
International Journal of Computer Applications (0975 – 8887)

Volume 111 – No 6, February 2015

32

BTL - An Efficient Deadlock-Free Multicast Wormhole

Algorithm to Optimize Traffic in 2D Torus Multicomputer

Kadry Hamed
Dept. of CS, Faculty of Computers and

Information, Minia University, Egypt.
Dept. of CS, College of Computing and

Information Technology, Shaqra University, KSA.

Mohamed A. El-Sayed
Dept. of Math, Faculty of Science, Fayoum

University, Egypt.

Dept. of CS, College of Computer and Information

Technology, Taif University, KSA.

ABSTRACT

Multicast communication, in which the same message is

sending from a source node to a set of destination nodes, is

being increasingly demanded in multicomputer systems. It can

be used to support several other collective communication

operations. 2D torus network has many features. So, it has

become increasingly important to multicomputer design. This

paper presents an efficient multicast wormhole deadlock-free

algorithm that Balance Traffic Load on 2D torus network;

hence the name BTL algorithm. BTL algorithm handles

multicast operation with a fixed number of message-passing

steps irrespective of the network size. Also, it is designed such

that can send messages to any number of destinations within

two communication phases. Results from extensive

comparative analysis show that BTL algorithm exhibit

superior performance advantages over a well-known

algorithm.

General Terms

Network, Multicomputer, and Algorithms.

Keywords

Deadlock-Free, Multicast communication, 2D torus topology,

Multicomputer.

1. INTRODUCTION
For Multicomputers, Optimizing the performance of the

interprocessor communication depends on many factors as

selection of the interconnection network, switching technique

and routing algorithm. Two dimensional (2D) torus network is

frequently utilized on top-performing multicomputers. It has

been one of the most important communication networks due

to its desirable properties, such as scalability, recursive

structure, ease of implementation, constant node degree,

constant length channel wires, higher channel bandwidth, low

contention latency, and more [1, 2, 3]. Also, it offers edge

connectivity and can be partitioned into meshes. Much recent

interest in multicomputer systems is therefore concentrated on

2D torus networks. Such technology has been adopted in [4,

5, 6, 7]. Wormhole switching technique is widely used in

interconnection networks due firstly to its low buffering

requirements, allowing for efficient router implementation.

Secondly, and more importantly, it makes latency almost

independent of the message distance in the absence of

blocking [1, 8, 9].

In this paper, 2D torus networks with bidirectional channels

are used. For simplicity, the torus network will draw without

channels. Multicasting is an important primitive among

collective communication operations. Multicasting allows a

source node to send the same message to a group of

destination nodes. If the set of destination nodes contains only

one node, the multicast called unicast. If the set of destination

nodes contains all of the computational nodes in the system,

the multicast called broadcast [10]. Many multicast algorithms

have been proposed in the literature [2, 11, 12]. The

performance of multicast communication is measured in terms

of its latency in delivering a message to all destinations. In

wormhole-routed networks, the communication latency

consists of three parts, start-up latency, network latency and

blocking latency [2]. The start-up latency is the time incurred

by the operating system when preparing a message for

injection into the network. The network latency is a

combination of propagation delay, router delay, and

contention delay. The blocking latency accounts for all delays

associated with contention for routing resources among the

various worms in the network.

In this study, an efficient deadlock-free wormhole multicast

routing algorithm for 2D torus multicomputer is proposed.

This algorithm is multicasting a message to all destination

nodes through two phases at most. In this scheme, the

objective is to utilize the channels uniformly and reduce the

path length of message worms, making multicasting more

efficient in 2D torus networks.

The remainder of this paper is organized as follows. Section 2

summaries the related works. The proposed multicast

algorithm and a new routing function are presented in section

3. Section 4 evaluates the performance of the proposed

algorithm to an existing well known, T2W multicast

algorithm [9]. Finally, section 5 concludes this study.

2. RELATED WORKS
In multicast routing, the path selection procedure is very

important to maximize the efficiency of the message delivery

process. Various path selection techniques have been

proposed in the literature. In general, the algorithms for

multicast routing can be classified into three types, unicast-

based, path-based, and tree-based. In unicast-based routing,

identical messages are sent to the destination nodes

recursively [4, 13]. This technique suffers from performance

inefficiently as well as excessive power consumption [12].

