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ABSTRACT 
Two-point boundary value problems (TPBVP) are an 

important class of problems which appear frequently in 

optimal control. These may be well conditioned or ill 

conditioned. A well- conditioned TPBVP will have a system 

matrix with linearly independent columns due to closeness of 

its eigenvalues. On the other hand an ill conditioned TPBVP 

will have a system matrix with almost linearly dependent 

columns due to wide variation of its eigenvalues. In other 

words, a well- conditioned system is a one- time scale system 

whereas an ill conditioned system is a multi-time scale 

system. Ill conditioned systems are computationally stiff 

systems with widely separated eigenvalues. The stiffness 

increases with increase in time scales. The solution of TPBVP 

of discrete control systems is obtained by shooting method, 

that is, a number of initial value problems (IVP) will be shot 

to get the solution of TPBVP. The solution of a well-

conditioned TPBVP is easier compared to an ill-conditioned 

TPBVP. An ill-conditioned TPBVP requires 

orthonormalization process to make the columns of the system 

matrix linearly independent. More the stiffness more the 

number of orthonormalization processes. Here the method of 

complimentary functions is used for well-conditioned systems 

and Conte's method for ill-conditioned systems. First we 

develop shooting methods for well-conditioned and ill-

conditioned TPBVP of discrete control systems. Later the 

methods are supported with two illustrative examples one for 

each case. 

Keywords 
Discrete control, Time-scale systems, Optimal control, Stiff 

two-point boundary value problem, Shooting method, 
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1. INTRODUCTION 
For an nth order IVP n initial conditions are specified along 

with input. Hence IVP may be solved easily by recursive 

method starting from the initial data and input. However for 

TPBVP some boundary conditions are specified at initial time 

and the remaining at final time (or some other time). Hence 

they cannot be solved easily as IVP. A well- conditioned 

system is that one whose system matrix columns are linearly 

independent and whose inverse can be obtained easily. 

TPBVP may be solved using standard methods for well-

conditioned systems. Some solution methods for TPBVP are 

Interpolation methods, Variational methods, Method of 

Collocation, Picard’s method, Discrete methods, 

Quasilinearization method and Shooting methods.    However 

they may not work for ill-conditioned systems as it is. Also it 

is not possible to obtain a closed-form of solution practical 

TPBVP. Hence it is required to go for numerical methods. So 

much literature is available for TPBVP and multi-time scales 

of continuous-time systems [1-4]. 

Stiff two-point boundary value problems are frequently 

encountered in optimal control. Stiff systems are time-scale-

systems or singularly perturbed systems [5-14]. The solution 

of two-point boundary value problems of stiff systems 

requires special methods such as shooting techniques. 

Shooting technique means finding the solution of BVP by 

shooting a number of IVP. Here an attempt is made to apply 

the same to discrete-time control systems.     

2. STATEMENT OF PROBLEM 
Consider an nth order linear shift invariant discrete system 

described by 

x(k+1) = A x(k) + B u(k)   

where 

x(k) - nx1  state vector 

u(k) -  rx1 control vector 

A – nxn system matrix 

B – nxr input matrix 

with boundary conditions 

xj(k=0) = xj(0) j = 1,2, ..., m;     

xj(k=N) = xj(N) j = m+1,m+2, ..., n.  (1) 

N is an integer indicating the final time. 

This TPBVP is to be solved for different conditions of system 

matrix A. If all the eigenvalues of A are close to one another it 

is a well-conditioned problem from computational view. If the 

eigenvalues of A are widely scattered it results in timescale 

behavior.  The multi-time scale systems exhibit the 

phenomenon of chaos [4] and these are ill-conditioned 

systems from computational view. Next shooting methods are 

applied for TPBVP represented by (1) for well-conditioned 

and ill-conditioned cases.  

2.1 WellConditioned TPBVP 
Method of Complementary Functions [1] will be used to solve 

these BVP. This method may be applicable for slightly ill-

conditioned systems like two-time-scale systems also. 

