
International Journal of Computer Applications (0975 – 8887)

Volume 112 – No 16, February 2015

29

Boosting the Performance of MapReduce by Better

Resource Utilization in Cluster

Pooja Malikwade
M.E.(II year)
MMMCOE
Pune-52

S.B.Jadhav
Assistant Professor

MMMCOE
Pune-52

ABSTRACT

MapReduce implementations are being used for processing

large data sets. MapReduce performs parallel computations to

speed up the job processing. When performing parallel

computations the skew that arises due large indivisible records

or uneven distribution of data slows down the job execution

process and lowers the cluster throughput. We provide a

solution, by proposing an automatic system that handles skew

which is compatible with MapReduce framework and is

transparent to users. The proposed system makes use of idle

resources in the cluster for skew handing. Task repartitioning

method is implemented for the purpose of skew handling. The

output order is maintained even after task repartitioning. The

proposed system requires no extra input from the users and

imposes minimum overhead in the absence of skew.

General Terms

Big Data, Hadoop

Keywords

Data skew, MapReduce, parallel database systems,

performance gain, skew handling.

1. INTRODUCTION
Google proposed MapReduce framework in 2004 [1] and has

been widely used for processing and analysing enormous

amount of data. MapReduce is a powerful tool for parallel

analysis. It has various implementations. The framework

supports distributed processing of data, is tolerant to node

failures in the cluster and is scalable. MapReduce provides an

API for writing user defined operations. The users need to

only write the map and reduce functions. The framework is

responsible to run these functions in parallel in a cluster.

MapReduce functionality is performed in five steps: a)

preparing map() input b) running user defined map() code c)

shuffling the intermediate map output, which will be input to

the reducers d) running user defined reduce() code e) final

output i.e. collecting and sorting all the reducer outputs.

Figure1 shows the Mapreduce method.

Hadoop is an open source implementation of MapReduce.

Hadoop is a software framework for storing and processing

large amount of data. It has HDFS (Hadoop Distributed File

System). This distributed file system is used to store data

across various machines in a cluster. It automatically handles

the hardware failures. It follows master slave architecture.

 The case when load imbalance arises is known as skew.

Load imbalance can occur during map or reduce phases. Skew

is a well-known problem in the context of parallel database

management systems. Presence of skew hinders the job

execution rate i.e. it takes longer to execute the job and thus

decreases the cluster throughput. MapReduce does not take

care of skew efficiently.

Reasons for skew

i Large records: During the map tasks records are

processed as key-value pairs. Some records may be

more CPU intensive and may require more

computations than other records. These large

records further are indivisible which leads to skew.

As the tasks processing these large records take

longer time to finish.

ii Input dataset size: Some tasks take multiple dataset

as a single input. Each dataset requires different

processing times. Some dataset require larger

processing times.

iii Reducer input: Intermediate output i.e. outputs of

map tasks are distributed to the reducers using hash

partitioning. This partitioning does not guarantee

even data distribution to the reducers.

iv Large input: Large indivisible records processed by

map tasks become input to one of the reducers, skew

arises.

One way to handle skew is to adopt the approach of

skew avoidance. This requires the users to write

user defined operations in a manner which does not

arise any skew [13]. But this approach is ineffective

as it imposes extra burden on users and is applicable

only to very few operations that satisfy certain

properties. Another approach is to divide the job

into very small fine-grained partitions and allocating

to the machines as needed [14]. But this strategy

imposes significant overhead due to frequent

migration of data. Even though simple, skew

avoidance along with above drawbacks also has the

drawback that it does not always guarantee tasks

without skew and also does not provide adequate

resource utilization.

In this paper, we consider skew that arises from the

characteristics of dataset. Speculative execution [1] technique

used to handle skew in mapreduce is ineffective to handle the

skew that arises from dataset. Because the technique does not

improve any job execution time.

