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ABSTRACT 

MapReduce implementations are being used for processing 

large data sets. MapReduce performs parallel computations to 

speed up the job processing. When performing parallel 

computations the skew that arises due large indivisible records 

or uneven distribution of data slows down the job execution 

process and lowers the cluster throughput. We provide a 

solution, by proposing an automatic system that handles skew 

which is compatible with MapReduce framework and is 

transparent to users. The proposed system makes use of idle 

resources in the cluster for skew handing. Task repartitioning 

method is implemented for the purpose of skew handling. The 

output order is maintained even after task repartitioning. The 

proposed system requires no extra input from the users and 

imposes minimum overhead in the absence of skew.    
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1. INTRODUCTION 
Google proposed MapReduce framework in 2004 [1] and has 

been widely used for processing and analysing enormous 

amount of data. MapReduce is a powerful tool for parallel 

analysis. It has various implementations. The framework 

supports distributed processing of data, is tolerant to node 

failures in the cluster and is scalable. MapReduce provides an 

API for writing user defined operations. The users need to 

only write the map and reduce functions. The framework is 

responsible to run these functions in parallel in a cluster. 

MapReduce functionality is performed in five steps: a) 

preparing map() input b) running user defined map() code c) 

shuffling the intermediate map output, which will be input to 

the reducers d) running user defined reduce() code e) final 

output i.e. collecting and sorting all the reducer outputs. 

Figure1 shows the Mapreduce method. 

Hadoop is an open source implementation of MapReduce. 

Hadoop is a software framework for storing and processing 

large amount of data. It has HDFS (Hadoop Distributed File 

System). This distributed file system is used to store data 

across various machines in a cluster. It automatically handles 

the hardware failures. It follows master slave architecture. 

  The case when load imbalance arises is known as skew. 

Load imbalance can occur during map or reduce phases. Skew 

is a well-known problem in the context of parallel database 

management systems. Presence of skew hinders the job 

execution rate i.e. it takes longer to execute the job and thus 

decreases the cluster throughput. MapReduce does not take 

care of skew efficiently. 

Reasons for skew 

i Large records: During the map tasks records are 

processed as key-value pairs. Some records may be 

more CPU intensive and may require more 

computations than other records. These large 

records further are indivisible which leads to skew. 

As the tasks processing these large records take 

longer time to finish. 

ii  Input dataset size: Some tasks take multiple dataset 

as a single input. Each dataset requires different 

processing times. Some dataset require larger 

processing times. 

iii Reducer input: Intermediate output i.e. outputs of 

map tasks are distributed to the reducers using hash 

partitioning. This partitioning does not guarantee 

even data distribution to the reducers. 

iv Large input: Large indivisible records processed by 

map tasks become input to one of the reducers, skew 

arises. 

One way to handle skew is to adopt the approach of 

skew avoidance. This requires the users to write 

user defined operations in a manner which does not 

arise any skew [13]. But this approach is ineffective 

as it imposes extra burden on users and is applicable 

only to very few operations that satisfy certain 

properties. Another approach is to divide the job 

into very small fine-grained partitions and allocating 

to the machines as needed [14]. But this strategy 

imposes significant overhead due to frequent 

migration of data. Even though simple, skew 

avoidance along with above drawbacks also has the 

drawback that it does not always guarantee tasks 

without skew and also does not provide adequate 

resource utilization.  

In this paper, we consider skew that arises from the 

characteristics of dataset. Speculative execution [1] technique 

used to handle skew in mapreduce is ineffective to handle the 

skew that arises from dataset. Because the technique does not 

improve any job execution time. 
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Figure 1: MapReduce Method 

 

We propose an automatic skew handling system which has the 

following key features: 

 

 Handles the skew that arises due the uneven 

distribution of data and also the skew that arises due 

to larger dataset that take longer time to process. 

 Programmers need not provide any extra input. 

 The system is transparent to the users. 

With the proposed system we expect to reduce the job 

execution time by 3x times in the presence of skew and incur 

very little overhead in the absence of skew. 

