
International Journal of Computer Applications (0975 – 8887)

Volume 111 – No 7, February 2015

18

 Enhancing Computational Performance using CPU-GPU

Integration

Sukanya.R
B.E Third year, Department of

Computer Science and
Engineering

SSN College of Engineering,
Chennai

Swaathikka.K
B.E Third year, Department of

Computer Science and
Engineering

SSN College of Engineering,
Chennai

Soorya.R
B.E Second year, Department

of Computer Science and
Engineering

SASTRA University, Tanjore

ABSTRACT

The scope of computers has been expanding into increasing

number of fields. With the growing need for computationally

intense applications in every field, it is necessary to constantly

meet the demands of performance requirements. The

performance of the system relies heavily upon the processor

and therefore the development of this technology is crucial.

The processors of this age are handling growing amounts of

data that depend on the speed, efficiency and data handling

capacity of the processors. The scope of pushing the

performance of a single processor has reached its threshold

owing to factors such as cost, heat and power consumed. This

lead to the advent of the age of multicore processor

technology. But this model is also approaching a plateau in its

scope by 2017 as predicted by Moore’s Law. It is imperative

that an alternate and viable technology that produces high

performance is found.

GPUs are the answer to the search for such a highly powerful

yet feasible technology. These units are capable of handling

computationally intense tasks by performing the operations on

huge data sets in parallel. This type of parallel processing

breaks the problem into discrete parts that can be solved

concurrently. So while the conventional CPUs use the power

of a single core to solve a problem, the GPU solves the same

problem using about a hundred processors. So, while

increasing the number of cores in a processor is not possible,

integrating CPUs with GPUs and passing the intense

workloads to the GPU, which will process it faster, to achieve

an overall high performance is a viable model. Coherence

between the two units is important to distribute the workload

such that the parts with large data, that suit parallel processing

is handled by GPU and the serial tasks are controlled by the

CPU.

General Terms

Multicore processors, Graphic Processing Units.

Keywords

CPU, GPU, GPGPU, Parallel Programming, CUDA, OpenCL,

Moore’s Law.

1. INTRODUCTION
The processor is in essence the brain of a computer system. It

is the part of the device that performs the arithmetic and

floating point operations that is necessary for the functioning.
 Microprocessor or CPU is a complete computation engine

that is fabricated on a single chip that consists of millions of

transistors.

The performance of the system hence obviously depends

directly on the processor’s performance. To increase this facet

of hardware, engineers scaled up the number of transistors in

the processor. This improved the computing power by

magnitudes. But the plateau of cramming large number of

processors was reached with Intel’s Tejas CPU. This CPU

was projected to run at 7 GHz, but it never did so. It

dissipated 150 watts at 2.8 GHz Core frequency. This lead to

the advent of multicore technology for harnessing more

computing power.

Looking at the current scenario, the fastest processors of our

time is the Intel i7-3770k, with 4 cores and the CPU clocking

maximum frequencies of 3.9 GHz utilizing 166-244 Watts

power.[1]

2. CURRENT PERFORMANCE

IMPROVEMENT TRENDS
When extreme amounts of computational capabilities are

required, several methods are used by today’s developers.

High-performance computing can be achieved by utilizing

many CPUs working in parallel so that computation-intensive

programs can complete running in a relatively short amount of

time. These clusters are aimed at achieving improved and high

level of performance. Parallel programming paradigms

involve two issues, one is the efficient use of CPUs on one

process and the other is the communication between nodes to

support interdependent parallel processes that run on different

nodes and handling mutually dependent data. This is

essentially parallel computing. A parallel program consists of

a set of processes sharing data with each other by using a

shared memory over an interconnected network. Another way

is to accelerate existing hardware beyond normal operation.

Some processor manufacturers like Intel’s Turbo Boost allow

the processor to overclock and achieve higher performance

when there is enough power available, without any risk of

overheating.

3. NEED FOR ALTERNATIVE
This trend of doubling the number of cores does not warrant a

corresponding increase in the performance. A research by the

US government’s Sandia Labs found this increase actually

exhibited less than linear improvement.

Further increases hit a wall due to the negative effects on

power, cost and heat generation. It then decreased

exponentially due to contention for memory bus and lack of

memory bandwidth. Performance scaling for recent CPUs has

failed to increase to the levels expected by the industry. This

was predicted by Gordon Moore. This image shows the

increase in transistor numbers over the years[2]

International Journal of Computer Applications (0975 – 8887)

Volume 111 – No 7, February 2015

19

Fig 1: Graphical representation of Moore’s Law

Moore’s Law states that the number of transistors per square

inch on integrated circuits had doubled every year since their

invention. Although the pace has slowed, the number of

transistors per square inch has since doubled approximately

every 18 months. This is used as the current definition of

Moore's law.[3]

The prediction projected by Moore’s Law is that the limit to

growth in the CPU market, where speeds are concerned, will

be reached once transistors can be shrunk as small as atomic

particles. After this point, there is no more way of

accommodating more and more transistors in a single chip to

derive high performance, as is the trend of this age.