Consider a discrete system described by (1) with m initial 

boundary conditions and n-m terminal boundary conditions. 

Boundary conditions are: x1(0) ,…, xm(0), xm+1(N), …,  

xn(N);N is a fixed integer indicating final time. To solve the 

BVP, first it is required to find initial conditions 

corresponding to xm+1(N),…,xn(N). These are known as 

Missing Initial Conditions (MIC). Then solve the BVP as IVP 

using the given IC and MIC. Hence computing correct MIC is 

the real problem. xh and xf indicate  homogeneous and forced 

solutions of  x.  
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Step 1: Homogeneous Solutions 

For homogeneous solutions, Kronecker delta initial conditions 

are used as given below. 

xh
(1)[0]= 1 for m+1 else 0 

xh
(2)[0] = 1 for m+2 else 0 

… 

xh
(n-m)[0]= 1 for  n else 0 

Shoot these IVPs and store the resulting data. 

Step2: Particular solution 

The initial condition for particular solution is given as 

xf(0) = [x1(0) … xm(0)0…0]’ 

’ indicates transpose. Shoot and get the forced (particular) 

solution from xf(0) to xf(N) 

Step 3: MIC 

Here we compute the MIC.  

MIC   = 𝑥ℎ𝑏
−1 *  

𝑥𝑚+1 𝑁 − 𝑥𝑓 ,𝑚+1(𝑁)

𝑥𝑚+2 𝑁 − 𝑥𝑓 ,𝑚+2(𝑁)
……

𝑥𝑛 𝑁 − 𝑥𝑓 ,𝑛(𝑁)

  

where 

𝑥ℎ𝑏 =

 
 
 
 
 𝑥ℎ ,𝑚+1

(1)
(𝑁) 𝑥ℎ ,𝑚+1

(2)
(𝑁) … 𝑥ℎ ,𝑚+1

(𝑛−𝑚 )
(𝑁)

𝑥ℎ ,𝑚+2
(1)

(𝑁) 𝑥ℎ ,𝑚+2
(2)

(𝑁) … 𝑥ℎ ,𝑚+2
(𝑛−𝑚 )

(𝑁)
…

𝑥ℎ ,𝑛
(1)

(𝑁)

…

𝑥ℎ ,𝑛
(2)

(𝑁)
…
…

…

𝑥ℎ ,𝑛
(𝑛−𝑚 )

(𝑁) 
 
 
 
 

 

 

Step 4: Now solve the TPBVP as IVP using the given IC and 

MIC (that is shoot with IC and MIC).If MIC are accurate then 

the solution of x(k) satisfies all the given initial and final 

boundary conditions. 

2.2 Ill Conditioned TPBVP 
If the system matrix A is multi-time-scaled then the system 

becomes ill-conditioned and the columns of xhb will be almost 

linearly dependent. Hence xhb
-1  and MIC cannot be computed 

accurately. This problem can be overcome by 

orthonormalizing xh at appropriate values of k. 

Orthonormalizaion converts almost linearly dependent vectors 

into linearly independent vectors. Ill-conditioned TPBVP is 

solved using Conte’s algorithm employing complimentary 

functions method along with Gram-Schmidt 

orthonormalization process. 

Gram-Schmidt orthonormalization process generates N 

orthonormal vectors𝑧(𝑖), 𝑖 = 1,2, … , 𝑁,  from a set of N 

linearly independent vectors 𝑥(𝑖), 𝑖 = 1,2,…𝑁, by forming 

linear combinations of the 𝑥(𝑖). The orthonormal set 𝑧(𝑖) has 

the property 

                   (𝑧(𝑗 ), 𝑧(𝑖)) = 1, j=i;   

      =  0, else   

(𝑧(𝑗 ), 𝑧(𝑖)) is the inner product of the vectors 𝑧(𝑗 )𝑎𝑛𝑑𝑧(𝑖)and is 

given by  

(𝑧(𝑗 ), 𝑧(𝑖)) =  𝑧𝑙
(𝑗 )

