
International Journal of Computer Applications (0975 – 8887)

Volume 112 – No 10, February 2015

9

Compiler Optimization: A Genetic Algorithm Approach

Prathibha A. Ballal
Dept. of CSE, NMIT
Bangalore-560064

H. Sarojadevi, Ph.D.

Dept. of CSE, NMAMIT
Nitte-574110

Harsha P S
Dept. of CSE(PG),NMIT

Bangalore-560064

ABSTRACT

Compiler optimization is the technique of minimizing or

maximizing some features of an executable code by tuning the

output of a compiler. Minimizing the execution time of the code

generated is a priority in optimization; other attributes include

minimizing the size of the executable code. The generation of

fast executables begins at code design phase up until the

compilation process is complete. Even though compilers are at

the tail end of generating fast executables, the right flag used

during compilation, would provide substantial performance

gain. Though, compilers provide a large number of flags(GNU

compiler) to control optimization, often the programmer opts

for the simpler method, which is to merely choose the

optimization level. The choice of optimization level

automatically dictates the flags chosen by the compiler. In this

paper, we access at the gain provided by using optimization

levels, also we propose a genetic algorithm to determine the

combination of flags, that could be used, to generate efficient

executable in terms of time. The input population to the genetic

algorithm is the set of compiler flags that can be used to

compile a program and the best chromosome corresponding to

the best combination of flags is derived over generations, based

on the time taken to compile and execute, as the fitness

function. The experimental analysis shows that genetic

algorithm is a suitable candidate to find an optimal solution if

the solution space is large, which otherwise would have been

very difficult to identify, due to the large set of flags available

in the GCC compiler for optimization alone. Also the best

combination of flags is application dependent.

Keywords

Compiler Flags; Optimization; Fitness function; Population;

Generation.

1. INTRODUCTION
Compiler optimization is the technique of tuning the output of

a compiler to minimize or maximize some features of

an executable computer program. The goal of optimization is to

find the best value for each attribute, in order to achieve

satisfactory performance. The measure of the compiler

optimization is performance in terms of execution time and the

size of the code generated, power-awareness etc. The compiler

also determines the type and number of instructions executed

for any application, which in turn impacts the overall execution

time. Incorporating compiler optimizations improves the

performance of the executable code, however the compiler

becomes more complex [1].

The most common metric is to minimize the time taken to

execute a program; a less common one is to minimize the

amount of memory occupied by the code (code size). A valid

combination of these metrics is called “Pareto optimal” if there

is no possibility of further enhancement without degradation of

another objective.[2] Compiler optimization is a heuristic

approach, since there is no general algorithm for optimization,

as the amount and type of optimization possible varies

depending upon the application being compiled. However, it is

observed that during program execution (i) a program spends

large percentage of the time in executing a small part of the

code (ii) The part that consumes the most time usually consists

of loops (iii) Also, there are parts of the code that are not very

frequently executed for e.g. the code that tests for errors in

input. From the observations it is clear that the highest

percentage benefit in performance can be obtained, if loops are

optimized in the generated object code [3].

Compiler optimization is generally implemented using a

sequence of optimizing transformations. The implementation of

the algorithms take a program as input and converts it to

produce an output with the same functionality as the un-

optimized code with improved metrics such as speed of

execution and minimal usage of resources. In the GNU C

compiler there are a large number of optimization flags and

several optimization levels(switches) that control the type of

optimization during the compilation process. A compiler flag

optimizes a particular feature in a program whereas an

optimization level which is a combination of several flags may

optimize more than one feature, ensuring a tradeoff between the

various metrics. The compiler provides an option of turning on

and off either the flags or the optimizations levels(-O1, -O2, -

O3, and -O4). In the absence of knowledge about optimization,

programmers often merely dictate the optimization level and the

compiler imposes the default set of flags associated with that

optimization level, accordingly. To be able to achieve good

optimization, programmers need to know which exact flag to

choose during compilation.

From the past, up until now, much of the work in the field of

optimization has considered evolutionary algorithms as the

solution. Evolutionary algorithms or EAs are nature inspired

and observe gradual change in characteristics of a particular

population or subject. Many previous works on compiler flag

selection focused on reducing the search time instead of

increasing the performance itself. This approach poses a setback

as it assumes that there is no interaction between flags.

