
International Journal of Computer Applications (0975 – 8887)

Volume 112 – No 14, February 2015

36

Building an Arabic Words Generator

Afnan Aqel
Department of Computer

Science Faculty of Computing
and Information Technology
King Abdulalziz University

Sahar Alwadei
Department of Computer

Science Faculty of Computing
and Information Technology
King Abdulalziz University

Mohammad Dahab, Ph.D
Department of Computer

Science Faculty of Computing
and Information Technology
King Abdulalziz University

ABSTRACT

Morphology studies the word structure considering its basic

meaningful units. It has been always one of the most important

components in nearly any application of Natural Language

Processing (NLP). Through applying that concept on Arabic

language, Arabic words were highly inflected and derived. In

this paper an approach is going to be developed that will deliver

almost all the words can be produced out of any submitted

word. Beside that, this paper will answer the question „whither

or not inflected and derived words can be equally produced

using the same methodology?‟. Furthermore, many ideas of

developing the algorithm presented here are discussed.

General Terms

Natural language processing.

Keywords

Arabic morphology, word structure, derivation, inflection, word

generator.

1. INTRODUCTION
Given the enormous number of Arabic speakers and the

expectations of meeting their technical needs, it has become

imperative to produce what suits them and which can be in

conformity with their own language. Thence, simulating that

language is certainly a must, but the shortage of resources and

projects in this aspect has become an obstacle. Therefore,

Arabic Natural Language Processing (ANLP) – which is the

scientific notion considers that field – has gained increasing

importance, and several state-of-the-art systems have been

developed for a wide range of applications, including machine

translation, information retrieval and extraction, speech

synthesis and recognition, localization and multilingual

information retrieval systems, text to speech, and tutoring

systems [10].

The development of NLP technologies for Arabic is a

challenging task where it is a language of extensive morphology

with both derivational and inflectional formats. Furthermore,

that richness of Arabic morphology makes it difficult to be

analysed or generated as a critical part of the whole process of

simulation. On the one hand, analyzing Arabic morphemes has

come a long way where number of analyzers is already in the

field. Those analyzers offer rang of results using different

approaches. Despite their known defects, they are providing a

reliable source of computational analyzing even their flaws is

considered to be useful in different circumstances. On the other

hand, generating Arabic words has also received a lot of

attention due to its usage in a large number of required daily

applications like spell checking [5] as an instance.

In this paper a general-purpose approach of generating words in

Arabic is presented. The method will apply an idea of

producing words based on another given word in the form of

added prefixes followed by a stem extracted from the given

word then tailed by suffixes. The prefixes and suffixes are

chosen based on the stem pattern that is going to be provided in

the earlier stages of this process.

2. WHAT IS ARABIC MORPHOLOGY?
Morphology refers to the study of word structure or form [7].

Its basic concept is morpheme where the smallest expressive

unit of a language is encountered. For example the word

(ςaAmiluwn, “عامهُن”, „workers‟)1 consists of two morphemes

(ςaAmil, “عامم”, „worker‟) and (uwn, “َن”, „s: suffix for plural,

precisely masculine‟).

There are some key concepts should be defined first to explicate

the formation of an Arabic word, Fig. 1.:

 Root

 Using Pattern

 Lead to Stem

 Prefix Infix Suffix

Proclitic/s Enclitic

 Word

Fig. 1: Word structure in Arabic language

 Root: relatively invariable discontinuous bound

morpheme, represented by two to five phonemes2 [6],

where they are the core part of a word that expresses

the basic meaning [9].

 Pattern: bound and in many cases, discontinuous
morpheme consisting of one or more vowels and slots

for root phonemes [6]. Each pattern conducts a

meaning that defines at least one grammatical feature.

 Affixes: each is a set of morphemes attached to the

stem. It could be before the stem; prefix, within the

stem; infix, or after the stem; suffix.

 Clitics: morphemes that attach to the stem after affixes.

They are categorized by their position of words

whither they are placed in the beginning or the end of

the word to be consecutively proclitic or enclitic. On

the one hand, proclitics are representing conjunctions

where the enclitics are denoting pronouns [9][11].