. 𝑧𝑙
(𝑖)𝑁

𝑙=1 .  (2) 

{η
(𝑖)} is the set of unnormalized orthogonal vectors which will 

be normalized to {𝑧(𝑖)}. The transformation from the x’s to the 

z’s may be expressed in partitioned matrix form as Z=PX  

 
𝑧(1)

⋮
𝑧(𝑁)

 = 
𝑝11

⋮ ⋮
𝑝𝑁1 𝑝𝑁2 …𝑝𝑁𝑁

  
𝑥(1)

⋮
𝑥(𝑁)

 , 

Z= Nx1 vector, whose elements are the vectors 𝑧(𝑁), 

X=Nx1 vector, whose elements are the vectors 𝑥(𝑁), 

P=NxN matrix of lower triangular form described by  

𝑝𝑗𝑗 = 1/𝑤𝑗𝑗     j=i, 

𝑝𝑗𝑖  = −
(𝑥 (𝑗 ),𝑧 (𝑠))

𝑤𝑗𝑗

𝑗−1
𝑠=𝑖 𝑝𝑠𝑖 ,  j>i, 

𝑝𝑗𝑖 = 0,         j<i, 

𝑤𝑗𝑗 = (η 𝑖 , η(𝑖))1/2.   (3) 

Conte’s method  

This algorithm uses the method of complementary functions. 

It is a two-phase method. In the first phase homogeneous and 

forced solutions are found out recursively as IVP using 

Kronecker delta initial conditions at appropriate values of k 

implementing Gram-Schmidt orthonormalization process. In 

the second phase the MIC are found out working backward. 

Next working forward, find the solution of the given BVP 

using IC and MIC as IVP. The algorithm is similar to that of 

continuous-time systems [1]. 

Notation: Let  

H(q)(k) is an nx(n-m) matrix of solutions of the homogeneous 

equations xh
(g,q)(k), g = 1,2,…n-m, which were last 

orthonormalized at kq, as shown below 

H(q)(k) =

 
 
 
 
 𝑥ℎ ,1

(1,𝑞)
(𝑘) 𝑥ℎ ,1

(2,𝑞)
(𝑘) … 𝑥ℎ ,1

(𝑛−𝑚 ,𝑞)
(𝑘)

𝑥ℎ ,2
(1,𝑞)

(𝑘) 𝑥ℎ ,2
(2,𝑞)

(𝑘) … 𝑥ℎ ,2
(𝑛−𝑚 ,𝑞)

(𝑘)
…

𝑥ℎ ,𝑛
(1,𝑞)

(𝑘)

…

𝑥ℎ ,𝑛
(2,𝑞)

(𝑘)
…
…

…

𝑥ℎ ,𝑛
(𝑛−𝑚 ,𝑞)

(𝑘) 
 
 
 
 

 

     (4) 

P(q)’ = transpose of P(q), (n-m)x(n-m) matrix, which is the 

orthonormalization matrix of the homogeneous solutions  

V(q)(k)= the particular solution last orthogonalized at  kq. 

Algorithm: 

First phase 

1. Set counter q=0 and time k=0. Using the Kronecker 

delta initial conditions compute homogeneous and 

particular solutions from k = 0 to k1 from steps 1&2 of 

well-conditioned TPBVP algorithm. 

2. Set q=q+1. At kq, form the set of orthonormal vectors 

xh
(g,q)(kq), g= 1,2,…n-m,  from the set of(n-m) linearly 

independent vectors xh
(g,q-1)(kq),g= 1,2,…n-m. In matrix 

form 

H(q)(kq) = H(q-1)(kq)P(q)’ 

3. At kq, form the orthogonal complement of V(q-1)(kq) by 

subtracting out a linear combination of the orthonormal 

homogeneous vectors xh
(g,q)(kq), g= 1,2,…n-m; as   

V(q)(kq)=V(q-1)(kq)-H(q)(kq)ω(q) 

where ω(q) = n-m x 1 vector with components  

ω1
(q),ω2

(q),…,ωn-m
(q), 

ωg
(q)=(V(q-1)(kq),xh

(g,q)(kq)). 

