Formal Languages, Proc. of

IEEE International Conference on Software Engineering

(ICSE01), May 2001, Toronto.

[13] M. Perepletchikov, C. Ryan, K. Frampton, and H. W.

Schmidt, A Formal Model of Service-Oriented Design

Structure, Proceedings of the Australian Software

Engineering Conference (ASWEC'07), 2007.

[14] Y. Tu, D. Li, F. Li and S. Zheng, A Formal Framework

for Component-Based Embedded System, 2010

IEEE/ASME International Conference on Advanced

Intelligent Mechatronics, Montréal, Canada, July 6-9,

2010.

[15] J. Woodcock, P. Larsen, J. Bicarregui and J. Fitzgerald,

Formal Methods: Practice and Experience, ACM

Computing Surveys, Vol. 41, No. 4, Article 19,

Publication date: October 2009.

[16] J. Zhixiong, L. Qian, and X. Pen, A Formal framework

for description of semantic web services , Seventh

International Conference on Computer and Information

Technology 2007 IEEE, DOI 10.1109

10.1109/CIT.2007.24.

[17] G. D. Jenson, J. Dietrich, H. Guesgen, A Formal

Framework to Optimise Component Dependency

Resolution, 2010 Asia Pacific Software Engineering

Conference, 2010.

[18] K. Lau and Z. Wang, Software Component Models,

IEEE Transactions on Software Engineering, Vol. 33,

No. 10, October 2007.

[19] Z. Liu, and H. Jifeng, Mathematical Frameworks for

Component Software, World Scientific, 2006.

[20] C. Mair, and M. Shepperd, Human Judgement and

Software Metrics: Vision for the Future, ICSE ’11, May

21–28, 2011, Waikiki, Honolulu, HI, USA, 2011.

[21] K. Wallnau, and J. A. Stafford, Dispelling the Myth of

Component Evaluation, in Building Reliable

Component-Based Software Systems, Edited by I.

Crnkovic and Larsson pp. 157-177, 2002. Boston,

London: Artech House, pp. 157-177, 2002.

[22] J. Wust, L. Briand, and J. Daly, A Unified Framework

for Cohesion Measurement in Object-Oriented Systems.

Empirical Software Engineering: An International

Journal, 3(2), 65-117, 1998.

[23] J. Zhixiong, L. Qian, and X. Pen, A Formal framework

for description of semantic web services, Seventh

International Conference on Computer and Information

Technology 2007 IEEE, DOI 10.1109

10.1109/CIT.2007.24.

IJCATM : www.ijcaonline.org