 Stem: a word that is common in all of its inflected

forms [12], which are the generated forms after adding

syntactic features such as tense, number, person, case,

etc. [1] through affixes and clitics. It can be a

1 (Arabic Transliteration [8], “Arabic Form”, „English Meaning‟)
2 Phonemes are any of the perceptually distinct units of sound in a

specified language that distinguishes one word from another [6].

International Journal of Computer Applications (0975 – 8887)

Volume 112 – No 14, February 2015

37

derivative that will be identified with a root and

pattern, or can be a non-derivative [11].

Applying the previous terms constructing the word on an

example would considerably declare that structure, Fig. 2.

Root:

La-Zi-Ma,

 ,”لزَِم“

„Compelled‟

Using Pattern:

(NuC1C2iC3, “نفُعِل”)

Lead to Stem:

NuLZiM, “نلُزِم”, „We

compel (obj.) to accept‟

Prefix

Nu

 ,”نـُ“

„We‟

Infix

-

Suffix

-

Proclitic/s

Â, “ َ ”,

„Shall, in

this case‟

Enclitic

kum, “كن”,

„you‟+

uw, “و”,

 vowel for

pronunciati

on +

ha, “ها”,

„it:
feminized‟

ÂnuLZiMukumuwhA,

 ,” نـلُزِهُكوُوها؟“

„Shall we compel you

to accept it?‟

Fig. 2: Word structure in Arabic language applied to

 ” نـلُزِهُكوُوها“

In fact, Arabic morphology is extremely systematic and it

normalizes those approaches associated with the clarified

concepts are cataloged into two models: derivation and

inflection.

2.1 Derivation
Arabic morphology is using morphemes based on a system of

consonant roots that interlock with patterns to form a new word

[6]. Also the roots could contain vowels and those will be

considered as main parts of the root too. For example, the root

of the word (ςaAmil, “عامم”, „worker‟) as a sample of a root

consists of consonants is (ςamil, “عَمِم”, „work‟), and that word

is a stem of this root formed by following the pattern

(C1aAC2iC3, “فاعم”, Active Participle [13]), where the

notations C1, C2 and C3 are the main components of the root

(i.e. ς-m-l in this case) [2][9]. Another instance can be shown

for other roots having a vowel as a main part, is the word

(qaAŷil, “قائم”, „the man who said‟), where its root is (qaAl,

 says‟), and its core components are q-A-l (i.e. the “A” is„ ,”قاَل“

a vowel here). Principally, neither an Arabic root nor a pattern

can be used in isolation; they need to connect with each other in

order to form actual words [6]. Detailed example is shown in

Table 1.

Table 1. Example of Derived Words from Their Root

Root Pattern
Derived

Word
Gloss

Derivation

Category

s-n-ς,

ص ن “

 ,”ع

„made‟

C1aAC2iC3
saniς,

 ”صَاوعِ“
„maker‟

Active

Participle

maC1C2owC3
masnowς,

 ”مَصْىُُع“

„something

has been

made‟

Passive

Participle

maC1C2aC3
masnaς,

 ”مَصْىعَ“
„manufactory‟ Adverb

C1iC2aAC3aħ
sinaAςaħ,

 ”صِىاعَة“

„manufacture/

industry‟
Craft Noun

2.2 Inflection
The term “inflection” generally refers to phonological changes

a word undergoes as it is being used in context, where the core

meaning of that word remains unchanged [6] [9].

Arabic words are generally marked for grammatical categories

to represent the inflectional process upon those words. There

are eight major grammatical categories in Arabic: tense/aspect,

person, voice, mood, gender, number, case, definiteness [6].

Employing those categories upon a stem would result in an

integer of words annotated with their grammatical meaning, as

presented in Table 2.

Table 2. Example of Inflected Words from a Stem

Stem
Inflected

Word

Inflectional Categories

G
en

d
er

N
u

m
b

er

C
a

se

D
efin

iten
ess

saAriq,

 ,”سَارِق“

„Thief‟

From the

Root:

s-r-q,

 ,”س ر ق“

„stole‟

Using the

Pattern:

C1aAC2iC3

saAriqaħ,

 ”سَارِقة“

F
em

in
in

e

Singular

Nominative

Genitive

Accusative

In
d

efin
ite

saAriqataAn,

 ”سَارِقتَان“
Dual

Nominative

saAriqatayn,

 ”سَارِقتَيه“

Genitive

Accusative

saAriqaAt,

 ”سَارِقات“
Plural

Nominative

Genitive

Accusative

saAriqaAn,

 ”سَارِقان“

M
ascu

lin

e Dual Nominative

International Journal of Computer Applications (0975 – 8887)