International Journal of Computer Applications (0975 – 8887)

Volume 112 – No 16, February 2015

30

Figure 1: MapReduce Method

We propose an automatic skew handling system which has the

following key features:

 Handles the skew that arises due the uneven

distribution of data and also the skew that arises due

to larger dataset that take longer time to process.

 Programmers need not provide any extra input.

 The system is transparent to the users.

With the proposed system we expect to reduce the job

execution time by 3x times in the presence of skew and incur

very little overhead in the absence of skew.

 The rest of paper is organized as follows. In section 2 we

discuss the related work. In section 3 we show the

implementation of proposed design. Finally, we show the

performance evaluation in section 4.

2. RELATED WORK
MapReduce framework is used for many applications such as

web indexing, log analysis etc.[2]. When a slow task is

detected which is the cause for skew, that task is backed up on

some other machine so that it can finish faster. This approach

is known as speculative execution. Speculative execution

technique provides performance gains and hence is

implemented in Hadoop [3] and Microsoft Dryad [4] to deal

with skew.

Hadoop is an open source implementation of MapReduce.

The speculative execution technique in Hadoop 0.20

implementation, detects a task as a skewed task when its

progress rate is lesser as compared with average progress rate

of all the tasks. But this strategy of skew detecting does not fit

well in the heterogeneous environment. So a new strategy

called LATE [5] is proposed. Hadoop-LATE selects a task

based on the longest remaining progress time to backup.

Hadoop-LATE and LATE assume that all tasks have same

process types and same amount of input data. And also

assume that progress rate of each task is stable. But these

assumptions are not always true.

Miscrosoft Dryad [4] makes use of same speculative strategy

as in [1] i.e., backing up the last few remaining slower map or

reduce tasks. Mantri’s [6] speculative strategy

is based on estimating task’s remaining time by identifying

data left to be processed using process bandwidth.

The above strategies have certain drawbacks in identifying

skewed tasks and the backup nodes. They assume that tasks

have stable progress rates. But in reality, the progress rates

fluctuate in the different phases of the map and reduce tasks.

When choosing the backup nodes Hadoop and LATE do not

consider whether the skewed tasks can finish faster on the

backup node than on the original node.

Mantri [6] kills the slower task when the cluster is busy and

when the cluster is idle duplicates the complete task and runs

from the scratch. In [7] a new speculative execution strategy

called Maximum Cost Performance is suggested which

overcomes all the drawbacks of the above techniques. It uses

both the progress rate and the process bandwidth to determine

skewed task, uses a cost benefit model for backing up the

tasks and also considers whether a skewed task can be

executed faster on the backup nodes.

But all the above speculative execution strategies just provide

with 2% to 25% of performance improvement according to

[2]. This is because most of the skewed tasks are compute

intensive, do not provide much performance gain. Skew

handling techniques are classified into two classes: skew

avoidance and skew detection and handling systems. In skew

avoidance systems, skew is avoided in tasks before starting

their executions. Skew avoidance has the advantage of no task

repartitioning, but it cannot always guarantee complete skew

avoidance i.e. there is presence of some skewed tasks and also

resource utilization is limited. In [8] skew is considered only

during the map tasks and is implemented in a simulator and

not on a real cluster. The proposed system automatically

detects and handles the skew during both map and reduce

tasks.

3. SYSTEM DESIGN
Each map() and reduce() function invocations are independent

of each other. The task with the longest remaining processing

time is known to be skewed task and remaining unprocessed

input bytes of that task at the time say ‘i’ (i.e. the time at

which skew is detected) are repartitioned to run on idle nodes

in a cluster.

International Journal of Computer Applications (0975 – 8887)

Volume 112 – No 16, February 2015

31

3.1 Selecting skewed task for

repartitioning
When a job is submitted to MapReduce framework, it is

divided into ‘N’ number of independent tasks, which can be

run on various nodes in a cluster for parallel execution. All

‘N’ tasks are first assigned to the slots of the nodes in the

cluster. When on some node, a slot finishes the execution of

assigned task to it that slot becomes idle, only then the skew

detection method is invoked. Slave nodes estimate the

progress of each task tprogress [9] and are periodically

reported to the master node. For the estimation of tprogress

each task has to keep track of total input bytes and records

processed. The

Step 5.Repartition only the unprocessed input data of selected

skewed task.