4. Compute recursively from kq to kq+1 the (n-m) 

homogeneous equations starting with vectors at kq, 
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xh
(g,q)(kq), g= 1,2,…n-m. Also compute particular 

solution from kq to kq+1starting with V(q)(kq).   

5. If kq< N go to step 2. 

6. At k = N execute steps 2 and 3. Here let Q=q+1 and kQ 

= N 

Second Phase 

7. The general solution at N is given as the sum of the 

particular solution plus a linear combination of the 

homogeneous solutions.   

x(kQ) = V(Q)(kQ) + H(Q)(kQ) βQ corresponding to n-m 

terminal boundary conditions. 

Solving βQ=H(Q)(kQ)-1[x(kQ) - V(Q)(kQ)]. 

        βQ = (n-m) x 1 vector of constants with components   

        β1
(Q),β2

(Q),…,βn-m
(Q). 

8. The MIC  corresponding to n-m terminal boundary 

conditions is constructed by working backward from N 

as  

β(q-1)= P(q)’[β(q)-ω(q)], q = Q, Q-1, …, 1. 

where  P(q), and ω(q) have been computed in first phase. 

β(0) is the MIC. 

9. Perform final shoot with given IC and MIC to get the 

required solution of TPBVP.  

3. ILLUSTRATIVE EXAMPLES 
Two examples are provided in support of the shooting 

methods for TPBVP; one for well-conditioned discrete control 

system which does not require orthonormolization and other 

for ill-conditioned discrete control system which requires 

orthonormolization. The results are given in tabular form.  

3.1 Example I 
Consider the third order single area power system model used 

for LFC sampled with 0.2s [12]. The resulting system is given 

by 

 

𝑥01 𝑘 + 1 

𝑥02 𝑘 + 1 

𝑥1 𝑘 + 1 
 = 

0.772 0.037 −0.017
0.085 0.720 0.0406
−0.244 0.145 0.0306

  

𝑥01 𝑘 

𝑥02 𝑘 

𝑥1 𝑘 
 +

 
−0.144
0.074
0.705

 u(k)          (5) 

Here 𝑥0=  
𝑥01

𝑥02
  and u(k) is unit step function. The Eigen 

spectrum of this system  

                          (0.8078, 0.6992, 0.0156) 

clearly indicates two-time-scale nature with two slow modes 

represented by x0and one fast mode represented by x1.  

The boundary conditions are given as 

x01(10) =1;   x02(10) = 1;    x1(0) = 10.       (6) 

Here n = 3 and m = 1. By applying the shooting method of 

well-conditioned systems developed in Section 2.1, the 

solution obtained from MATLAB programming is given 

below. Please note that all the boundary conditions are 

satisfied.   

Step 1: Homogeneous solutions 

xh
(1)[0] =   [1;0;0] using MATLAB notation 

xh
(2)[0]  =   [0;1;0] 

      The resulting final values at k =10, after shooting, are 

xh
(1)[10] =   [0.0932; 0.0596;-0.0191] 

xh
(2)[10]  =   [0.0278;0.0524;0.0021] 

Step2: Particular solution 

The initial condition for particular solution is given as 

xf(0) = [0;0;10] 

      The resulting final values at k =10, after shooting, are 

xf(10) = [-0.6183; 0.2430;0.9185] 

Step 3: MIC 

The resulting 𝑥ℎ𝑏   and MIC are  

𝑥ℎ𝑏  = 
0.0932 0.0278
0.0596 0.0524

  

MIC = [19.7476; -7.9997] 

Step 4: Shoot with initial conditions and MIC  

x01(0) =19.7476;   x02(0) = -7.9997;    x1(0) = 10. 

