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ABSTRACT 

The scope of computers has been expanding into increasing 

number of fields. With the growing need for computationally 

intense applications in every field, it is necessary to constantly 

meet the demands of performance requirements. The 

performance of the system relies heavily upon the processor 

and therefore the development of this technology is crucial. 

The processors of this age are handling growing amounts of 

data that depend on the speed, efficiency and data handling 

capacity of the processors. The scope of pushing the 

performance of a single processor has reached its threshold 

owing to factors such as cost, heat and power consumed. This 

lead to the advent of the age of multicore processor 

technology. But this model is also approaching a plateau in its 

scope by 2017 as predicted by Moore’s Law. It is imperative 

that an alternate and viable technology that produces high 

performance is found.  

GPUs are the answer to the search for such a highly powerful 

yet feasible technology. These units are capable of handling 

computationally intense tasks by performing the operations on 

huge data sets in parallel. This type of parallel processing 

breaks the problem into discrete parts that can be solved 

concurrently. So while the conventional CPUs use the power 

of a single core to solve a problem, the GPU solves the same 

problem using about a hundred processors. So, while 

increasing the number of cores in a processor is not possible, 

integrating CPUs with GPUs and passing the intense 

workloads to the GPU, which will process it faster, to achieve 

an overall high performance is a viable model. Coherence 

between the two units is important to distribute the workload 

such that the parts with large data, that suit parallel processing 

is handled by GPU and the serial tasks are controlled by the 

CPU.  
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1. INTRODUCTION 
The processor is in essence the brain of a computer system. It 

is the part of the device that performs the arithmetic and 

floating point operations that is necessary for the functioning. 
 Microprocessor or CPU is a complete computation engine 

that is fabricated on a single chip that consists of millions of 

transistors. 

The performance of the system hence obviously depends 

directly on the processor’s performance. To increase this facet 

of hardware, engineers scaled up the number of transistors in 

the processor. This improved the computing power by 

magnitudes. But the plateau of cramming large number of 

processors was reached with Intel’s Tejas CPU. This CPU 

was projected to run at 7 GHz, but it never did so. It 

dissipated 150 watts at 2.8 GHz Core frequency. This lead to 

the advent of multicore technology for harnessing more 

computing power. 

Looking at the current scenario, the fastest processors of our 

time is the Intel i7-3770k, with 4 cores and the CPU clocking 

maximum frequencies of 3.9 GHz utilizing 166-244 Watts 

power.[1] 

2. CURRENT PERFORMANCE 

IMPROVEMENT TRENDS 
When extreme amounts of computational capabilities are 

required, several methods are used by today’s developers. 

High-performance computing can be achieved by utilizing 

many CPUs working in parallel so that computation-intensive 

programs can complete running in a relatively short amount of 

time. These clusters are aimed at achieving improved and high 

level of performance. Parallel programming paradigms 

involve two issues, one is the efficient use of CPUs on one 

process and the other is the communication between nodes to 

support interdependent parallel processes that run on different 

nodes and handling mutually dependent data. This is 

essentially parallel computing. A parallel program consists of 

a set of processes sharing data with each other by using a 

shared memory over an interconnected network. Another way 

is to accelerate existing hardware beyond normal operation. 

Some processor manufacturers like Intel’s Turbo Boost allow 

the processor to overclock and achieve higher performance 

when there is enough power available, without any risk of 

overheating. 

3. NEED FOR ALTERNATIVE 
This trend of doubling the number of cores does not warrant a 

corresponding increase in the performance. A research by the 

US government’s Sandia Labs found this increase actually 

exhibited less than linear improvement.  

