
International Journal of Computer Applications (0975 – 8887)

Volume 111 – No 5, February 2015

30

Fast Retrieval with Column Store using RLE

Compression Algorithm

Ishtiaq Ahmed
Integral University

Dasauli, Kursi Road
Lucknow (UP) India

Sheesh Ahmad, Ph.D
Integral University

Dasauli, Kursi Road
Lucknow (UP) India

Durga Shankar Shukla
Integral University

Dasauli, Kursi Road
Lucknow (UP) India

ABSTRACT
Column oriented database have continued to grow over the

past few decades. C-Store, Vertica Monet DB and Lucid DB

are popular open source column oriented database. Column-

store in a nutshell, store each attribute values belonging to

same column contiguously. Since column data is uniform type

therefore, there are some opportunities for storage size

optimization in Column-store, many renowned compression

schemes such as RLE & LZW that make use of similarity of

adjacent data to compress. Good Compression can also be

achieved using bitmap index by order of magnitude through

the sorting. The Run Length Encoding works best for the

columns of ordered data, or data with few distinct values. This

ensures long runs of identical values which RLE compresses

quite well. In this paper we have put an effort to build a

simulation of Column-Store and applied the best bitmap

compression technique RLE which further improves the

retrieval time.

General Terms

Your general terms must be any term which can be used for

general classification of the submitted material such as Pattern

Recognition, Security, Algorithms et. al.

Keywords

 Bitmap, Column-Store, LZW, OLAP, OLTP, RLE

1. INTRODUCTION
Column –Oriented database has drawn a lot of attention in last

few years. The source of column-oriented database systems

can be seen beginning from 1970s, but it was not until 2000s

that some researches and applications started to be done. In

the past recent years some column store databases namely

MonetDB [1] [2] and C-Store [3] has been introduced by their

authors, with the claim that their performance gains are quite

noticeable against traditional approaches. The column

oriented database specifically designed for analytic purpose

overcome the flaws encountered in traditional DBMS by

storing, managing, querying, data based on column instead of

row. Column-Stores approach, store each column separately

rather than storing entire row i.e. instead of retrieving a record

or row at a time, an entire column is retrieved, only necessary

columns in a query are accessed rather entire rows, I/O

activities as well as overall query response time is reduced

and access becomes faster because much more relevant

Column can be accessed in a shorter period of time [4].

Moreover there are some opportunities for storage size

optimizations available in column-store because data in a

column oriented database can be better compressed than those

in a row-oriented database, values in a column are much more

homogenous than in a row. The compression of a column-

oriented database may reduce its size up to 20 times, this thing

providing a higher performance and reduced storage costs

[5][6].

Column oriented architecture is more suitable for data

warehousing with selective access to small number of

attributes. While row-oriented is better solution for OLTP

systems, In such architecture all attributes are written on a

disk in single command that requiring high performance for

writing operations. For OLAP system, designed for analytical

purposes, which involve processing of large number of values

of few columns, a column –oriented is better solution .Indeed

Column-Oriented has enabled highly complex query

environments that support strategic and operational decisions

can be used to achieve a competitive edge by better

understanding customers, competition, risk positions, revenue

leaks, and fraud. Column oriented DBMS allow to perform

these data analytics [6] [7].

OLTP Database (Operational)

Fig 1: OLTP & OLAP Database Overview

The internal structure of Column-Store will be better

understood by simulating column stores-inside row store. Star

Schema Benchmark [6] is recently proposed data-

warehousing benchmark that has been implemented with

column-Oriented internal design as possible. The column

oriented approach which is used in SSMB (vertical

Partitioning, Index only Plans & materialization) will be

explained in Section II. This section will also explain

decomposition storage Model for implementing Column-

Oriented database. Section III will explain the compression

techniques to be integrated with Column Oriented database.

Section IV will discuss the proposed work and Sec V will

explain the conclusion.

2. BACKGROUND AND PRIOR WORK

2.1 Review Stage
The section has three approaches for implementing Column-

Store that has been introduced.

2.1.1 Vertical Partitioning
With this approach to make a Column-store in a row-store by

partitioning each table vertically [10].An integer value

position is added to each column, to connect the fields from

OLAP

(Data Warehouse)

Analytics

Decision Making

International Journal of Computer Applications (0975 – 8887)

Volume 111 – No 5, February 2015

31

same row together. It consists of more tables with fewer

columns. In this way only necessary column are used to

respond a query.

2.1.2 Index-only Plans
Since more tables is to be created with extra position attribute,

this leads to wasting more space in vertical partitioning. The

alternate approach is index only plans. With this approach an

index is to be added for each column of every table and

collection of all indices are built so that it is possible to

respond a query without ever going to underlying row-

oriented tables. The index only plan works by setting list of

pairs (surrogate, value) which satisfy the predicate (where

clause) in each table.

2.1.3 Materialized View
Using this approach, there is a view with exactly columns

needed to respond the query. The main purpose is to create

optimal set materialized views where each views is having the

required columns to answer the queries.

An alternate approach is decomposition storage model. This

model vertically partitioned tables [8]. In this model each

attribute of table is stored as separate relation along with

surrogate (integer value) that identifies the original tuple that

the attribute came from. The figure shows sample relation in

the NSM representation on far left and the corresponding

DSM representation on right [11].