Interaction may bring forth improvement in performance. This

motivated another evolutionary algorithm approach, Genetic

Algorithm, which overcomes all the above mentioned

drawbacks by giving out an optimal solution from a large

search space of solutions and the programmer need not check

for the effectiveness of every possible solution which would be

very difficult and time consuming.

Genetic algorithms are search based evolutionary algorithms

that imitate the process occurring naturally for selection. They

are used to find out an optimal solution among many in a very

large search space of solutions. Just like in human body, where

the characteristics are determined by genes and the combination

of genes becoming chromosomes, genes and chromosomes

exist here too. The main steps of genetic algorithm are

Selection, Cross-over, Mutation and Termination. Selection is

the process of determining which chromosomes are taken into

the next generation. The fitness is the value of an objective

function which is calculated for every chromosome in the

population. It is the measure of how desirable it is to have that

chromosome in the population. Based on the fitness value of

chromosomes upon cross-over and mutation, the Selection is

done to determine the optimal chromosome. Cross-over is the

process of combining two or more chromosomes to derive a

International Journal of Computer Applications (0975 – 8887)

Volume 112 – No 10, February 2015

10

new one. Mutation is a process in which a genes change

randomly. The evolution starts from population of

chromosomes and is an iterative process, with the population in

each iteration called a generation. Finally, the GA terminates

giving out the optimal solution. In the context of compiler

optimization, we consider a flag of the compiler to be a gene

and two or more genes i.e. flags combine to form a

chromosome[4].

We present background and analysis of performance of a quick

sort program to understand the impact of optimization in

section 2. The methodology used to select the flags for

optimization using genetic algorithm is discussed in section 3.

A discussion of the experimental setup and performance

analysis is presented in section 4 of the paper. Section 5

concludes the paper.

2. BACKGROUND AND RELATED

WORK
The quest to optimize all the available resources has always

been the goal and at the same time, a challenge to mankind. The

same applies to compiler technology also. It is usually of

interest to an application developer to make complete use of all

the optimizations available. Previously, the user used to specify

the optimization switch which in turn sets/resets some flag(s) of

the compiler. In order to control the attributes such as

compilation-time and memory usage, and the resulting trade-

offs between speed of execution and space for the resulting

executable, GCC provides a range of optimization levels, each

level performing a series of optimizations and also an option

to set individual flags to perform a specific optimization as

required by the user. There is always a trade-off between the

advantage gained due to optimization and the cost incurred to

achieve it. The impact of the different optimization levels on the

input code is as described below:

-O0 or no -O option (default)

This is the level at which the compiler just converts the source

code instructions into object code without any optimization. A

compile command with no specific switches enabled, compiles

the program at this level. The advantage of this level is it

enables easy bug elimination in the program.

-O1 or -O

When a program is compiled using this level, the compiler

generally ensures that the executable code generated occupies

less space and consumes less time, as compared to the code

generated at the default compilation level. A lot of simple

optimizations are performed at this level, which eliminates

redundancy, thereby reducing the quantum of data processing.

Hence the code runs faster as opposed to default level

compilation.

-O2

At this level, the compiler incorporates additional

optimizations, besides the optimization done at level –O1. More

complex techniques which schedule instructions for faster

execution are performed. It takes longer to compile the source

code and also the memory required during compilation is more.

However the priority is also, to ensure that when the

optimization is done the size of the executable does not

increase. This feature makes it the best level for compilation of

a code, before deployment. The executable code will be the

most optimized for its size.

-O3

Each optimization level is a superset of the previous level, in

that, it incorporates all the optimizations done at the previous

level with added optimizations. Here complex techniques like

function in-lining are applied on the source code, the advantage

of which may be a faster executable but the drawback is that the

executable becomes bulky. Also, there is no guarantee on the

speed of the executable, if the source code does not lend itself

well to such type of optimization.

-Os

The main objective of this optimization level is to generate

executables for memory constrained systems. All the

optimizations applied at this level only aim to reduce the code

size without any concern on speed. As observed in level -03, it

is possible that the reduction in size of the executable may

enable effective use of the cache memory. This may sometimes

increase the speed of execution as well. However speed is not a

guaranteed feature[5][6][7].