The tree-based routing [14, 15, 16, 17] tries to construct a tree

rooted at the source node in order to deliver a multicast

message to destination nodes along the paths on the formed

tree.

In path-based routing [2, 9, 12], an ordered sequence of

destination addresses that must be delivered in the specific

order is stored in the header of a message. When a multicast

message reach an intermediate destination, the top address is

removed from the header and it can be copied to the local

memory. The message is routed to the next destination

specified in the sorted list. The last destination node removes

the message from the network.

International Journal of Computer Applications (0975 – 8887)

Volume 111 – No 6, February 2015

33

There are two types of multicast operation, single-phase (one

startup) [18] and multi-phase (there is more than one startup)

[9, 19]. In multi-phase multicasting, a message is required

more than one step to reach all destination nodes. In [9],

Darwish et al. proposed a path-based wormhole multicast

algorithm in 2D torus network terms as T2W. In this

algorithm, some intermediate nodes that are non-destination

nodes are allowed to perform multicast operations. This

feature increases flexibility in distributing messages to the

destination nodes thereby improving performance that is

evaluated through simulations. T2W algorithm can send a

message to a set of destinations within two startup

communication phases. It can use both horizontal and vertical

wraparound channels of a torus network. In the first phase,

T2W algorithm defines a horizontal main path starts from the

source node and directed to a special node called end node.

Fig 1: 2D T8×8 torus network

The horizontal main path is selected such that may use the

horizontal wraparound channels to cover as many destinations

as possible on its path. Also, the nodes on it can cover all

remaining destinations that exist on columns of the torus

network. In the second phase, some intermediate nodes along

horizontal main path retransmit the message to the remaining

destination nodes through vertical paths that branch from one

side of the main path. In this technique, the multicast routing

is divided into sub-multicasts that can be carried out in

parallel by many independent paths that branch from the

horizontal main path. Fig 1 shows a 2D torus network, T8×8,

with a source node, s= (2, 2) and a set of random distributed

destination nodes in gray color.

A torus network and message paths become as in fig 2 when

T2W algorithm is used to send a message from the source

node to all destination nodes. A solid and dotted lines

represent communication paths in the first and second phases,

respectively.

Fig 2: Message multicasting by using T2W algorithm

Reducing the latency and traffic of multicasting message are

main important aims of this paper. So, an efficient multicast

wormhole routing algorithm with special routing function is

introduced (BTL). The proposed algorithm will be compared

with T2W algorithm [9]. The simulation results show that the

proposed algorithm performs better than T2W algorithm.

3. THE PROPOSED MULTICAST

ALGORITHM
This section introduces an efficient multicast wormhole

deadlock-free algorithm, BTL for 2D torus network. BTL

algorithm uses the concept of virtual partitioning of the torus

network into meshes and divides the torus into nearly equally

two size horizontal partitions. Each partition represents a 2D

mesh. The basic idea behind the introduced algorithm is that,

during the first phase, the message is sent to a set of nodes

such that all the destinations can be reached in the first or the

second phase of multicast communication. In the first phase,

BTL algorithm like T2W algorithm where it defines a

horizontal path named Horizontal Main Path (HMP) which

begins from the source node and may use the horizontal

wraparound channels to cover as many destinations as

possible. The message is sent to the end node of HMP

according to a deterministic routing function which supplies a

unique minimal path.

In the second phase, the technique of BTL algorithm is

differing from its T2W algorithm. BTL algorithm may use the

vertical wraparound channels and divides the torus, Tn×m, into

nearly equally two virtual meshes. Some intermediate nodes

along HMP retransmit the message to the remaining

destinations through nearly equally vertical paths. The

technique of BTL algorithm shows that the multicast is

divided into sub-multicasts that branch from the two sides of

HMP. So, the long of paths in BTL algorithm are shorter than

of T2W algorithm (nearly half). Also, the multicast is divided

into sub-multicasts carried out in parallel fashion by many

independent paths. Fig 3 illustrates the message paths when

BTL algorithm is used on torus, T8×8 of fig 1. The solid and

dotted lines represent communication paths in the first and

second phases, respectively.