The resulting solution is shown in Table1. As seen from this 

table all boundary conditions x01(10) =1,  x02(10) = 1,   x1(0) = 

10 (indicated in boldface) are satisfied. Hence this is the 

solution of given TPBVP. The same results are displayed in 

Fig. 1 giving picturesque view.  

Table 1 – TPBVP solution for well-conditioned system 

x(k) 
Exact 

Solution 
x(k) 

Exact 

Solution 

 𝑥01(0) 19.7476 𝑥01(6) 3.6438 

     𝑥02(0) -7.9997 𝑥02(6) 1.1480 

    𝑥1(0) 10.0000 𝑥1(6) -0.3609 

𝑥01(1) 14.6350 𝑥01(7) 2.7175 

      𝑥02(1) -3.6005 𝑥02(7) 1.1964 

      𝑥1(1) -4.9666 𝑥1(7) -0.0279 

𝑥01(2) 11.1054 𝑥01(8) 1.9986 

      𝑥02(2) -1.4752 𝑥02(8) 1.1661 

𝑥1(2) -3.5392 𝑥1(8) 0.2153 

𝑥01(3) 8.4348 𝑥01(9) 1.4383 

𝑥02(3) -0.1871 𝑥02(9) 1.0930 

𝑥1(3) -2.3261 𝑥1(9) 0.3938 

𝑥01(4) 6.4002 𝑥01(10) 1.0000 

𝑥02(4) 0.5626 𝑥02(10) 1.0000 

𝑥1(4) -1.4506 𝑥1(10) 0.5254 

𝑥01(5) 4.8423   

𝑥02(5) 0.9650   

𝑥1(5) -0.8187   
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Fig. 1 Solution of Illustrative Example I 

  

3.2 Example II 
Consider the TPBVP resulting from two-parameter optimal 

control [14] 

 
 
 
 
 
 
 
 
 
 
 
𝑥01 𝑘 + 1 

𝑥02 𝑘 + 1 

𝑥11 𝑘 + 1 

𝑥12 (𝑘 + 1)
𝑥2(𝑘 + 1)

𝑝01 𝑘 

𝑝02 𝑘 

𝑝11 𝑘 

𝑝12 (𝑘)
𝑝2(𝑘)  

 
 
 
 
 
 
 
 
 
 

=  

 
 
 
 
 
 
 
 
 
 

0.9147 0.0253 0.0125 0.0075 0.0051
−0.0602 0.8893 −0.0003 0.4560 0.0295
−0.0195 0.7016 0.2465 0.0209 0.0192

−1.4300 −0.0219 −0.0138 0.2399 −0.0063
−1.1124 −0.0125 −0.0089 0.3388 0.0259

−0.0000  −0.0005  −0.00002 −0.0029 −0.0002
−0.0005 −0.0037 −0.00024 −0.0184 −0.0014
−0.0001
−0.0145
−0.0111

−0.0012  
−0.0924
−0.0711  

−0.00006 −0.0059 −0.0004
−0.00594 
−0.0045  

−0.4503  
−0.3465

−0.0346
−0.0266

0.2500 0.0000 0.0000      0.0000       0.0000
0.0000 0.2500 0.0000      0.0000       0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000

 0.1500      0.0000       0.0000
0.0000
0.0000

     0.1500
      0.0000

      0.0000
   0.0200

0.9147 −0.0602 −0.0039 −0.2860 −0.0222
0.0253 0.8893 0.1403  −0.0043 −0.0002
0.0625
0.0375

   0.2550   

−0.0015
0.2280

1.47500   

0.2465 −0.0138 −0.0009
0.0209
0.1920

0.2399 0.0338
−0.0630 0.0259  

 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 

𝑥01 𝑘 

𝑥02 𝑘 

𝑥11 𝑘 

𝑥12 (𝑘)
𝑥2(𝑘)

𝑝01 𝑘 + 1 

𝑝02 𝑘 + 1 

𝑝11 𝑘 + 1 

𝑝12 (𝑘 + 1)
𝑝2(𝑘 + 1)  

 
 
 
 
 
 
 
 