Volume 112 – No 14, February 2015

38

saAriquwn,

 ”سَارِقُن“
Plural Nominative

saAriqayn,

 ”سَارِقيه“

Dual

Plural

Genitive

Accusative

3. GO TO DERIVATIONAL OR

INFLECTIONAL GENERATION?
Generating words given a specified word could be

accomplished through one of the morphological approaches

enlightened above. On the one hand, using the derivational

technique will produce variant collection of words in which the

meaning of the original input could be even altered. The root of

the word entered is needed where all the words generated will

be formed as a combination of that root and the suitable

patterns. On the other hand, inflectional procedures will reserve

the pure meaning of the word and will turn out the proper words

based on grammatical factors. The pattern of this word as well

as its Part Of Speech (POS) should be declared where it

accordingly will be inflected. In this paper the second approach

is implemented since keeping the same meaning for the

produced words compared to the original entered one is the

defined goal of the process developed in this paper.

4. METHODOLOGY
In the following two subsections the method of generating is

elucidated. Section 4.1, accompanied by Fig. 3, presents the

algorithm while section 4.2 clarifies its symbols and mechanism

and section 4.3 shows a trace of the algorithm.

4.1 Algorithm
Generate Words:

Input: String Word.

Output: Result.

Declare variables: Word, AR [], Result, i.

Word ← Input from the user

AR [] ← Analyze(Word)

Result ← Null

i ← Size(AR)

if AR [i].Type ← Tool_Word or Proper_Noun

or Except_Word

return Result

else

Word ← Stem(Word)

 Result +Generate(Word, Common_Affixes)

do

if AR [i].Pattern = Nominal

Result +Generate(Word, Noun_ Affixes)

else

 if AR [i].Pattern = Verbal

 Result +Generate(Word, Verb_ Affixes)

 else

 return Result

i --

while(i ≠ 0)

return Result

4.2 Demonstration

Receiving a word from the user is the start point of the Generate

Words algorithm after declaring different variables to monitor

its procedures. These variables are:

o Word: String variable to store the user input, then

later store the returned value of Stem method.

o AR []: The Analyzing Results list of objects.

o Result []: A list that collects all the possible generated

words.

o i: The counter that maintains the loop based on the

size of the AR list.

Fig. 3: Word Generator Flowchart

Start

String Word

AR[] = Analyze(Word), Result= Null

i= Size(AR)

AR[i].Type == Tool_Word ||

AR[i].Type == Except_Word ||

AR[i].Type == Proper_Noun

Word = Stem(Word)

Result + Generate(Word,

Coomon_Affixes)

No

AR[i].Pattern ==

Nominal

Result +

Generate(Word,

Noun_Affixes)

Yes

AR[i].Pattern ==

Verbal

No

Result +

Generate(Word,

Verb_Affixes)

Yes

i --

i == 0

No

End

Print Result

Yes

Yes

No

International Journal of Computer Applications (0975 – 8887)

Volume 112 – No 14, February 2015

39

Besides, there are two important methods by which the

algorithm task is accomplished. On one hand, there is the

Analyze method, which takes one parameter and returns a list of

objects. On the other hand, the Generate method takes two

parameters and returns a list of strings represents the probable

generated words.

Mainly this algorithm gives a great attention to the returned

analyzing results from the Analyze method. Based on those

results different dissensions are taken. Essentially, Word value

is sent to the Analyze method where it is going to be examined

and its features are defined. Each possible result of this method

is stored as an object to be a part of the list returned from that

method – the AR list.

The values of AR objects variables have a significant effect on

the generating process. The first parameter of Generate method

is a new value returned from sending Word to the method Stem,

which provides the stem of the word entered by the user. Given

the indicated value of AR[i].Pattern of a Word, the list of

affixes (see Appendix) to be sent to the Generate method as a

second parameter is chosen accordingly. Those list of affixes

are categorized into three main classes: Common_Affixes that

is suitable to be used along with any word submitted by the user

then later stemmed; Noun_Affixes and Verb_Affixes are picked

to be added also based on the Pattern value: Nominal or Verbal

respectively.