Step 6.If the selected skewed task is last task to be processed

then repartition and reprocess whole task.

Step 7.The master node assigns the repartitioned data to the

available slots including the slot of the node on which the task

was originally allocated.

3.2 Algorithm
//Start skew detection only when a node becomes free in the

cluster

Input: R=set of running tasks

W= set of unscheduled waiting tasks

Initializations: flag=false

Figure 2: System Architecture

most skewed task i.e. task with the longest remaining

processing time is selected and checked if its remaining

processing time is greater than twice the repartitioning

overhead i.e.

tprogress >2O

where O is repartitioning overhead

Repartitioning overhead is set to 20s and if the selected task’s

remaining processing time is greater than twice the overhead

then it is repartitioned. Repartitioning is performed on

remaining unprocessed bytes. Only one skewed task is chosen

at-a-time to avoid frequent repartitioning of the tasks.

3.3 Handling skew
Steps taken to handle skew are:

Step 1.Slection of a task for repartitioning

Step 2.Master node signals stop and commit to the slave node

on which the selected skewed task runs

Step 3.In case the task is impossible to stop, master chooses

next longest remaining time task, else goto step 4.

Step 4.Calculate the remaining input data to be processed

task=null

if W≠ɸ then

 task=choosenexttask(W)

else if flag=false then

 task=identifymax_time_remain(task)

if task ≠ɸ and time_remain(task)>2.O then

{ // O is overhead= 20s

 stop(task)

 flag=true}// skew detected

// After the skewed task is detected

orgtasktime=Torg from T

International Journal of Computer Applications (0975 – 8887)

Volume 112 – No 16, February 2015

32

processedB=task till time ti

taskUB=orgtasktime-processedB

taskUB={t1,t2,….tn}// Repartition of task

execute taskUB on n+1 nodes

combine the output of taskUB

return to identify skew again if any node free.

4. PERFORMANCE EVALUATION

4.1 Setup
Real data set is used as an input to MapReduce framework.

One node in the cluster acts as a master node and others as

slave nodes. Nodes are connected in LAN. Each node is

configured to run at most two tasks. Word count application is

taken for testing purpose as it is a compute intensive

application.

4.2 Manual generation of skew
Skew is generated manually during the execution of tasks.

Some tasks are given larger documents or two times more

input data to process. Those tasks then take longer time to

execute which can further be detected as skewed tasks.

4.3 Expected gain in performance
The proposed system is expected to execute the job faster by

3x times in the presence of skew.

 Figure 3: Expected performance gain in job execution in

the presence of skew

5. RESULT SET
The following are the result sets with the detection and

execution of skewed task on idle node. Figure 9 shows the

performance gain when skewed task is detected and run on

idle nodes and thereby improving the performance of

MapReduce.

Figure 4: GUI to start MapReduce job

Figure 5: Master divides the task

Figure 6: Task received on client side

0

100

200

300

400

500

600

700

without proposed system with proposed system

Jo
b

 T
im

e
 (

se
co

n
d

s)

International Journal of Computer Applications (0975 – 8887)

Volume 112 – No 16, February 2015

33

Figure 7: Idle node checks for skewed task on other

nodes

Figure 8: Final result on master

Word Count Application

Figure 9: Time taken is lesser when skewed task shared

6. CONCLUSION
Mapreduce is a parallel programming paradigm. The job

execution rate slows down on MapReduce in the presence of

skew. With the proposed system we can boost up the job

execution of MapReduce framework. The proposed system is
an automated system for detecting and handling skew and is

compatible with all the systems that implement MapReduce

type job execution. It requires no extra input from the users.