Further increases hit a wall due to the negative effects on 

power, cost and heat generation. It then decreased 

exponentially due to contention for memory bus and lack of 

memory bandwidth. Performance scaling for recent CPUs has 

failed to increase to the levels expected by the industry. This 

was predicted by Gordon Moore. This image shows the 

increase in transistor numbers over the years[2] 
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Fig 1: Graphical representation of Moore’s Law 

Moore’s Law states that the number of transistors per square 

inch on integrated circuits had doubled every year since their 

invention. Although the pace has slowed, the number of 

transistors per square inch has since doubled approximately 

every 18 months. This is used as the current definition of 

Moore's law.[3] 

The prediction projected by Moore’s Law is that the limit to 

growth in the CPU market, where speeds are concerned, will 

be reached once transistors can be shrunk as small as atomic 

particles. After this point, there is no more way of 

accommodating more and more transistors in a single chip to 

derive high performance, as is the trend of this age.   

Thus, throughput from sequential codes has reached the 

plateau of their performance between subsequent generations 

of the processors. Today’s processor fabrication uses the 

process of creating masks using deep sub-micron 

photolithography, which uses light to make the conductive 

paths and electronic components that are found in our core’s 

chips. This process also limits the development of core 

technology due to cost factor.   

The move towards new processor technologies is about 

increased performance or efficiency under optimal economic 

cost. While the latest microprocessor architectures from Intel 

and AMD have shown performance increases, they haven’t 

resulted in the doubling of performance that computer 

scientists relied upon the 70’s through the 2000’s to get 

performance increases in their code without changing the top 

level execution model. 

4. GPGPU AS AN ALTERNATIVE 
It has therefor become a necessity to look for alternative 

strategies to develop processor technologies that deliver high 

performance. The ideal characteristics are optimal power 

consumption, high processing speeds but at a lesser cost. 

Another important factor to consider is the heat generation, as 

high thermal levels can damage the hardware and also be 

harmful to the users.[4] This paper is going to analyze the use 

of GPUs alongside CPUs to improve performance at a 

feasible condition. That is, using the computational prowess 

of the GPU in cooperation with the task efficient CPUs to 

achieve an overall performance increase. 

4.1 GPU and its Performance 
GPU(Graphic Processor Unit), also called visual processing 

unit, is a specialized electronic circuit designed to rapidly 

manipulate and alter memory to speed up the creation of 

images in a frame buffer that is intended for output to a 

display. 

In other words, GPUs are optimized for taking huge batches 

of data and performing the same operation repeatedly at very 

fast rate.  

The GPUs goes far beyond basic graphics controller 

functions, and is a powerful computational device that can 

also be programmed. 

Kepler-based Quadro K6000, which is considered the fastest 

GPU of our time, has 12GB of super-fast DDR5 graphics 

memory, 2,880 streaming multiprocessor cores, ultra-low 

latency video I/O, and the ability to drive four simultaneous 

displays at up to 4K resolution. [5] 

This sort of high power that GPUs give can be put to use in 

varied fields. GPUs can operate at high rates and more cost 

efficiently than CPUs in an array of important sectors such as 

medicine, natural resources, national security and emergency 

services.[6] Its computational prowess is being harnessed to 

accelerate financial modeling, scientific research, oil and gas 

exploration. 

        The reasons GPUs increase performance because they employ 

hundreds of cores to work on a single program, processing 

different data sets simultaneously, thereby increasing the 

throughput tremendously. The simplest explanation is that a 

lot of extra hands make less work and enable finishing the 

work faster. But, for maximum output, cooperation with the 

main processor is vital. [7]This is covered in the later section. 

4.2 Difference between CPUs and GPUs 
On a basic hardware aspect, CPUs clock higher rates in their 

cores, whereas GPUs run on a much lesser clock frequency. 

But, GPU achieves its high computational capability through 

the use of its large number of cores. The power consumption 

in a CPU is high, while in GPU it is much lesser. 
Architecturally CPUs are composed of fewer cores with lots 

of cache memory and can only handle few threads at a time. 

However, GPUs are comprised of hundreds of cores that can 

process thousands of threads at the same time. This image 

probably explains the simplest difference between CPUs and 

GPUs. [8] 

 

Fig 2: Difference between a CPU and GPU 
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required. CUDA is an excellent choice for computationally 

datasets since GPUs use enormous parallel interfaces to 

connect with its memory, which is 10 times faster than a CPU  

memory interface.Though CUDA was explicitly designed to 

work on Nvidia’s graphic cards, it can also run on CPUs,   it 

CPU memory interface. Though CUDA was explicitly 

designed to work on Nvidia’s graphic cards, can also run on 

CPUs, though not as fast. CUDA platform is capable of 

supporting other computational interfaces, including the 

Khrono’s Group’s OpenCL, Microsoft's Direct compute. 