1,60,67,66,65,64,63,62,6

1,50,57,56,55,54,53,52,5

1,40,47,46,45,44,43,42,4

1,30,37,36,35,34,33,32,3

1,20,27,26,25,24,23,22,2

1,10,17,16,15,14,13,12,1

1,00,07,06,05,04,03,02,0

1,70,77,76,75,74,73,72,7

Fig 3: Message multicasting by using BTL algorithm

3.1 Partitioning Algorithm
BTL algorithm begins by determination the best move

direction and the optimum last node, e =(xe, ys) of HMP. This

is performing by using algorithm1: BTL_Balancing_Partitions.

According to the source node position, the technique of

algorithm1 uses both of horizontal and vertical wraparound

channels and rotates the columns and the rows respectively of

a given torus network. So, there are two phases as the

following:

International Journal of Computer Applications (0975 – 8887)

Volume 111 – No 6, February 2015

34

Phase 1: algorithm1 may use the horizontal wraparound

channels since it selects two destination nodes such that one

of them has the farthest x-coordinate, xR, to xs from the right

direction (the right direction starts from the source node

column and directed right to reach at the last column that

previous the source node column). The other destination node

has the farthest x-coordinate, xL, to xs from the left direction

(the left direction is similar to the right direction but directed

to left side). So, a variable called Move_HMP is used to refer

the horizontal moving direction of HMP where Move_HMP

=1 refers to the right direction and Move_HMP =0 refers to

the left direction. According to Move_HMP, the x-coordinate

of end node, xe is determined which equals to xR or xL.

Phase 2: according to the source node position, algorithm1

may use the vertical wraparound channels to divide the torus,

Tn×m, into two virtual meshes, M1 and M2. So, there are two

cases:

Case 1: If the y-coordinate of the source node is less than

m/2, then M1 contains the nodes whose y-coordinates are

between y-coordinate of the source node and y-coordinate of

the source node plus m/2 , M2 contains the remaining nodes.

Case 2: If the y-coordinate of the source node is greater than

or equal to m/2, then M1 contains the nodes whose y-

coordinates are between y-coordinate of the source node and

y-coordinate of the source node minus m/2, M2 contains the

remaining nodes.

For any Tn×m with a destination set D = {(x0,y0), (x1,y1),… ,

(xk,yk)}. Let Dx = {x: (x, y) D}, Dy = {y: (x, y) D} are the

two sets of x-coordinates and y-coordinates respectively of D.

Let Lx={xi:0≤xi<xs, xiDx}, and Rx=Dx–Lx are the two sets of

x-coordinates of D which exist on the left columns and the

right columns respectively of the column that contains the

source node.

Fig 4 illustrates algorithm1 which produces xe , Move_HMP,

and N_HMP that is the number of nodes on HMP.

Algorithm1: BTL_Balancing_Partitions

Input: source node s= (xs, ys), the sets Lx, Rx

Output: xe , Move_ HMP , N_HMP

Begin:

1- IF (Lx ≠) THEN

xR= Max {Lx}, Rdist=n-|xs-xR|

ELSE xR= Max {Rx}, Rdist=|xs-xR|.

2- RX1=Rx – {xs}, LX1=Lx U {xs}

3- IF (RX1 ≠) THEN

xL= Min{ RX1}, Ldist=n-|xs – xL|

ELSE xL= Min{ LX1}, Ldist=|xs – xL|.

4- IF(Rdist ≥ Ldist) THEN

 xe= xR, Move_ HMP =1 , N_HMP= Rdist +1

 ELSE

 xe= XL, Move_ HMP =0 , N_HMP= Ldist +1

5- Return (xe , Move_ HMP and N_HMP)

End BTL_Balancing Partitions algorithm

Fig 4: Determination HMP

3.2 A Formal Routing Function
A special path routing function, RBTL, is needed to determine

the next node for which the path of BTL algorithm will visit

in a 2D torus network, Tn×m. RBTL is the same as XY-routing

[20] with some conditions which deal with the horizontal and

vertical wraparound channels and prevent deadlock to occur.

