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ABSTRACT

In this paper Newton’s method using Trace Theorem for
three-parameter eigenvalue problems are discussed and
some numerical results are presented to illustrate the
performance and application of the method
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1. INTRODUCTION

Multiparameter eigenvalue problems are generalization of
one-parameter eigenvalue problems and can be found when
the method of separation of variables is applied to certain
boundary value problems associated with partial differential
equations. Typical examples are provided, for example by a
vibrating membrane Roach [16] and a dynamical problem of
homogeneous beam loaded by a vertical load Collatz [7].

Although the literature on multiparameter problems is over
a century old, the attention of the mathematicians towards
multiparameter problems started with the unifying work of
Atkinson[1]. Much more works have been done in the field
of one-parameter eigenvalue problems, both theoretically
and numerically compared to two-parameter or more than
two-parameter eigenvalue problems. Some works have been
done theoretically in the field of multiparameter eigenvalue
problems. Few authors namely Fox et. al[9], Sleeman[17],
Baruah[3], Konwar[13], have dealt with the multiparameter
eigenvalue problems numerically mainly in two parametric
cases. Numerical methods applied to a three-parameter
problems are very limited and hence some contribution in
this area are always in needed.

1.1 Three-Parameter Eigenvalue Problem
And Its Reduction To A System Of

One-Parameter Problems
A three-parameter eigenvalue problems in matrix form is as
follows

W (A) X = AgX = A4 Ay X = 2, ApX = 2 ApX =0
W2 (A)y= Azoy_/’llAny_ﬂzAzzy_ﬂsAny =0

Wo(2)Z = ApZ = A Az = Ao A2 = JgAgZ =0 (1)

Where 4, € £ ,i=1,23 and
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x e £"\{0}, Ay, Ay AL A, € £™"
ye£"\{0} AL AL A, A, cE™
ze£ " \{0}, Ay, AL A, A PP

Where A4, € £ , i=1,2,3 are called the eigenvalues and
X,Y,Z are called eigenvectors of the problem.

Problem(1.1.1) can be reduced to a system of three one-

parameter problems:

AU =A4AU
Au=1,AU (112
Au=4,A U

where Ay, AL A, Agare
dimensional matrices defined as
Ao = A11®A22 ® A33 - An ® A23 ® A32
+A12®A23®A31_A12®A21®A’.3
+A13®A21 ® As.z - A13 ® Azz ® %1 (1.1.3)

A =A®A, QA - A B A, QA,
+A, @A, ® A, — A, ®A,® A,
+A, QA RA,-A,QA,RA, (1.1.4)

A, =Au®AL O A, - A QA QA
+A10®A23®A31—A10®A21®A33

+A, QA A -A QA A, (115)
Ay =Ap®R, OAG—A QA QA,
+'6‘12®A20®A3.1_A12®A21®A30

A QA A, -A A, O A, (1.1.6)
And

U=X®Yy®z

(mnp) > (mnp)

With ® denoting the Kronecker product (or Tensor
product) of two matrices discussed in (1.3).
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Theorem : Let (4,4,,4;) be an eigenvalue and
(X, Y, Z) a corresponding eigenvector of the system
(1.1.1) then (A4, 4,,43) is an eigenvalue of the system
(2.1.2) and u:x®y®z is the corresponding

eigenvector.

1.2 The Kronecker Product
Definition1.2. 1: The Kronecker product

(®.):£™"x£ P9 — £ ™M s defined by

a,B L B
A®B= M O M
a,B L a,B

Where we use the standard notation (A); = @;

The Kronecker product is a special case of the tensor
product, and as such it inherits the properties of bilinearity
and associativity, i.e.

(KA) ® B = A® (kB) = k(A® B)
A®(B+C)=A®B+A®C
(A+B)®C=A®C+B®C

We now establish a famous property of the Kronecker
product, from [9].