  The rest of paper is organized as follows. In section 2 we 

discuss the related work. In section 3 we show the 

implementation of proposed design. Finally, we show the 

performance evaluation in section 4.     

2. RELATED WORK 
MapReduce framework is used for many applications such as 

web indexing, log analysis etc.[2]. When a slow task is 

detected which is the cause for skew, that task is backed up on 

some other machine so that it can finish faster. This approach  

is known as speculative execution. Speculative execution 

technique provides performance gains and hence is 

implemented in Hadoop [3] and Microsoft Dryad [4] to deal 

with skew. 

Hadoop is an open source implementation of MapReduce. 

The speculative execution technique in Hadoop 0.20 

implementation, detects a task as a skewed task when its 

progress rate is lesser as compared with average progress rate 

of all the tasks. But this strategy of skew detecting does not fit 

well in the heterogeneous environment. So a new strategy 

called LATE [5] is proposed. Hadoop-LATE selects a task 

based on the longest remaining progress time to backup. 

Hadoop-LATE and LATE assume that all tasks have same 

process types and same amount of input data. And also 

assume that progress rate of each task is stable. But these 

assumptions are not always true.    

Miscrosoft Dryad [4] makes use of same speculative strategy 

as in [1] i.e., backing up the last few remaining slower map or 

reduce tasks. Mantri’s [6] speculative strategy  

 

is based on estimating task’s remaining time by identifying 

data left to be processed using process bandwidth. 

The above strategies have certain drawbacks in identifying 

skewed tasks and the backup nodes. They assume that tasks 

have stable progress rates. But in reality, the progress rates 

fluctuate in the different phases of the map and reduce tasks. 

When choosing the backup nodes Hadoop and LATE do not 

consider whether the skewed tasks can finish faster on the 

backup node than on the original node.  

Mantri [6] kills the slower task when the cluster is busy and 

when the cluster is idle duplicates the complete task and runs 

from the scratch. In [7] a new speculative execution strategy 

called Maximum Cost Performance is suggested which 

overcomes all the drawbacks of the above techniques. It uses 

both the progress rate and the process bandwidth to determine 

skewed task, uses a cost benefit model for backing up the 

tasks and also considers whether a skewed task can be 

executed faster on the backup nodes. 

But all the above speculative execution strategies just provide 

with 2% to 25% of performance improvement according to 

[2]. This is because most of the skewed tasks are compute 

intensive, do not provide much performance gain. Skew 

handling techniques are classified into two classes: skew 

avoidance and skew detection and handling systems. In skew 

avoidance systems, skew is avoided in tasks before starting 

their executions. Skew avoidance has the advantage of no task 

repartitioning, but it cannot always guarantee complete skew 

avoidance i.e. there is presence of some skewed tasks and also 

resource utilization is limited. In [8] skew is considered only 

during the map tasks and is implemented in a simulator and 

not on a real cluster. The proposed system automatically 

detects and handles the skew during both map and reduce 

tasks. 

3. SYSTEM DESIGN 
Each map() and reduce() function invocations are independent 

of each other. The task with the longest remaining processing 

time is known to be skewed task and remaining unprocessed 

input bytes of that task at the time say ‘i’ (i.e. the time at 

which skew is detected) are repartitioned to run on idle nodes 

in a cluster.  
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3.1 Selecting skewed task for 

repartitioning   
When a job is submitted to MapReduce framework, it is 

divided into ‘N’ number of independent tasks, which can be 

run on various nodes in a cluster for parallel execution. All 

‘N’ tasks are first assigned to the slots of the nodes in the 

cluster. When on some node, a slot finishes the execution of 

assigned task to it that slot becomes idle, only then the skew 

detection method is invoked. Slave nodes estimate the 

progress of each task tprogress [9] and are periodically 

reported to the master node. For the estimation of tprogress 

each task has to keep track of total input bytes and records 

processed. The   

Step 5.Repartition only the unprocessed input data of selected 

skewed task. 

Step 6.If the selected skewed task is last task to be processed 

then repartition and reprocess whole task. 

Step 7.The master node assigns the repartitioned data to the 

available slots including the slot of the node on which the task 

was originally allocated. 