So, a routing path by RBTL is decided first along the X-

dimension before choosing a path along the Y-dimension.

Clearly, RBTL routing is deadlock-free for one-to-one

communication because it is impossible for a cyclic channel

dependency to arise if channels are acquired in XY order. The

direction variable, Move_HMP which is decided in previous

subsection will be considered. To send a message from a

current node u= (xu, yu) to a destination node v= (xv, yv), the

horizontal neighbor node of node u denoted h_node(u) is

determined as follows:

01

11

001

110

_

 Move_horif,yu)(xu

 Move_horif,yu)(xu

 Move_hor xuif,yu)(n

 Move_hor nxuif,yu)(

node(u)h (1)

The path routing function of BTL algorithm is a function

RBTL: (P P P) that maps a (current node, destination node)

pair to a neighbor node of the current node. It is defined as

follows: RBTL (u, v) = hv_node, where

yvyuifyuxu

yvyuif)(xu,yu

mysyvnyuif)(xu,

mysyvyuif)n(xu

xvxuifunodeh

nodehv

)1,(

1

 /2 10

 /2 01,

)(_

_ (2)

3.3 Message Processing of BTL Algorithm
In this subsection, two ordered subsets (Olist1 and Olist2) of

the destination nodes are constructed. One of them is

constructed and sorted from the destinations in M1 and the

other is constructed and sorted from the destinations in M2.

Fig 5 describes the components of algorithm2:

BTL_Message_Processing, which constructs Olist1 and Olist2

according to the position of the source node where there are

four cases. So, there are many FOR loops that organize the

building of Olist1 and Olist2 such that all destinations (are not

on HMP) receive a message through vertical paths branch

from HMP. The function FILL_LIST() is used to fill Olist1

and Olist2 with destination nodes.

Algorithm2: BTL_Message_Processing

Inputs: s, D, e, N_HMP

Output: Olist1 and Olist2

Begin: let D=D U {s}, Olist1=, Olist2=, b=s

FOR k=1 TO N_HMP

{1. u=b, OL1=, OL2=

 2. IF (ys <m/2) THEN

 FOR i=yu+1 TO yu+m/2

 IF (xu, i) D THEN FILL_LIST ((Xu,i), OL1)

 FOR i= yu – 1 TO 0 step –1

 IF (xu, i) D THEN FILL_LIST ((Xu,i), OL2)

International Journal of Computer Applications (0975 – 8887)

Volume 111 – No 6, February 2015

35

 FOR i=n–1 TO yu+ m/2+1 step -1

 IF (xu, i) D THEN FILL_LIST ((Xu,i), OL2)

 3. ELSE

 FOR i= yu – 1 TO yu – m/2 step -1

 IF (xu, i) D THEN FILL_LIST ((Xu,i), OL1)

 FOR i= yu + 1 TO n–1 step +1

 IF (xu, i) D THEN FILL_LIST ((Xu,i), OL2)

 FOR i=0 TO yu- m/2 -1 step -1

 IF (xu, i) D THEN FILL_LIST ((Xu,i), OL2)

4. IF (OL1 ≠ uD) THEN

 Olist1= Olist1 ||{u}|| OL1

 5. IF (OL2 ≠ uD) THEN

 Olist2= Olist2 ||{u}|| OL2

 6. b= RBTL (u,e)

 }

RETURN (Olist1, Olist2)

END BTL_Message_Processing algorithm

Fig 5: Message processing algorithm

So, the source node constructs two messages, one containing

Olist1 as part of the header and the other contain Olist2 as part

of the header. The source node sends two messages into two

disjoint subnetworks M1 and M2.

Next, the BTL algorithm uses a distributed routing method in

which the routing decision is made at each intermediate node.

Upon receiving the message, each intermediate node

determines whether its address matches that of the first

destination node in the message header. If so the address is

removed from the message header, the message is copied and

sent together with its header to the neighboring node using the

routing function RBTL. In case where the intermediate node is

not a destination, it sends the message together with its header

to the neighboring node using the routing function RBTL. If the

sets of the destination nodes are not empty, the algorithm

continues according to the previous method.