Python, Perl, Fortan, Java, Ruby, Lua, Haskell, MATLAB and 

IDL are also supported using third party wrappers.[10] 

CUDA is extremely well suited for handling huge amounts of 

data load, intense independent computing, CUDA utilises 

thousands of threads in parallel, that work on a set of varying 

data but applying the same operation (kernel) on them. It is 

capable of handling flow control statements like if..else 

statements even in this highly parallel architecture. 

While CPUs have fast caches which are great for data reuse, 

GPUs have lots of math units which make computation faster. 

CPU provides fine branching granularity whereas GPUs have 

faster access to the onboard memory. CPUs have high 

throughput on parallel tasks while on the other hand, GPUs 

give high throughput on parallel data. Also, while GPUs can 

run lots of processes or threads, GPUs run the same program 

on each fragment. Thus, CPUs are great for task parallelism 

and GPUs for data parallelism.  

4.3 Introduction to GPGPU 
GPGPU(General Purpose Graphic Processor Unit) work on 

the concept of SIMD(Single Instruction Multiple Data) 

architecture to process data. To get how GPUs works, an 

understanding of the concepts of stream and kernel are 

required. A large array of data is called stream and the 

operations to be performed on that data is called kernel. The 

point to note is that the same operation(kernel) is performed 

on all the data(stream). The data in the set can vary, but the 

operation to be performed on them remains the same. This is 

called stream processing and is the result of the SIMD 

architecture of the GPU. As it is apparently seen, when 

parallel processing of large amounts of data are to be operated 

on similarity this model is highly efficient.[9]  

4.4 Available Programming Platforms 
4.4.1 CUDA 
CUDA (Computer Unified Device Architecture), is a C/C++ 

programming language based parallel computing platform 

offered by Nvidia for general purpose computation. CUDA is 

suited only for highly parallel applications since in order to 

run a program efficiently on a GPU, hundreds of threads are        

 4.4.2 OpenCL 
OpenCL is a framework for programming that works across 

multiple platforms. It is an open standard platform that can 

work on all types of hardware that aims at parallel execution. 

This can be a CPU, GPU, DSP or FPGA.[11] It integrates 

well with C, C++, Python, Java and more.  

OpenCL includes a language for writing routines called 

kernels and APIs that are used to define and control the 

GPGPU platforms. This can access GPGPUs from all 

supported GPU vendors.[12] 

OpenCL kernels can run on different types of devices as          

well as dispatch kernels to multiple devices at once. That is, 

the kernels running on multiple devices can be synchronized 

and data can be shared between them.[13] Its functions and 

data structures are unique.  [12] 

 

Fig 3: An illustration of the working of Parallel         

Processing[14] 

5. CPU GPU INTEGRATION 
CPU-GPU integration can be done using two methods: 

 Physical integration of CPU and GPU on the same 

chip. Example, AMD Trinity, Intel's Ivy Bridge 

processors 

 Logical integration to avoid explicit data copying 

through   memory. 

To implement shared memory, coherence of software and 

hardware is needed. But, these mechanisms affect the 

performance of the system. Also, coherence between CPUs 

and GPUs is difficult since GPGPU applications require a 

much higher bandwidth due to their SIMT execution model. 

Scaling to a higher bandwidth is challenging since it is 

difficult to support more than one instruction per cycle at the 

directory. 

With throughput, memory bandwidth should also increase, 

which is facilitated by die stacking of DRAMs  which is the 

process of vertically stacking them, hence reducing their 

footprint on the board and providing high bandwidths( in this 

case 1TB/s). Since GPUs are throughput oriented, it runs risk 

of overwhelming the CPUs if the requests are not well filtered 

by the cache. 