Impact of Gcc Optimization Levels
The optimization levels of GCC are tested on sequential and

parallel Quick sort program for the same data sets. In Fig.1, the

code executed without any optimization level is observed to be

taking the maximum time in seconds.

 After using four of the compiler levels the execution time has

significantly reduced. Among the levels compared it is observed

that -O3 is the best for sequential execution of Quick sort with

any size of input data set as –O3 level performs the maximum

loop optimization. From Fig.2, there are two main

observations:

Fig. 1 Performance of GCC optimization levels on

sequential quick sort program

(i) The level O3 which performs best optimization of loops

exhibited the best result for sequential execution as seen in

Fig.1, does not have the same impact for parallel execution,

because of the increased overhead of inter-process

communication.

(ii) The maximum time taken for execution of the sequential

code is 0.88 seconds whereas for the same algorithm and same

input size the parallel code takes a maximum execution time of

0.33 seconds.

E

x

e

c

u

t

i

o

n

T

i

m

e

Number of Inputs

International Journal of Computer Applications (0975 – 8887)

Volume 112 – No 10, February 2015

11

Fig. 2 Performance of GCC optimization levels on parallel

quick sort program

For an input size of 2000K the improvement in execution time

of parallel code as compared to sequential code is 62.5 percent

when the GCC -O switch is used. However, this poses a

challenge as to which optimization feature has to be considered

for a code to perform the optimization out of a large space of

optimization features. From past, till today, a lot of work on this

type of a challenge has been carried out having used

Evolutionary algorithms as one of the solutions. Evolutionary

algorithms or EAs are nature inspired and observe gradual

change in characteristics of a particular population or subject.

Many evolutionary algorithms like Genetic Algorithm,

Simulated Annealing etc. have been considered in the past

which determines an optimal solution given a huge search space

with no deterministic outcome. Work on compiler optimization

was done previously using different approaches by many such

as Rodrigo et al. who did an extensive work on evaluation of

optimization parameters of GCC compiler [8] Elana Granston et

al. gave a framework called “Dr.Options”[9] which

automatically recommends the best optimization options for a

program. Jeyaraj Andrews et al. focused on evaluating various

optimization techniques related to MiBench benchmark

applications [10]. The documentation by Wind River Systems

gives out the importance of compilers and also the advanced

optimization techniques [11].

Further, Scott Robert Ladd synthesized an application called

Acovea which is an acronym for Analysis of Compiler Option

via Evolutionary Algorithm for compiler flag selection [12].

Many previous works on compiler flag selection focused on

reducing the search time instead of increasing the performance

itself.

3. METHODOLOGY
Evolutionary algorithms or EAs are nature inspired and observe

gradual change in characteristics of a particular population or

subject. One of the most commonly used evolutionary

algorithms is Genetic Algorithm, GA, which selects an optimal

solution from a large search space. Just like in human body,

how the characteristics are determined by genes and the

combination of genes becoming chromosomes, genes and

chromosomes exist here also. Here, the compiler flags are the

genes. Different combinations of these flags are chromosomes.

As in the nature of evolution, chromosomes evolve.

The steps of genetic algorithm are listed below:

Step 1: Consider an initial population of chromosomes i.e.

compiler flags of the GCC compiler.

Step 2: Consider a sample program of user interest as an input

to the Genetic Algorithm.

Step 3: Make the cross-over of the chromosomes, being the

flags of the compiler, to generate new chromosomes.

Step 4: Compile the sample program using different

combination of flags and execute it.

Step 5: The compilation and execution time durations are

noted.

Step 6: The Fitness function is derived as a function of

compilation and execution times which is as shown below:

Step 7: Calculate the fitness value for each chromosome in the

generation.

Step 8: Find out the chromosome which corresponds to the

maximum fitness value and the combination of flags

corresponding to that chromosome is said to be the best

combination of flags for that particular sample program since it

results in least amount of compilation and execution times.

Step 9: The process is repeated and the best chromosome is

derived over generations.