This algorithm focus on generating words of nouns and verbs

but it avoids particular types of word. Those Types are Tool

Words, Proper Nouns and some Exceptional Words, and they

are defined earlier to be checked at the very beginning of the

algorithm course.

4.3 Trace
The algorithm has been applied on the word (masnaς, “َمَصْىع”,

„manufactory‟) where it operates as follows:

Input: مصىع.

Word ← Input from the user

AR [] ← Analyze(مصىع)

Result ← Null

i ← Size(AR)

if AR [i].Type ← Tool_Word or Proper_Noun

 or Except_Word

 return Result

else

 Result +Generate(مصىع, Common_Affix)

 do

 if AR [i].Pattern = Nominal

Word ← Stem(Word)

Result +Generate(مصىع, Noun_Affix)

 return Result

Output:

 فههمصىع نمصىع أفمصىع مصىعك

 أَنهمصىع َنمصىع نمصىع مصىعكما

 أفههمصىع فهمصىع َنمصىع مصىعكم

 كانمصىع أنمصىع فهمصىع مصىعكه

 َكانمصىع كمصىع انمصىع مصىعً

 فكانمصىع َكمصىع َانمصىع مصىعيً

 أكانمصىع فكمصىع فانمصىع مصىعٍا

 نكانمصىع أكمصىع أانمصىع مصىعيٍا

 أَكانمصىع نكمصىع أَ انمصىع مصىعٍما

 أفكانمصىع فُمصىع أفانمصىع مصىعيٍما

 مصىعان تانمصىع نهمصىع مصىعٍم

 مصىعيه َتانمصىع َنهمصىع مصىعٍه

 مصىعُن فثانمصىع فههمصىع مصىعىا

 مصىعات َتانمصىع تمصىع مصىعي

 مصىعا أَتانمصىع َتمصىع َمصىع

 مصىعُا أفثانمصىع فثمصىع فمصىع

 نهمصىع أتمصىع أمصىع

 َنهمصىع نثمصىع أَمصىع

5. CAN THIS METHODOLGY PRODUCE

DERIVED WODS?
The generated result of the demonstrated methodology above

has achieved a high accuracy where the words produced are

valid and precise. Those words in general are inflected where

none of them is derived since they kept the pure meaning of the

submitted word and their stems follow exactly the same pattern

of the submitted word.

Thus, producing the derived forms of a word would have a very

different model where the Roots and Patterns are the main

factors. The first step of such an algorithm is to get the root of

the input word then direct its main components to the suitable

patterns. As these letters are sent, the generating method will

return the new-formed words as an output. Obviously,

inflectional and derivational morphologies are following

dissimilar approaches. Therefore, the exact algorithm developed

here will not serve this purpose.

6. EVALUATION
The process used to evaluate the method is to compare the

forms resulted from the algorithm declared above (section 4.1)

to the forms founded by a corpus. The corpus used in this

practice is “arabicCorpus” which has a total of 173,600,000

words out of five main categories or genres: Newspapers,

Modern Literature, Nonfiction, Egyptian Colloquial, and

Premodern [14].

Submitting the same word “َمَصْىع” to the corpus examining all

the corpora and declaring the word type as a noun will reveal

the following forms:

 مصىعٍما مصىعيً فانمصىع انمصىعيه

 تمصىعي َمصىعىا َمصىعان مصىعي

 كمصىعيه تمصىعيه َمصىعً نمصىع

 مصىعك نمصىعيٍا فمصىع مصىعيه

 تمصىعً نهمصىعيه كانمصىع مصىعٍا

 َنهمصىع نمصىعي مصىعيٍما تمصىع

International Journal of Computer Applications (0975 – 8887)

Volume 112 – No 14, February 2015

40

 انمصىعان َمصىعيه َمصىعٍا َانمصىع

 َيصىع نمصىعٍا نمصىعيه تانمصىع

 َمصىعيً مصىعان مصىع مصىعً

 تانمصىعيه كمصىع انمصىع َمصىعا

 َمصىعيٍا مصىعىا مصىعا َانمصىعيه

 نمصىعىا مصىعيٍا َمصىع َمصىعي

 نمصىعً مصىعٍم نهمصىع

Exploring this result alongside with the previous one displayed

within the 4.3 section would lead to:

 The number of words generated by the algorithm is

larger than the one brought by the corpus. Fig 4 is

presenting the word “َمَصْىع” case.