Job execution is monitored periodically and load is re-

balanced as the slots of the nodes become available. The order

of output is preserved even when a skewed task is

repartitioned and is also transparent to programmers i.e.

programmers feel that they are working on MapReduce

framework. We expect to have a 3x times faster job execution

for compute intensive MapReduce jobs. In the absence of

skew the system will incur little to no overhead. Further we

also maximize the resource utilization of the cluster. Overall,

the proposed system provides consistent job execution in the

presence of skew and provides an enhanced performance gain.

Future work involves reducing the overhead incurred when

skewed task is detected. Which can further improve the

performance of MapReduce and also the throughput of

cluster.

7. REFERENCES
[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data

processing on large clusters,” Commun. ACM, vol. 51,

pp. 107–113, January 2008.

[2] K. Ren, Y. Kwon, M. Balazinska, and B. Howe,

“Hadoops adolescence: A comparative workload analysis

from three research clusters,” in Proceedings of IEEE 8th

International Conference on e-Business Engineering, ser.

ICEBE’2011, 2011.

[3] “Apache hadoop, http://hadoop.apache.org/.”

[4] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly,

“Dryad: distributed data-parallel programs from

sequential building blocks,” in Proc.of the 2nd ACM

SIGOPS/EuroSys European Conference on Computer

Systems 2007, ser. EuroSys ’07, 2007.

[5] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I.

Stoica, “Improving mapreduce performance in

heterogeneous environments,” in Proc. of the 8th

USENIX conference on Operating systems design and

implementation, ser. OSDI’08, 2008.

[6] G. Ananthanarayanan, S. Kandula, A. Greenberg, I.

Stoica, Y. Lu, B. Saha, and E. Harris, “Reining in the

outliers in map-reduce clusters using mantri,” in Proc. of

the 9th USENIX conference on Operating systems design

and implementation, ser. OSDI’10, 2010.

[7] Q. Chen, C. Liu, and Z. Xiao, “Improving mapreduce

performance using smart speculative execution strategy,”

IEEE Transactions on Computers, vol. 99, no. PrePrints,

p. 1, 2013.

[8] Z. Guo, M. Pierce, G. Fox, and M. Zhou, “Automatic

task re-organization in mapreduce,” in Proceedings of

the 2011 IEEE International Conference on Cluster

Computing, ser. CLUSTER ’11. Washington, DC, USA:

IEEE Computer Society, 2011, pp. 335–343.

[9] K. Morton, A. Friesen, M. Balazinska, and D. Grossman.

Estimating the progress of MapReduce pipelines. In

Proc. of the 26nd ICDE Conf., Mar. 2010.

[10] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D.

Shakib, S. Weaver, and J. Zhou, “Scope: easy and

efficient parallel processing of massive data sets,” Proc.

VLDB Endow., vol. 1, pp. 1265–1276, August 2008.

[11] X. Pan, J. Tan, S. Kavulya, R. Gandhi, and P.

Narasimhan, “Ganesha: blackbox diagnosis of

mapreduce systems,” SIGMETRICS Perform. Eval. Rev.,

vol. 37, pp. 8–13, January 2010.

[12] H.-c. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker,

“Map-reducemerge: simplified relational data processing

on large clusters,” in Proc. of the 2007 ACM SIGMOD

international conference on Management of data, ser.

SIGMOD ’07, 2007.

[13] M. C. Schatz. CloudBurst: highly sensitive read mapping

with MapReduce. Bioinformatics, 25(11):1363{1369,

June 2009.

[14] M. Shah, J. Hellerstein, and E. Brewer. Highly-available,

fault-tolerant, parallel dataows. In Proc. of the SIGMOD

Conf., June 2004.

0
100
200
300
400
500
600
700
800
900

1000

R
u

n
ti

m
e

 (
Se

co
n

d
s)

Skewed
task not
shared

Skewed
task shared

IJCATM : www.ijcaonline.org