Theorem 1: BTL Algorithm is Deadlock-

Free.
Proof: as explained in previous subsection 3.1 and according

to the position of the source node, BTL algorithm divides the

2D torus network into two disjoint sub-networks, M1 and M2.

This is obvious since M1∩ M2 = . Then BTL algorithm is

deadlock-free at M1 and M2. The technique of BTL algorithm

uses both of the horizontal and vertical wraparound channels

and rearranges columns and rows to deal with a torus as a

virtual mesh network. It makes the source node nearly in the

middle of the first or last column. In the first phase, there is a

main horizontal path (HMP) starts from the source node and

extend to last column contains destination nodes. HMP sends

the message to the destination nodes that pass on. All other

destinations receive the message through vertical paths branch

from HMP (up or down in M1 or M2). So, all paths are parallel

and as follows, there is no intersection between any paths.

Then no cyclic dependency can be created among the

channels. So, BTL algorithm is deadlock-free.

4. PERFORMANCE EVALUATION
In this section, the performance of the proposed algorithm,

BTL is compared with well-known multicast T2W algorithm

[9]. A common metric used to evaluate the performance of an

interconnection network system is the communication latency,

which is approximated by TS+Tn [21]. TS is the startup time

and consists of two parts TS1 and TS2. TS1 is made at the source

node in the first phase. TS2 is made at each intermediate node

along HMP in the second phase to retransmit the message to

rest of the multicast destinations. It is clear that TS2< TS1

because the generation of succeeding messages should take

less time than the generation of the first message. The

network time, Tn, is the total time spent between the injection

of the message into the network until the message is drained

away. Tn is different for the two algorithms, T2W and BTL.

So, it is used to compare them. Each multicast message can be

expressed as sequences of serially forwarded unicast

messages from root to destinations [22]. So, the time of

multicast message is expressed as follow:

Tmulticast = Max [Ts + Tn] over paths (3)

Where Max [] operation yields the total multicast latency for

deepest path over all paths, and Tmulticast is the time interval

between the initiation of the multicast and the last

destination’s reception of the message. The network traffic is

another parameter and is defined as the number of channels

used to deliver all messages involved.

The two metrics, the network latency and the network traffic

are calculated for two algorithms to compare the performance.

A routing model for each algorithm is used as path processes

to determine the channels on which each message should be

transmitted. A simulation in VC++ language was designed

and implemented for performance evaluation. Many random

2D torus networks that contain two virtual channels per

physical channel were used. Each network contains a source

node (xs, ys) and a set of destination nodes that are uniformly

distributed through each network. The networks were

generated with different numbers of processors ranging from

25 to 3200. It is assumed that the network latency time

between any two nodes is 30 ns, TS1 is set to 1s, and TS2 is

set to 240 ns. Figs. 6-8 show the results of these algorithms.

90

100

110

120

130

L
at

en
cy

(m
ic

ro
 s

ec
)

number of destinations

BTL T2W

Fig 6: network latency of BTL and T2W vs. no. of

destinations

Fig 6 plots the multicast latency obtained by the two

algorithms on T40×40 versus various values of the number of

destination nodes, ranging from 100 to 1600. The source node

International Journal of Computer Applications (0975 – 8887)

Volume 111 – No 6, February 2015

36

is nearly in the center of the network. It is clear that, as the

number of destination increases, the latency values obtained

by all algorithms increase. BTL algorithm however, is less

sensitive to the increased load than T2W algorithm. This is

due to the fact that BTL routing uses shorter paths; so

resources are held for shorter time periods, leading to higher

throughput.

Fig 7 plots the multicast latency obtained by the two

comparison algorithms versus the different sizes of torus

networks within range from 25 to 1600 nodes, pd=20% where

pd is the percentage of destination nodes out of the total

number of nodes in the network, and the source node is nearly

in the center of the network. It is clear that, as the torus size

increases, as the latency values increase. However, the latency

obtained by BTL algorithm increases slowly. It is obvious

that, BTL algorithm outperforms T2W algorithm.