 
 

 

with boundary conditions 

x01(0) = 2;   x02(0) = -1;  x10(0) = 1;  x12(0) = 5;  x2(0) = -4  

and p01(6) = 0;   p02(6) = 0;  p11(6) = 0;  p12(6) = 0;  p2(6) = 0  

       (7) 

Eigen values of this TPBVP are  

  {33.84855; 4.08196 ± 0.40125i; 1.13125 ± 0.10143i; 

0.87692 ± 0.07862i; 0.242635 ± 0.02385i; 0.029543} 

This clearly indicates stable and unstable slow, fast and faster 

modes. This system is a true multi-time-scale system with 

chaotic behavior exhibiting butterfly phenomenon. The 

optimal solution is obtained by Conte’s method as mentioned 

in Section 2.2 Ill-conditioned TPBVP. The result is shown 

below in Table 2 for this numerical method. Also it is 

displayed pictorially in Figures 2 and 3 for quick view. Fig. 2 

shows the solution of states x(k) whereas Fig. 3 displays the 

solution of co-states p(k). 

Table 2 – TPBVP solution for ill-conditioned system 

x(k)&p(k) 
Optimal 

Solution 
x(k)&p(k) 

Optimal 

Solution 

x01(0) 2.00000 p01(3) 1.16381 

x02(0) -1.00000 p02(3) -0.84362 

x11(0) 1.00000 p11(3) -0.14593 

x12(0) 5.00000 p12(3) -0.63653 

x2(0) -4.00000 p2(3) -0.82417 

p01(0) 2.86755 x01(4) 1.24857 

p02(0) -1.11978 x02(4) -1.24329 

p11(0) 0.31332 x11(4) -1.14097 

p12(0) 0.43092 x12(4) -2.32278 

p2(0) -1.02475 x2(4) -2.27450 

x01(1) 1.83594 p01(4) 0.66903 

x02(1) -0.88573 p02(4) -0.62869 

x11(1) -0.46181 p11(4) -0.19641 

x12(1) -1.27960 p12(4) -0.49655 

x2(1) -0.36337 p2(4) -0.49148 

p01(1) 2.32156 x01(5) 1.06844 

p02(1) -1.05230 x02(5) -1.34642 

p11(1) 0.03291 x11(5) -1.26783 

p12(1) -0.55425 x12(5) -2.11286 

p2(1) -1.00144 x2(5) -2.07634 

x01(2) 1.64240 p01(5) 0.26711 

x02(2) -0.94998 p02(5) -0.33660 

x11(2) -0.79927 p11(5) -0.19017 

x12(2) -2.48652 p12(5) -0.31693 

x2(2) -2.14862 p2(5) -0.04152 

p01(2) 1.72688 x01(6) 0.90095 

p02(2) -0.97576 x02(6) -1.41891 

p11(2) -0.07234 x11(6) -1.36202 

p12(2) -0.70535 x12(6) -1.97468 

p2(2) -0.99976 x2(6) -1.93003 

x01(3) 1.44111 p01(6) 0.00000 

x02(3) -1.10474 p02(6) 0.00000 

x11(3) -0.98380 p11(6) 0.00000 

x12(3) -2.52265 p12(6) 0.00000 

x2(3) -2.41595 p2(6) 0.00000 

 

Fig. 2 Solution of States x(k) of Illustrative Example II 
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Fig. 3 Solution of Co-States p(k) of Illustrative Example II 

4. CONCLUSIONS 
TPBVP occur in many engineering problems like optimal 

control. TPBVP solution is not easy as the response has to 

satisfy both the initial and terminal boundary conditions. 

Their solution is easy for well-conditioned systems compared 

to ill-conditioned systems. These methods are available for 

continuous systems. Here they are presented for discrete 

control systems with two illustrative examples one for well- 

conditioned and one for ill-conditioned TPBVP. Method of 

complimentary functions is used for well conditioned TPBVP. 