Step 10: The termination of the algorithm occurs when the best

combination of a set of flags is identified for compiling a

particular code.

The final outcome of this process is the chromosome which

corresponds to the best fitness value which in this case is the

inverse sum of compilation and execution time.

The GA uses a fitness function to determine the performance of

each chromosome. The definition of the fitness function

depends on the problem domain. In this, the fitness function is

the inverse sum of compilation and execution times. For

compilation, the flags in the chromosome from the pool are

used to compile the code and this process is timed. The

resulting time duration is the compilation time. This represents

the amount of time taken to compile that code using different

chromosomes. Upon completion of the compilation process, the

code is executed and this process is also timed. The resulting

time duration is called execution time which represents the

amount of time taken to execute that code. Both time durations

are summed, its inverse is taken and the resulting value is fed to

the algorithm as fitness value. The reason for taking inverse of

the sum is that the GA returns the solution corresponding to the

chromosome with the highest fitness value as the optimal

solution. And the whole aim of the project is to minimize the

time taken for compiling the code. Thus, the inverse sum is fed

to the algorithm is fitness value. So, lower the sum of

compilation and execution times, higher is its fitness value and

vice-versa. The design of the working of the algorithm is

illustrated in Fig.3.

Fitness =
1

𝐶𝑜𝑚𝑝𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 +𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

E

x

e

c

u

t

i

o

n

T

i

m

e

Number of Inputs

International Journal of Computer Applications (0975 – 8887)

Volume 112 – No 10, February 2015

12

Fig. 3 Genetic Algorithm Usage Flow

4. PERFORMANCE ANALYSIS
The test beds for this are Intel hardware architecture namely,

the x86_32 and x86_64. The intention was to determine if this

algorithm has a positive impact across various hardware

architectures. The source code considered for optimization

contained loops, as loops are hotspots for optimization. The

recursive(quick sort) and non-recursive (Fibonacci series)

programs, was repeatedly compiled and executed.

The gene pool of the flags and the chromosomes used in the

genetic algorithm are as listed in Table 1.

Table 1. : Chromosomes of the flags gene pool

Chromosome Gene Pool

a -fexpensive-

optimizations

-foptimize-sibling-

calls

b -fcse-follow-jumps -funroll-all-loops

c -fforward-propagate -floop-strip-mine

d -floop-parallelize-all -foptimize-sibling-

calls

e -floop-block -frerun-cse-after-

loop

f -funsafe-loop-

optimizations

-floop-interchange

During each of the compilation and execution sessions, the

duration was timed. Then, the compiler flags of the next

chromosome were used to repeat the above process till the best

chromosome was selected. Graphs of chromosomes versus

fitness values were plotted for recursive and non-recursive

programs to identify the difference in the fitness values for

compiling using flags and also without any flags.

The variance in the fitness values for recursive and non-

recursive programs is compared, when compiled with and

without any flags. The sample code for recursive program is

the quick sort program and for non-recursive Fibonacci

program was considered. The fitness values for both the sample

programs plotted against the chromosomes are as seen in the

graphs, Fig. 4, Fig.5, Fig.6 and Fig. 7. The graphs do not start

from zero being the basis of the axes value since the obtained

results start from 16.27 and 10.53 for Fig.5 and Fig.7

respectively and there is no significant difference between

consecutive values plotted to derive a constant interval. The

cases of compiling the program with and without having flags

were taken in order to see the difference in the fitness values

and to determine the best chromosome for that particular kind

of program. Fig.4 and Fig.6 depict straight lines in the graphs

for recursive and non-recursive programs considered since there

is no flag(s) explicitly set/reset for compiling. The default

flag(s) are considered for compilation which is set/reset by the

default optimization switch “o”. As there is no difference in the

compilation times for each program, the fitness value remains

same along all the runs resulting in a straight line in the graphs.

Fig. 4 The comparison of fitness values for non-recursive

sample program without any flags.

Fig.5 shows sudden decline in the fitness value and then, it

increases as the flags taken to compile the non-recursive

program considered change. This shows how flags affect the

overall fitness values as some flags increase the compilation

time and some decrease it. It always depends on what

optimization is being carried out by the flag in the background.