Thus, throughput from sequential codes has reached the

plateau of their performance between subsequent generations

of the processors. Today’s processor fabrication uses the

process of creating masks using deep sub-micron

photolithography, which uses light to make the conductive

paths and electronic components that are found in our core’s

chips. This process also limits the development of core

technology due to cost factor.

The move towards new processor technologies is about

increased performance or efficiency under optimal economic

cost. While the latest microprocessor architectures from Intel

and AMD have shown performance increases, they haven’t

resulted in the doubling of performance that computer

scientists relied upon the 70’s through the 2000’s to get

performance increases in their code without changing the top

level execution model.

4. GPGPU AS AN ALTERNATIVE
It has therefor become a necessity to look for alternative

strategies to develop processor technologies that deliver high

performance. The ideal characteristics are optimal power

consumption, high processing speeds but at a lesser cost.

Another important factor to consider is the heat generation, as

high thermal levels can damage the hardware and also be

harmful to the users.[4] This paper is going to analyze the use

of GPUs alongside CPUs to improve performance at a

feasible condition. That is, using the computational prowess

of the GPU in cooperation with the task efficient CPUs to

achieve an overall performance increase.

4.1 GPU and its Performance
GPU(Graphic Processor Unit), also called visual processing

unit, is a specialized electronic circuit designed to rapidly

manipulate and alter memory to speed up the creation of

images in a frame buffer that is intended for output to a

display.

In other words, GPUs are optimized for taking huge batches

of data and performing the same operation repeatedly at very

fast rate.

The GPUs goes far beyond basic graphics controller

functions, and is a powerful computational device that can

also be programmed.

Kepler-based Quadro K6000, which is considered the fastest

GPU of our time, has 12GB of super-fast DDR5 graphics

memory, 2,880 streaming multiprocessor cores, ultra-low

latency video I/O, and the ability to drive four simultaneous

displays at up to 4K resolution. [5]

This sort of high power that GPUs give can be put to use in

varied fields. GPUs can operate at high rates and more cost

efficiently than CPUs in an array of important sectors such as

medicine, natural resources, national security and emergency

services.[6] Its computational prowess is being harnessed to

accelerate financial modeling, scientific research, oil and gas

exploration.

 The reasons GPUs increase performance because they employ

hundreds of cores to work on a single program, processing

different data sets simultaneously, thereby increasing the

throughput tremendously. The simplest explanation is that a

lot of extra hands make less work and enable finishing the

work faster. But, for maximum output, cooperation with the

main processor is vital. [7]This is covered in the later section.

4.2 Difference between CPUs and GPUs
On a basic hardware aspect, CPUs clock higher rates in their

cores, whereas GPUs run on a much lesser clock frequency.

But, GPU achieves its high computational capability through

the use of its large number of cores. The power consumption

in a CPU is high, while in GPU it is much lesser.
Architecturally CPUs are composed of fewer cores with lots

of cache memory and can only handle few threads at a time.

However, GPUs are comprised of hundreds of cores that can

process thousands of threads at the same time. This image

probably explains the simplest difference between CPUs and

GPUs. [8]

Fig 2: Difference between a CPU and GPU

International Journal of Computer Applications (0975 – 8887)

Volume 111 – No 7, February 2015

20

required. CUDA is an excellent choice for computationally

datasets since GPUs use enormous parallel interfaces to

connect with its memory, which is 10 times faster than a CPU

memory interface.Though CUDA was explicitly designed to

work on Nvidia’s graphic cards, it can also run on CPUs, it

CPU memory interface. Though CUDA was explicitly

designed to work on Nvidia’s graphic cards, can also run on

CPUs, though not as fast. CUDA platform is capable of

supporting other computational interfaces, including the

Khrono’s Group’s OpenCL, Microsoft's Direct compute.

Python, Perl, Fortan, Java, Ruby, Lua, Haskell, MATLAB and

IDL are also supported using third party wrappers.[10]

CUDA is extremely well suited for handling huge amounts of

data load, intense independent computing, CUDA utilises

thousands of threads in parallel, that work on a set of varying

data but applying the same operation (kernel) on them. It is

capable of handling flow control statements like if..else

statements even in this highly parallel architecture.

While CPUs have fast caches which are great for data reuse,

GPUs have lots of math units which make computation faster.