Lemma (Mixed product property). Let
Acf£™ BefPI Cef™ Def™ Then
(A®B)(C®D)=(AC®BD).
In particular, if A,Be€£™™ and X,y €£ " then
(A®B)(x®Y) = AX®By.
2. NEWTON METHOD USIN TRACE
THEOREM
detW, (1) f,(1)
Let f (1) =| detW, (1) |=]| (1) 2.1)
detW, (A1) f;(1)

Obviously, A €] s an eigenvalue of the three-
parameter eigenvalue problems (1.2.1) if and only if

f(1)=0 22
In order to apply Newton’s method to solve the nonlinear
system (2.2), we need the partial derivatives of f (C) with

respect to the A, A,, A5 . To calculate these derivatives we
employ the following Trace Theorem([].

Theorem: If the elements of the square matrix B(c) are
differentiable functions of c, then for any c, we have for the
derivative of the determinant det B(c) of B(c):

_ d(detB(c)) _ tr[adiB(c). dB(c)]
dc dc

And if detB(c) does not vanish
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d(detB(c)) _ (de;f(c)) det B(C).tr[B(c). OIB(C)]

Where tr and adj mean trace and adjoint, respectlvely and
d(detB(c)) _db;(c)
dc dc

Using trace theorem, we have

o1, (7)) o(detw](4) W, (0)
o1, o = trladj(W,(c)). o1, — ]
2.3)
Then the 3x 3 Jacobian J; (1) of the function f (1) is
oW, (c)

J; (1) =tr[adjW, (c). ———] (2.4)

J
If det W, (C) # O, then

oW, (c)
oA

]

J . (A) = detW, (c) tr[wW " (c) —~2]

J, (1) = diag(detW, (1), detW, (1), detW, (A)) H(A)

(2.1.5)
oW, (4
Where H(A) = trfW (1) (4)
oA,
Newton’s method to approach a solution of (2.2) has the
form

A0 =20 3 2™ f(A"),n=0,12,.......
where  A® =42, 9,29 is an initial

approximation.

3. NUMERICAL EXAMPLE:

We now present a numerical example to show the behaviour
and application of our method

— -] (26)

Consider the following system of equations

1 0\(x 3 0)\(x 5 0)(x
o alllo Wl)lo ol
2 2 2 (31)
7 0)(x
o ol
o o sl sl
= +
[O lj(y2 A 0 9y, & 0 15)\y, (3.2)
14 0y
“lo ol
3 0)z) ,(300 Zl+ 75 0)z
02 zz_ﬂio 6\ z, %l 16 %) 33)
. 57 0z
% 0 14)\z,
To estimate rough bounds of the parameters 4, A,, A; of
(3.1.1).(3.1.2),(3.1.3) we go through Gerschgorin theorem.
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Theorem: Let D, be a circle whose centre is &, and

whose radius is Z‘aij ‘ , Where j=1,2,3,....,n and

j # 1. Then Gerschgorin says that

(1)Every eigenvalue of A must lie in the union of those
circles.

(2) If k of these circles donot touch the other n-k circles,
then exactly k eigenvalues lie in the union of those k circles.

Using (1.2), we can write(3.1),(3.2),(3.3) as
Diag(0,0,0,-36,-432,-72,-108,-36)u= /11
diag(480,84,600,144,264,40,582,152)u

Or,

Diag(0,0,0,-.2500.-1.6364,-1.800,-.1856,-.2368)u= ﬂ,lu
Diag(-72,0,-90,0,-72,-24,-198,-48)u= A,
diag(480,84,600,144,264,40,582,152)u

Or,

Diag(-.1500,0,-.1500,0,-.2727,-.6000,-.3402,-.3158)u= /12
u

Diag(120,12,150,36,336,64,348,92)u= ﬂg
diag(480,84,600,144,264,40,582,152)u

Or,
Diag(.2500,.1429,.2500,.2500,1.2727,1.6000,.5979,.6053)u
= 2'3 u

Applying Gerschgorin’s

|4,|<0,|4,|<0,]4|<16.

Using these rough bounds of eigenvalues we consider a
variety of starting values to calculate the approximate
eigenvalues. Eight experiments are displayed in Table.1 and
Table 2.