Fig. 4: Comparison between the number of words generated

from the word “َمَصْىع” by the algorithm and the corpus

 Some of the generated forms are not used frequently

Fig 5 even they are grammatically valid. Thus, they

are not included in the corpus results.

Fig. 5: Words generated by the algorithm usage

 Generated forms are applying one level of affixes

modulation in which either prefixes or suffixes are

added, where the resulted forms are not limited to

that.

7. FUTURE WORK
In the future, this method can be enhanced further more to be

even more accurate and amusing. Different sets of patterns

could have defined affixes to get the exact expected words.

Accordingly, the databases of patterns and affixes would be

reformed or even follow more precise classifications. More

precisely, affixes should be cataloged in such a way that the

morph-tactic problem can be avoided. Different types of

prefixes do not suit some suffixes to be attached to the same

word.

Besides, other categories of words could be studied too to be

involved in the generating procedure developed here, where the

special types were eliminated in the beginning of the method

could have their own process as well.

Moreover, the input of the system can be more than a word and

the obtained results would be stored distinctly and subsequently

revealed in a sequence.

Likewise, the system output can be improved by operating the

method in an iterative way, where the generated words are

submitted again to be considered as a new input to the Generate

method. This attitude will provide an advanced level of the

words generated.

Another practice can have a noticeable affect on the output

utility for the user of the system is declaring the modifications

have been made at each word generated.

Finally, integrating this system within larger systems used for

different applications such Information Retrieval and

Extraction, Machine Translation, Data Mining, ..., etc. Doing so

will clarify additional features to be developed and combined

with the system.

8. CONCLUSION
In this paper a method that provides nearly all the words can be

formed out of any entered word was developed. First, the word

will be submitted and its features will be specified after

analyzing that word. Accordingly, new inflected words are

produced using the method developed and demonstrated

through this paper based on the suitable affixes to the word

obtained from the user. Additionally, this paper answers the

question that is „whether or not inflected and derived words can

be equally produced using the same methodology?‟, it was

proven that another model based on the Root and Patterns is

required rather the one developed based on the Stem and

Affixes to achieve that. Lastly, many ideas of developing the

algorithm presented above has bee discussed.

9. ACKNOWLEDGMENT
We would like to express our gratitude to our supervisor Dr.

Mohammad Dahab for the useful comments, remarks and

engagement through the process of preparing this paper. We

also would like to thank every contribution was towards

development of this paper.

10. REFERENCES
[1] K. Shaalan. Rule-based Approach in Arabic Natural

Language Processing. International Journal on Information

and Communication Technologies, Vol. 2, No. 3, June

2010.

[2] M. Gridach, N. Chenfour, Developing a New System for

Arabic Morphological Analysis and Generation,

Mathematics and Computer Science, Department Faculty

of Science Dhar, El Mehraz Fez.

[3] M.G. khayat, A. Al-othman and S. Al-safran, An Arabic

Morphological Analyzer/Synthesizer, Department of

Electrical & Computer Engineering, KAAU, Jeddah and

KFUPM, Dhahran, Saudi Arabia, JKAU: Eng. Sci., vol.

13 no. 1, pp. 71-93,1421 A.H. / 2001 A.D.

[4] Tengku Mohd T. Sembok, Belal Mustafa Abu Ata and

Zainab Abu Bakar, A Rule and Template Based Stemming

Algorithm for Arabic Language, International Journal Of

Mathematical Models And Methods In Applied Sciences,

Issue 5, Volume 5, 2011.