CPU provides fine branching granularity whereas GPUs have

faster access to the onboard memory. CPUs have high

throughput on parallel tasks while on the other hand, GPUs

give high throughput on parallel data. Also, while GPUs can

run lots of processes or threads, GPUs run the same program

on each fragment. Thus, CPUs are great for task parallelism

and GPUs for data parallelism.

4.3 Introduction to GPGPU
GPGPU(General Purpose Graphic Processor Unit) work on

the concept of SIMD(Single Instruction Multiple Data)

architecture to process data. To get how GPUs works, an

understanding of the concepts of stream and kernel are

required. A large array of data is called stream and the

operations to be performed on that data is called kernel. The

point to note is that the same operation(kernel) is performed

on all the data(stream). The data in the set can vary, but the

operation to be performed on them remains the same. This is

called stream processing and is the result of the SIMD

architecture of the GPU. As it is apparently seen, when

parallel processing of large amounts of data are to be operated

on similarity this model is highly efficient.[9]

4.4 Available Programming Platforms
4.4.1 CUDA
CUDA (Computer Unified Device Architecture), is a C/C++

programming language based parallel computing platform

offered by Nvidia for general purpose computation. CUDA is

suited only for highly parallel applications since in order to

run a program efficiently on a GPU, hundreds of threads are

 4.4.2 OpenCL
OpenCL is a framework for programming that works across

multiple platforms. It is an open standard platform that can

work on all types of hardware that aims at parallel execution.

This can be a CPU, GPU, DSP or FPGA.[11] It integrates

well with C, C++, Python, Java and more.

OpenCL includes a language for writing routines called

kernels and APIs that are used to define and control the

GPGPU platforms. This can access GPGPUs from all

supported GPU vendors.[12]

OpenCL kernels can run on different types of devices as

well as dispatch kernels to multiple devices at once. That is,

the kernels running on multiple devices can be synchronized

and data can be shared between them.[13] Its functions and

data structures are unique. [12]

Fig 3: An illustration of the working of Parallel

Processing[14]

5. CPU GPU INTEGRATION
CPU-GPU integration can be done using two methods:

 Physical integration of CPU and GPU on the same

chip. Example, AMD Trinity, Intel's Ivy Bridge

processors

 Logical integration to avoid explicit data copying

through memory.

To implement shared memory, coherence of software and

hardware is needed. But, these mechanisms affect the

performance of the system. Also, coherence between CPUs

and GPUs is difficult since GPGPU applications require a

much higher bandwidth due to their SIMT execution model.

Scaling to a higher bandwidth is challenging since it is

difficult to support more than one instruction per cycle at the

directory.

With throughput, memory bandwidth should also increase,

which is facilitated by die stacking of DRAMs which is the

process of vertically stacking them, hence reducing their

footprint on the board and providing high bandwidths(in this

case 1TB/s). Since GPUs are throughput oriented, it runs risk

of overwhelming the CPUs if the requests are not well filtered

by the cache.

To mitigate this, Heterogeneous System Coherence (HSC)[15]

was developed for integrated CPU-GPU systems to reduce

coherence bandwidth effects of GPU memory requests. This

system brings about a massive bandwidth reduction. It

reduces the problems due to the mismatched speeds of CPU

and GPUs by easing the load on the coherence network and

shifting to the high bandwidth direct access bus. In HSC,

standard directory is replaced by regional directories and

regional buffer is added in the L2 cache. HSC improves

performance by an average of 2 times and maximum of 4.5

times of the directory protocol.

International Journal of Computer Applications (0975 – 8887)

Volume 111 – No 7, February 2015

21

5.1 Analysis of Performance
To analyze the proposed model, we performed a test on the

performances of CPU and GPU based on the Matrix

Multiplication program. The CPU was separately tested by

running the Matrix Multiplication using C++. The time taken

for the CPU to perform this operation on the matrices of

different sizes were recorded. The graph below shows how

poorly the CPU handles such huge volumes of data. The

analysis was performed on an Intel i7 processor running an

64-bit windows 8 system.

Fig 4 : Graph representing the performance analysis of

CPUs for Matrix Multiplication

Further, we went on to analyse the GPU’s performance in

comparison to the CPU on handling parallel data, with the

same matrix multiplication operation. We used CUDA

programming platform that is able to utiliseNvidia’s GPU unit

for general computing. The test was performed using Nvidia

reference program on matrix multiplication performance

analysis using CUDA. The analysis was performed on

Nvidia’s GEFORCE GT 755M graphics card. This unit

contains 384 cores and clocks 980 MHz core frequency. The

CPU used was the same Intel i7 processor. Windows 8

operating system running a 64-bit architecture was used.The

CPU’s performance while running a single thread as well as

128 threads were considered. The second case(128 threads) is

using a level of parallelism using the CPU itself.