Theorem we have
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4| (.0000,.0000,.1429)"
1 O | (-1-1Y'

20 = _1.1 1| (-2.2201,-.2160,1.5192)]
2 (—1.7635,-.2598,1.3263)|
> | (-1.6364,—.2727,1.2727)

_3 O | (=3.1.2)

A9= 1 1| (-3102,.0337,.2517)"
2 (—.2592,.0051,.2503)"
3 (—.2503,.0002,.2500)"
4| (~.2500,.0000,.2500)"

~.34 0 | (-.34,-32,.591)

A0 = _32 1 (~.1401,—.3491,.5844)"

591 2 (—.1821,—.3409,.5967)"
3 (—1855,—.3402, .5979)"
4 (—.1856,-.3402,.5979)"
21 0 (-2.1,-75,1.8)"
A0 = _75 1 (~1.8607,—.6267,1.6565)"
1.8 2 (~1.8027,—.6011,1.6024)"
3 (-1.8000,-.6000,1.6000)"
_5 0 (-.5,-5,1)"
20 =|_5 1 (—.3276,—.3793,.7414)"
1 2 (—.2566,-.3296,.6348)"
3 | (—.2382,-.3168,.6074)"
4 (—.2369,—.3158,.6053)"
5

(2368, -.3158,.6053)"

Table:.1
Starting values Itera /1(k)
tion
1 ° | (-1-15.3)'
0 | _
A0 = -;5 1| (-.0329,-.1441,.2597)"
2| (-.0167,—.1473,.2552)"
6 (—.0004,-.1499,.2501)"
7 (—.0002,—.1500,.2501)"
1 O 1 (1-1.2)7
0 _| _
2 1 1 | (.0559,.0606,.0597)"
2

3 1 (.0001,.0002,.1427)"
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Table 2
Starting values I.tera
tion
-1 0 .1306
210 _| _15 1 .0785 .0093
3 2 0171 .0023
4 .0022 5.4453e-004
7 2.8284e- | 2.8455e-004
004
1 0 .9914
20 | 1 1 2178 9478
2 2 1150 1527
3 .0108 .0083
4 3.0000e- | .0031
004
1 0 72.823
20 | _1 1 1.3310 3.5201
1 2 4976 .6186
3 1292 .0426
4 .0093 .0017
5 0 .0017
_3 0 4.1470
20 2| 1 1 0847 9219
2 .0585 1185
3 .0102 .0053
4 3.6056e- | O
004
—-34 0 3.1532
/1(0) ~|—132 1 2021 .1588
591 2 .0445 .0079
3 .0037 3.0210e-004
4 1.0000 | 0012
e-004
21 0 28.8110
/1(0) _75 1 .3051 2344
18 2 .0833 .0067
3 .0038 4.3017e-014
_5 0 25
20 _| _g 1 3334 .5656
1 3 .0354 .0067
5 1.0000e- | .001
004

International Journal of Computer Applications (0975 — 8887)

Volume 111 — No 8, February 2015

The approximate eigenvalues obtained from Table 1 are

(~.0004,—.1499, 2501)", (0,0,.1429)" , (-1.6364, —.2727,1.2727)"
,(~.25,0,.25)", (—.1855,—.3402, .5979)", (-1.8,~.6,1.6)"
,(~.2368,—.3158,.6053)"

The successive difference between the eigenvalues obtained
from tablel and the successive values of f (1) are
calculated in Table2,

4. CONCLUSION

Table 2 shows that the successive difference between the
eigenvalues are gradually decreases and the values of

f (/1) also ceases to zero. So the method converses to the

exact eigenvalues rapidly. From Table 2 we can say that this
method is computationally attractive and we can use this
method easily to solve three-parameter
eigenvalue.problems. In the process describe above the
approximate eigenvalues can be obtained more easily and
the convergence is almost guaranteed as well as being more
rapid. It will definitely play significant roles for further
research in tackling the three-parameter for matrices and the
multiparameter problem in general.
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