40

60

80

100

120

T5 T10 T15 T20 T25 T30 T35 T40

la
te

n
cy

(m
ic

ro
 s

ec
)

Torus size

BTL T2W

Fig 7: Network latency of T2W and BTL vs. torus size

800

1000

1200

1400

1600

100 200 400 600 800 1000 1200 1400 1600

T
ra

ff
ic

Number of destination

BTL T2W

Fig 8: Network traffic of T2W and BTL vs. no. of

destinations

Fig 8 plots the network traffic obtained by the two algorithms

on T40×40 versus various values of the number of the

destinations ranging from 100 to 1600. For the two

algorithms, as the number of destinations increases, the traffic

curves increase until they meet at a certain point. This

happens when Pd =100%, i.e., at the broadcast pattern. But

the increasing rate of traffic curve of BTL algorithm is lowest.

Also, at small number of destinations, the increasing rate of

traffic curves is large, nearly 25%, after this ratio, the

Increasing rate is small. Generally, from the previous figures,

the following notes can be observed:

 BTL algorithm performs better than T2W algorithm.

 As the number of destinations increases, latency values

obtained by the two algorithms increases but BTL

routing is less sensitive to the increased load than T2W

algorithm. This is due to the fact that it’s BTL routing

uses shorter paths, figs 6, 7.

 Also, the number of destinations increases, the traffic of

the two algorithms increase but BTL algorithm has the

lowest, fig 8.

Finally, BTL algorithm is efficiently used in 2D torus

multicomputer.

5. CONCLUSION AND FUTURE WORK
In this study, a deadlock-free wormhole multicast algorithm in

2D torus multicomputer, BTL, was presented. This algorithm

used a path-based facility and is shown to be deadlock-free.

BTL routing uses both horizontal and vertical wraparound

channels to send a message to a set of destinations within two

phases at most. Also, a routing function, RBTL is designed and

is used as a base for the proposed algorithm. The performance

of BTL algorithm was evaluated through comparing it with

T2W algorithm [9]. The results show that the best

performance is obtained by BTL algorithm over different

traffic loads and destination set sizes. Our future works will

focus on extending the proposed BTL algorithm to higher

dimensional torus networks. Also, another multicast

partitioning and routing strategy will be studied to enhance

the overall system performance.

6. ACKNOWLEDGMENTS
We are using this opportunity to express our gratitude to

everyone who supported us throughout completing this

research. We also thank all members of Shaqra University and

our rector for continues support.

7. REFERENCES
[1] Dally, W.J., and Seitz, C.L. 1986. The torus routing chip.

Journal of Distributed Computing 1 (3) 187-196.

[2] Darwish, M. G., Radwan, A. A. A., Abd El-Baky, M. A.,

and Hamed, Kadry. 2008. TTPM-An Efficient Deadlock-

Free Algorithm for Multicast communication in 2D

Torus Networks. Journal of Systems Architecture,

(October 2008) Volume 54, Issue 10, 919-928.

[3] Wang, Neng-Chung and Hung, Yi-Ping. 2009. Multicast

communication in wormhole-routed 2D torus networks

with hamiltonian cycle model. Journal of System

Architecture 55, 70-78.

[4] Robinson, D.F., McKinley, P.K., and Cheng, B.H.C.

1995. Optimal Multicast Communication in Wormhole-

Routed Torus Networks. IEEE Trans. Parallel and

Distributed Systems, (Oct. 1995), vol. 6, no. 10, 1029-

1042.

[5] Cray Research Inc, 2005. CRAY XT3 scalable parallel

processing system. Cray Research Inc., Website:

http://www.cray.com/products/xt3/index.html

[6] Fowler, A., Mariantoni, M., Martinis, J., and Cleland, A.

2012. A primer on surface codes: Developing a machine

language for a quantum computer. arXiv:1208.0928.

[7] Devitt, S.J., Nemoto, K., and Munro, W.J. 2013.

Quantum error correction for beginners. Reports on

Progress in Physics. (Aug. 2013), 76, 8.

International Journal of Computer Applications (0975 – 8887)

Volume 111 – No 6, February 2015

37

[8] Ni, L. M., and McKinley, P. K. 1993. A survey of

routing techniques in wormhole Networks. IEEE

Computer, (Feb. 1993), vol. 26, no. 2, 62-76.