To mitigate this, Heterogeneous System Coherence (HSC)[15] 

was developed for integrated CPU-GPU systems to reduce 

coherence bandwidth effects of GPU memory requests. This 

system brings about a massive bandwidth reduction. It 

reduces the problems due to the mismatched speeds of CPU 

and GPUs by easing the load on the coherence network and 

shifting to the high bandwidth direct access bus.  In HSC, 

standard directory is replaced by regional directories and 

regional buffer is added in the L2 cache. HSC improves 

performance by an average of 2 times and maximum of 4.5 

times of the directory protocol. 
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5.1 Analysis of Performance 
To analyze the proposed model, we performed a test on the 

performances of CPU and GPU based on the Matrix 

Multiplication program. The CPU was separately tested by 

running the Matrix Multiplication using C++. The time taken 

for the CPU to perform this operation on the matrices of 

different sizes were recorded. The graph below shows how 

poorly the CPU handles such huge volumes of data. The 

analysis was performed on an Intel i7 processor running an 

64-bit windows 8 system. 

 

Fig 4 : Graph representing the performance analysis of 

CPUs for Matrix Multiplication 

Further, we went on to analyse the GPU’s performance in 

comparison to the CPU on handling parallel data, with the 

same matrix multiplication operation. We used CUDA 

programming platform that is able to utiliseNvidia’s GPU unit 

for general computing. The test was performed using Nvidia 

reference program on matrix multiplication performance 

analysis using CUDA. The analysis was performed on 

Nvidia’s GEFORCE GT 755M graphics card. This unit 

contains 384 cores and clocks 980 MHz core frequency. The 

CPU used was the same Intel i7 processor. Windows 8 

operating system running a 64-bit architecture was used.The 

CPU’s performance while running a single thread as well as 

128 threads were considered. The second case(128 threads) is 

using a level of parallelism using the CPU itself. 

As it can be infered from the graph, the GPU fared extremely 

well even under the high taxing 2048x2048 matrix 

multiplication while the CPU perfromed poorly both using 

single and multi threads in comparison. There was a vast 

difference in the performance seen. The analyis strinly 

supports the cause of using GPGPU’s along with CPU to 

increse perfromances of such tasks. 

 

Fig 5: Graph depicting the performance of GPUs for 

Matrix Multiplication 

5.2 Feasibility 

As already mentioned GPUs only handle highly parallel 

operations on large datasets. But, during the working of our 

system, not all functions are concurrent. A level of serialism is 

required. For this reason combining the use of GPUs and 

CPUs and enabling them to perform in sync with each other 

will be very beneficial. Hence, our entire program need not be 

based on GPGPUs. Rather a big application that involves 

many functions and a user interface, then invoking the kernel 

functions created using the GPGPU programming platforms 
like CUDA or OpenCL only for those parts of your program 

that needs highly intense computation of large data and 

leaving the rest to the serial functioning of CPU would be an 

ideal model that would yield high performance. This type of 

combining both CPU and GPU will prove a feasible model of 

increasing performance through GPGPUs. 

6. 6. CONCLUSION 
GPU is an incredibly powerful unit that finds its use in 

varying applications and fields. Although, the processor 

technology is predicted to reach the end of its development 

scope by the addition of more cores, using alternate and 

creative ways like integrating GPUs ensure that the thirst for 

high performance is quenched. This technology is still in its 

nascent stage and the scope for its development is 

tremendous. This model is highly cost and power efficient and 

also delivers high performance. This might be the key to the 

future of processor technology. Possible areas where this 

integration will prove beneficial are highly computation 

intensive artificial intelligence machines, problems related to 

differential equations, numerical integration, linear algebra, 

number theory, computational quantum  physics, molecular 

dynamics,  coding involving images and videos. It may also 

be used for dealing with biomimicry. The area opens up a 

wide array of uses with the possibility of converting usual 

serial programs into programs with levels of parallelism in 

order to harness higher performance using GPGPUs. This 

conversion requires thinking in the parallel execution 

paradigm and hence needs to be explored.  
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