51

60

Number of Words

Generate Word Algorithm arabicCorpus

15%

85%

Not Used

Used

http://sites.google.com/site/khaledshaalan/publications/journal-papers/Rules_based_NLP.pdf.
http://sites.google.com/site/khaledshaalan/publications/journal-papers/Rules_based_NLP.pdf.
http://arxiv.org/pdf/1101.5494.pdf
http://arxiv.org/pdf/1101.5494.pdf
http://arxiv.org/pdf/1101.5494.pdf
http://www.kau.edu.sa/Files/320/Researches/52647_22953.pdf
http://www.kau.edu.sa/Files/320/Researches/52647_22953.pdf
http://www.kau.edu.sa/Files/320/Researches/52647_22953.pdf
https://www.academia.edu/3600181/A_Rule_and_Template_Based_Stemming_Algorithm_for_Arabic_Language
https://www.academia.edu/3600181/A_Rule_and_Template_Based_Stemming_Algorithm_for_Arabic_Language
https://www.academia.edu/3600181/A_Rule_and_Template_Based_Stemming_Algorithm_for_Arabic_Language

International Journal of Computer Applications (0975 – 8887)

Volume 112 – No 14, February 2015

41

[5] Khaled Shaalan and others, Arabic Word Generation and

Modeling for Spell Checking, Institute of Formal and

Applied Linguistics and others, Charles University in

Prague, Czech Republic, School of Computing, Dublin

City University, Ireland.

[6] Karin C. Ryding, A Reference Grammar of Modern

Standard Arabic, Cambridge University Press, August

2005.

[7] Ritchey, T. General morphological analysis. 16th EURO

Conference on Operational Analysis. 1998.

[8] Nizar Habash, Abdelhadi Soudi and Tim Buckwalter , On

Arabic Transliteration , In Arabic Computational

Morphology: Knowledge-based and Empirical Methods .

Soudi, Abdelhadi; van den Bosch , Antal; Neumann,

Günter (Eds.), 2007.

[9] Maha Althobaiti, Udo Kruschwitz, Massimo Poesio ,

AraNLP: A Java-based Library for the Processing of

Arabic Text, School of Computer Science and Electronic

Engineering, University of Essex, Colchester, UK.

[10] Farghaly, K. Shaalan. Arabic Natural Language

Processing: Challenges and Solutions, ACM Transactions

on Asian Language Information Processing (TALIP), the

Association for Computing Machinery (ACM). TALIP Vol

8, Issue 4, December 2009.

[11] Boudlal, A. Lakhouaja, A. Mazroui, A. Meziane M. Ould

Abdallahi Ould Bebah and M. Shoul., 2011: Alkhalil

Morpho Sys 1: A Morphosyntactic analysis system for

Arabic text, University Mohamed I, Oujda, Morocco.

[12] Kroeger, P., Analyzing Grammar: An Introduction,

Cambridge University Press, 2005.

[13] Moulana Ebrahim Muhammad, From the Treasures of

Arabic, Academy for Islamic Research, Safar 1427 A.H.

March 2006.

[14] arabicCorpus, http://arabicorpus.byu.edu/search.php

11. APPENDIX

11.1 Common Affixes
11.1.1 Prefixes:
 فم َل ل أف أَ أ ف َ

11.1.2 Suffixes:
ني ٌم ٌما ٌا ي كه كم كما ك

11.2 Noun Affixes
11.2.1 Prefixes
 نم أفال أَ ال أ ال فال َال ال

 َل ل نة أب فة ب َنم

 َ نك أك فك َك ك أل

 أَ تال نثال أتال فثال َتال تال فُ

 كال أفهم أَ نم فهم َنم نم أفثال

 أفكال أَ كال نكال أكال فكال َكال

11.2.2 Suffixes

 ان ا َا ي يٍما يٍا يً

 ات يه ون

11.3 Verb Affixes
11.3.1 Prefixes
 أَ س أس فس َس س ي ت

 فم َل ل فم َل ل أفس

 ويٍه ويٍم ويٍما ويٍا ويً وي ٌَه

11.3.2 Suffixes

 كً واٌه واٌم واٌما واٌا واي

 كماٌا كماي كٍه كٍم كٍما كٍا

 كمٌُم كمٌُما كمٌُا كمُي كماٌه كماٌما

 َوي كىٍه كىٍم كىٍما كىً كمٌُه

 َوا َويٍه َويٍم َويٍما َويٍا َويً

 ٌَا َي َواٌه َواٌم َواٌما َواٌا

 ٌَم ٌَما

IJCATM : www.ijcaonline.org

https://ufal.mff.cuni.cz/~pecina/files/lrec-2012a.pdf
https://ufal.mff.cuni.cz/~pecina/files/lrec-2012a.pdf
https://ufal.mff.cuni.cz/~pecina/files/lrec-2012a.pdf
http://arabicorpus.byu.edu/search.php