Ill-conditioned TPBVP is solved using Conte’s method 

employing complimentary functions method along with 

Gram-Schmidt orthonormalization process. Start with 

orthonormalizing at k=N. If it is not yielding accurate MIC 

and TPBVP solution, then orthonomalize at k=N/2 and N for 

even N. If this also not yielding the required TPBVP solution 

then orthonormalize at k=N/4, 2N/4, … and N for even N. 

And so on. Similar selection may be employed for odd N.  

The numbers of orthonormaliztions depend upon the degree of 

ill-condition of A matrix. If the system is more ill-conditioned 

more the number of orthonormaliztions required.              

5. ACKNOWLEDGMENTS 
We greatly acknowledge Siddhartha Academy of General and 

Technical Education, Vijayawada for providing the facilities 

to carry out this research. 

6. REFERENCES 
[1] Roberts S.M. and Shipman J.S. (1972) Two-point 

Boundary Value Problems: Shooting Methods. Elsevier, 

New York. 

[2] SUNG N. HA, ”A Nonlinear Shooting Method for Two-

Point Boundary Value Problems” Computers and 

Mathematics with Applications 42 (2001) 1411-1420. 

[3] Dinkar Sharma, Ram Jiwari, SheoKumar, ”Numerical 

Solution of Two Point Boundary Value Problems Using 

Galerkin-Finite Element Method” ISSN 1749-3889 

(print), 1749-3897 (online) International Journal of 

Nonlinear Science Vol.13(2012) No.2,pp.204-210.  

[4] Koichi F. and Kunihiko K. (2003). Bifurcation cascade 

as chaotic itinerancy with multiple time scales. Chaos: 

An Interdisciplinary Journal of Nonlinear Science, 13, 

1041-1056. 

[5] Naidu D. S. (2002), Singular Perturbations and Time 

Scales in Control Theory and Applications: An 

Overview. Dynamics of Continuous, Discrete & 

Impulsive Systems, 9, 2,  233-278. 

[6] Naidu, D.S and Rao, A.K. (1985), Singular perturbation 

analysis of discrete control systems. Volume 1154 of 

Lecture Notes in Mathematics, A.Dold and B. Eckmann, 

eds, Springer-Verlag. 

[7] Naidu, D.S and D.B Price (1988), Singular perturbations 

and time scales in the design of digital flight control 

systems. NASA Technical paper 2844. 

[8] Krishnarayalu M. S. (1989), Singular perturbation 

method applied to the open-loop discrete optimal control 

problem with two small parameters. Int. J. Systems 

Science, 20, 5, 793-809. 

[9] Krishnarayalu M. S. (1994), Singular perturbation 

analysis of a class of initial and boundary value problems 

in multiparameter digital control systems. Control- 

Theory and Advanced Technology, 10, 3, 465-477. 

[10] Krishnarayalu M. S. (1999),  Singular perturbation 

methods for one-point, two-point and multi-point 

boundary value problems in multiparameter digital 

control systems. Journal of Electrical and Electronics 

Engineering, Australia, 19, 3, 97-110. 

[11] Krishnarayalu M. S. (2008), Singular perturbation 

method applied to the discrete Euler-Lagrange free-

endpoint optimal control problem. Automatic Control 

(theory and applications) AMSE journal,  63, 3, 16-29. 

[12] Kishore Babu G. and Krishnarayalu M. S.(2014) Some 

Applications of Discrete One Parameter Singular 

Perturbation Method. JCET Vol. 4 Iss.1, PP. 76-81. 

[13] Calovic, M.  (1971), Dynamic State Space Models of 

Electric Power Systems(Urbana: University of Illinois 

Press). 

[14] Kishore Babu G. and Krishnarayalu M. S.(2014) 

“Suboptimal Control of Singularly Perturbed Two 

Parameter Discrete Control System” International 

Electrical Engineering Journal (IEEJ) Vol. 5 (2014) 

No.11, pp. 1594-1604, ISSN 2078-2365.  

 

IJCATM : www.ijcaonline.org 