Fig. 5 The comparison of fitness values for non-recursive

sample program with flags.

Fig.7 shows gradual decrease in the fitness value indicating that

the flags corresponding to the label “a” are the optimal flags for

that particular program as they impose optimizations that results

in lesser compilation duration. One main point to be noted is

that all the optimizations don’t turn out to be useful in all the

International Journal of Computer Applications (0975 – 8887)

Volume 112 – No 10, February 2015

13

cases. So, it is very important to note which optimization is the

best for which particular input. It can be seen that Genetic

algorithm proves to be very efficient in searching an optimal

chromosome, in this case, the best combination of flags from a

very large set of compiler flags being the search space for it.

 Fig. 6 The comparison of fitness values for recursive sample

program without any flags.

Fig. 7 The comparison of fitness values for recursive sample

program with flags.

Note: The labels “a - f” correspond to chromosomes of the

genetic algorithm i.e. combinations of compiler flags.

5. CONCLUSION
The experiments conducted on the gene pool considered

demonstrates that, different chromosomes have different fitness

values for the same program indicating two results

i) The chromosomes generated from the gene pool have a

significant impact on the optimization of a program. Hence

bigger the gene pool the probability of getting better fitness

values for a particular program increases.

ii) The fitness values obtained is program dependent.

The GCC Compiler has about 36 flags for optimization alone.

In our future work we will consider more flags in the gene pool.

Use of genetic algorithm enables testing of program for many

different chromosomes and across several generations easily,

which otherwise (manual selection of flags) would have been

very cumbersome. The algorithm can also be tested for parallel

programs thereby drawing an inference and moving towards

supervised machine learning.

6. ACKNOWLEDGEMENTS
We thank Nitte Meenakshi Institute of Technology for

providing the support for publishing this paper. Our special

thanks to Prof. N.R.Shetty, Director NMIT, Dr. H.C.Nagaraj ,

Principal NMIT and Dr.Dinesh Anvekar, , HOD department of

CSE, NMIT, for their invaluable support.

7. REFERENCES
[1] Han Lee1,, Daniel Von Dincklage,1 Amer Diwan,1,_And

J. Eliot B. Moss, “Understanding The Behavior Of

Compiler Optimizations” Software Practice And

Experience, 2004; 01:1–2

[2] Kenneth Hoste Lieven Eeckhout,,COLE: Compiler

Optimization Level Exploration,CGO’08, April 5–10,

2008, Boston, Massachusetts, USA.,Copyright 2008 ACM

978-1-59593-978-4/08/04

[3] “Compilers: Principles, Techniques, And Tools”Alfred V.

Aho, Monica S. Lam, Ravi Sethi, And Jeffrey D. Ullman

[4] http://en.wikipedia.org/wiki/Genetic_algorithm

[5] http://gcc.gnu.org/onlinedocs/gcc/Optimize-ptions.html.

[6] http://www.network-theory.co.ukdocs/gccintro/

gccintro_49.html

[7] http://lampwww.epfl.ch /~fsalvi/docs/ gcc/www.network-

theory.co.uk/docs/ gccintro /gccintro_42.html

[8] Rodrigo D. Escobar, Alekya R. Angula, Mark Corsi,

“Evaluation of GCC Optimization Parameters”, Ing.

USBMed, Vol.3, No.2, pp.31-39, December, 2012.

[9] Elana Granston, Anne Holler, “Automatic

Recommendation of Compiler Options”, California

Language Lab, Hewlett-Packard Industry, U.S patents

5,960,202 and 5,966,538.

[10] Jeyaraj Andrews, Thangappan Sasikala, “Evaluation of

various Compiler Optimization Techniques Related to

Mibench Benchmark Applications”, Journal of Computer

Science 9 (6): 749-756, 2013.

[11] Wind River Systems, "Advanced compiler optimization

techniques" April 2002. Online [December. 2012].

[12] Scott Robert Ladd,, “Acovea: Analysis of Compiler

Options via Evolutionary Algorithm” Describing the

EvolutionaryAlgorithm”, http://stderr.org /doc / acovea

/html/acoveaga.html.

IJCATM : www.ijcaonline.org