[9] Darwish, M. G., Radwan, A. A. A., Abd El-Baky, M. A.,

and Hamed, Kadry. 2010. T2W:A Multicast Routing

Algorithm For 2D Torus Networks with Horizontal Main

Path Model. International Journal of Intelligent

Computing and Information Science, (July 2010), v. 10,

no. 2.

[10] Moharam, H., Abd El-Baky, M. A., and Nassar, S. M. M.

2000. YOMNA-An efficient deadlock-free multicast

wormhole algorithm in 2-D mesh multicomputers.

Journal of Systems Architecture, (October 2000),

Volume 46, Issue 12, 1073-1091.

[11] El-Obaid, Amnah and Li-Zuo, Wan. 2008. An Efficient

Path-Based Multicast Algorithm for Minimum

Communication Steps. Inform. Technol. J., 7(1): 32-39.

[12] Moosavi, S.R., Rahmani, A.-M., Liljeberg, P., Plosila,

J., and Tenhunen, H. 2013. An Efficient Implementation

of Hamiltonian Path Based Multicast Routing for 3D

Interconnection Networks. 21st Iranian Conference on

Electrical Engineering, (May 2013), (ICEE), p(6).

[13] Mckinley, P., Xu, H., Esfahanian, A-H., and Ni, L. 1994.

Unicast-Based Multicast Communication in Wormhole-

Routed Networks. IEEE Trans. on Parallel and

Distributed Systems, (Dec. 1994), vol. 5, no. 12, 1252-

1265.

[14] Malumbres, M. P., Duato, J., and Torrellas, J. 1996. An

Efficient Implementation of Tree-Based Multicast

Routing for Distributed Shared-Memory

Multiprocessors. Proc. Of the 8th IEEE Symp. On

Parallel and Distributed Processing, (Oct. 1996), 186-

189.

[15] Wang, Honge and Blough, Douglas M. 1998. Tree-Based

Multicast in Wormhole-Routed Torus Networks.

International Conference on Parallel and Distributed

Processing Techniques and Applications. 702-709.

[16] Wang, Nen-Chung and Chu, Chih-Ping. 2005. An

Efficient Tree-Based Multicasting Algorithm on

Wormhole-Routed Star Graph Interconnection Networks

Embedded with Hamiltonian Path. The Journal of

Supercomputing 34(1), 5-26.

[17] Wang, Nen-Chung., Chen, Young-Long., Chen, Chin-

Ling., Chen, Ying-Shiou. 2011. A Dual-Tree-Based On-

Demand Multicast Routing Protocol for Mobile Ad Hoc

Networks. SNPD, 128-132.

[18] Lin, X., McKinley, P. K., and Ni, L. M. 1994. Deadlock-

free multicast wormhole routing in 2D mesh

multicomputers. IEEE Transactions on Parallel and

Distributed Systems, (August 1994), vol.5, 793-804.

[19] Darwish, M. G., Radwan, A. A. A., Abd El-Baky, M. A.,

and Hamed, Kadry. 2010. Ready Groups: A Path-Based

Multicast Algorithm for 2D Torus Networks. The 7th

International Conference on Informatics and Systems

(March 2010), (INFOS 2010) - 28-30.

[20] Lin, X., McKinley, P. K., and . Ni, L. M. 1994.

Deadlock-free multicast wormhole routing in 2D mesh

multicomputers. IEEE Transactions on Parallel and

Distributed Systems, (August 1994), vol.5, 793-804.

[21] Darwish, M. G., Radwan, A. A. A., Abd El-Baky, M. A.,

and Hamed, Kadry. 2005. GTTPM – An Efficient

Deadlock-Free Multicast Wormhole Algorithm For

Communication In 2D Torus Multicomputers. In

proceeding of the 17th IASTED International Conference

Parallel and Distributed Computing and Systems,

Phoenix, AZ, USA, November 14-16, 2005.

[22] Oral, S. and George, A. 2003. Multicast Performance

Modeling and Evaluation for High-Speed Unidirectional

Torus Networks. HCS Research Lab, U. of Florida,

submitted (June 2003).

IJCATM : www.ijcaonline.org