As it can be infered from the graph, the GPU fared extremely

well even under the high taxing 2048x2048 matrix

multiplication while the CPU perfromed poorly both using

single and multi threads in comparison. There was a vast

difference in the performance seen. The analyis strinly

supports the cause of using GPGPU’s along with CPU to

increse perfromances of such tasks.

Fig 5: Graph depicting the performance of GPUs for

Matrix Multiplication

5.2 Feasibility

As already mentioned GPUs only handle highly parallel

operations on large datasets. But, during the working of our

system, not all functions are concurrent. A level of serialism is

required. For this reason combining the use of GPUs and

CPUs and enabling them to perform in sync with each other

will be very beneficial. Hence, our entire program need not be

based on GPGPUs. Rather a big application that involves

many functions and a user interface, then invoking the kernel

functions created using the GPGPU programming platforms
like CUDA or OpenCL only for those parts of your program

that needs highly intense computation of large data and

leaving the rest to the serial functioning of CPU would be an

ideal model that would yield high performance. This type of

combining both CPU and GPU will prove a feasible model of

increasing performance through GPGPUs.

6. 6. CONCLUSION
GPU is an incredibly powerful unit that finds its use in

varying applications and fields. Although, the processor

technology is predicted to reach the end of its development

scope by the addition of more cores, using alternate and

creative ways like integrating GPUs ensure that the thirst for

high performance is quenched. This technology is still in its

nascent stage and the scope for its development is

tremendous. This model is highly cost and power efficient and

also delivers high performance. This might be the key to the

future of processor technology. Possible areas where this

integration will prove beneficial are highly computation

intensive artificial intelligence machines, problems related to

differential equations, numerical integration, linear algebra,

number theory, computational quantum physics, molecular

dynamics, coding involving images and videos. It may also

be used for dealing with biomimicry. The area opens up a

wide array of uses with the possibility of converting usual

serial programs into programs with levels of parallelism in

order to harness higher performance using GPGPUs. This

conversion requires thinking in the parallel execution

paradigm and hence needs to be explored.

7.406

13.364

25.780

31.844

0

5

10

15

20

25

30

35

100x100 200x200 300x300 400x400

Ti
m

e(
se

co
n

d
s)

Matrix size

Matrix Multiplication on CPU

Time(seconds)

1024x10
24

1536x15
36

2048x20
48

GPU 47 141 312

CPU(1 thread) 3328 26078 69032

CPU(128
threads)

1859 6750 23968

0

10000

20000

30000

40000

50000

60000

70000

80000

Ti
m

e
(m

s)

Matrix Size

Analysis

International Journal of Computer Applications (0975 – 8887)

Volume 111 – No 7, February 2015

22

7. REFERENCES
[1] Experiment on Intel’s Tejus CPU:

http://www.extremetech.com/computing/116561-the-

death-of-cpu-scaling-from-one-core-to-many-and-why-

were-still-stuck

[2] Graph depicting Moore’s Law:

http://forums.anandtech.com/showthread.php?t=2281246

[3] Moore’s Law:

http://computer.howstuffworks.com/moores-law3.htm

[4] GPGPU Technology:

https://www.tacc.utexas.edu/news/feature-stories/2010/8-

things-you-should-know-about-gpgpu-technology

[5] Parallel Computing Concepts:

https://www2.cisl.ucar.edu/docs/parallel_concepts.

[6] Application of GPGPU in Computational Chemistry:

http://blogs.nvidia.com/blog/2010/04/01/the-world-is-

parallelgpus-in-chemistry-research/

[7] Working mechanism behind GPGPU:

http://gizmodo.com/5252545/giz-explains-gpgpu-

computing-and-why-itll-melt-your-face-off

[8] Difference between CPU and GPU:

http://blogs.nvidia.com/blog/2009/12/16/whats-the-

difference-between-a-cpu-and-a-gpu/

[9] Basics of GPGPU Programming :

http://en.wikipedia.org/wiki/General-

purpose_computing_on_graphics_processing_units#GPG

PU_programming_concepts

[10] Basics of CUDA:

http://www.nvidia.com/object/cuda_home_new.html

[11] Working with OpenCL:

http://streamcomputing.eu/knowledge/what-is/opencl/

[12] Introduction to OpenCL:

http://www.drdobbs.com/parallel/a-gentle-introduction-

to-opencl/231002854.

[13] An Introduction to the OpenCL Programming Model by

Jonathan Tompson and Kristofer Schlachter

[14] 2D Data-Parallel execution in OpenCL (from

[Boydstun2011])

[15] Heterogeneous System Coherence for Integrated CPU-

GPU Systems by University of Wisconsin

IJCATM : www.ijcaonline.org