3.2 Algorithm 
//Start skew detection only when a node becomes free in the 

cluster 

Input: R=set of running tasks 

W= set of unscheduled waiting tasks 

Initializations: flag=false 

Figure 2: System Architecture 

most skewed task i.e. task with the longest remaining 

processing time is selected and checked if its remaining 

processing time is greater than twice the repartitioning 

overhead  i.e. 

tprogress  >2O  

where O is repartitioning overhead 

Repartitioning overhead is set to 20s and if the selected task’s 

remaining processing time is greater than twice the overhead 

then it is repartitioned. Repartitioning is performed on 

remaining unprocessed bytes. Only one skewed task is chosen 

at-a-time to avoid frequent repartitioning of the tasks.  

3.3 Handling skew 
Steps taken to handle skew are: 

Step 1.Slection of a task for repartitioning 

Step 2.Master node signals stop and commit to the slave node 

on which the selected skewed task runs 

Step 3.In case the task is impossible to stop, master chooses 

next longest remaining time task, else goto step 4. 

Step 4.Calculate the remaining input data to be processed 

task=null 

if W≠ɸ then 

     task=choosenexttask(W) 

else if flag=false then 

     task=identifymax_time_remain(task) 

if task ≠ɸ and time_remain(task)>2.O then 

{     // O is overhead= 20s 

       stop(task) 

         flag=true}// skew detected 

// After the skewed task is detected 

orgtasktime=Torg from T 
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processedB=task till time ti  

taskUB=orgtasktime-processedB  

taskUB={t1,t2,….tn}// Repartition of task 

execute taskUB on n+1 nodes 

combine the output of taskUB  

return to identify skew again if any node free.  

4. PERFORMANCE EVALUATION 

4.1 Setup 
Real data set is used as an input to MapReduce framework. 

One node in the cluster acts as a master node and others as 

slave nodes. Nodes are connected in LAN. Each node is 

configured to run at most two tasks. Word count application is 

taken for testing purpose as it is a compute intensive 

application. 

4.2 Manual generation of skew  
Skew is generated manually during the execution of tasks. 

Some tasks are given larger documents or two times more 

input data to process. Those tasks then take longer time to 

execute which can further be detected as skewed tasks. 

4.3 Expected gain in performance 
The proposed system is expected to execute the job faster by 

3x times in the presence of skew.  

 

 Figure 3: Expected performance gain in job execution in 

the presence of skew 

5. RESULT SET 
The following are the result sets with the detection and 

execution of skewed task on idle node. Figure 9 shows the 

performance gain when skewed task is detected and run on 

idle nodes and thereby improving the performance of 

MapReduce. 

 

Figure 4: GUI to start MapReduce job 

 

Figure 5: Master divides the task 

 

 

Figure 6: Task received on client side 
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Figure 7: Idle node checks for skewed task on other 

nodes 

 

 

Figure 8: Final result on master 

 

Word Count Application 

Figure 9: Time taken is lesser when skewed task shared 

6. CONCLUSION 
Mapreduce is a parallel programming paradigm. The job 

execution rate slows down on MapReduce in the presence of 

skew. With the proposed system we can boost up the job 

execution of MapReduce framework. The proposed system is 
an automated system for detecting and handling skew and is 

compatible with all the systems that implement MapReduce 

type job execution. It requires no extra input from the users. 

Job execution is monitored periodically and load is re-

balanced as the slots of the nodes become available. The order 

of output is preserved even when a skewed task is 

repartitioned and is also transparent to programmers i.e. 

programmers feel that they are working on MapReduce 

framework. We expect to have a 3x times faster job execution 

for compute intensive MapReduce jobs. In the absence of 

skew the system will incur little to no overhead. Further we 

also maximize the resource utilization of the cluster. Overall, 

the proposed system provides consistent job execution in the 

presence of skew and provides an enhanced performance gain.  

Future work involves reducing the overhead incurred when 

skewed task is detected. Which can further improve the 

performance of MapReduce and also the throughput of 

cluster.   
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