Fig 2: Example of Decomposition Method

2.2 Decomposition Storage Structure
The DSM model keeps two replica of each partition, one is

clustered on IDs as shown above, and the second clustered on

attribute value, which is index. DSM exhibit good I/O

behavior when the number of attribute is used by query is low

projectivity and low selectivity is low. Consider a sample

scenario in which a selection operation has low projectivity

and low selectivity, i.e. only a few attributes are projected

from a large percentage of the tuples. With the DSM

representation only the partitions required by the query would

be scanned, minimizing the number of disk I/Os performed

while maximizing L1 and L2 data cache performance. With

the NSM representation, since the query predicate is not very

selective, an index would not be useful and the entire table

would be scanned [1].

2.3 Fractured Mirror Technique
The other approach is mirroring technique that retains the

advantages of both NSM and DSM technique. The queries

touching less attribute of large number of records will use

DSM copy. Queries touching greater part of attributes will use

NSM copy. This idea builds on thought of Disk Shadowing

[5] [4]. The fractured mirroring technique leads to extra

expense on hardware or software.

3. INTEGRATING COMPRESSION

WITH COLUMN-SOTRE
Storing uniform type of data in columns presents a number of

opportunities for storage size optimizations and also improved

performance from compression algorithms. Compression

techniques can encode multiple uniform values at once [12].

In row-store such scheme do not work well due to entire tuple

belonging to different attribute and data type. Compression

algorithms perform better on data with low information

entropy (high data value locality) [12][13.]Imagine a database

table containing information about customers (name, phone

number, e-mail address, e-mail address, etc.). Storing data in

columns allows all of the names to be stored together, all of

the phone numbers together, etc. Certainly phone numbers

will be more similar to each other than surrounding text fields

like e-mail addresses or names. Further, if the data is sorted by

one of the columns, that column will be super-compressible.

Compression is useful because it helps reduce the

consumption of expensive resources, such as hard disk space

[13].

Row-Store often use dictionary schemes where a dictionary is

used to code big values in column into smaller codes e.g. a

string-typed column of colors might map “blue” to 0,

“yellow” to 1 and “green” to 2 and so on [14] [15] [16] [17].

Sometimes these schemes use prefix coding based on symbol

frequencies (e.g. Huffman Coding). In addition to these

conventional schemes, Column Store is well suited to

compression schemes that compress values from more than

one row at a time. This allows large variety of feasible

compressions algorithms. E.g. the RLE, where repeats are

often expressed as pairs (value, run-length) is attractive

approach for compressing sorted data in Column-Oriented

database. In this research paper part of section IV we have

discussed the how RLE improves the searching in simulation

of Column-Store.

4. PROPOSED SOLUTION
In this section we have used the bitmap compression Run

Length Encoding (RLE) with simulation of Column-Store,

specifically for String operations. We have analyzed the time

taken by any query to find out the given string in Compressed

and uncompressed form. The simulation psuedocode for

compression technique with the searching has entirely written

in „C++‟ language using the Structure

4.1 Run Length Encoding Flow Chart and

Psuedocode for proposed Work

The following Figure -3 shows the flow diagram of Run

Length Encoding.

.

International Journal of Computer Applications (0975 – 8887)

Volume 111 – No 5, February 2015

32

Fig 3: Flow Diagram of RLE Compression

The following is the psuedocode for compression that will be

used with or without Compression in searching

Step 1 create required structure

Struct cpr

{

char str[100]

char cprstr[50]

}cprarr[250]

Step 2 create a subroutine for compression of the string as

given below

void RLE_Encode(char *str)

{int ii->0

int ni->0

int count->1

char c

while(*(str+ii)!->'\0')

{*(str+ni)->*(str+ii)

ni++

while(*(str+ii)->->*(str+ii+1))

{ count++

 ii++

}

c->(char)(((int)'0')+count)

 *(str+ni)->c

 ni++

 ii++

count->1

}*(str+ni)->'\0'}

Step 4 Create a subroutine for searching with custom filters

technique as given below

float search(int op1)

bool found=false;

float ans->0.0f

clock_t t1,t2 //used to store system current time

if(op1==2)

Input string to be search in „item‟

RLE_Enocode(item) start compressing the input before

comparison

endif

else

Input string to be search in „item‟

t1->clock()

for(i->0 i<250 i++)

{ compare and check if cpratt[i].cpr with item || op==2 and

cprarr[i].cprpd with item

then

International Journal of Computer Applications (0975 – 8887)

Volume 111 – No 5, February 2015

33

found=true}

t2->clock() }

return (t2-t1)

}

4.1.1 Algorithm for Proposed Work
1. First create a columnar database

2. Read the required column needed to compress the

data

3. Store the compressed data in another column

4. Apply Searching on compressed and uncompressed

data

5. Determine the time difference with/without

compression.

4.1.2 Experiment & Result
Execution of the above code and the experiment were carried

out on windows platform with 2.2 GHz processor and 4GB

RAM. We have built one dimensional table through the

structure in C++ programming language and stored 250

records and applied Run Length Encoding (RLE). Henceforth

we have concluded with the following decision table -1 and

fig-3.

Table 1. Comparative tabular data for RLE Compression

Number

Of

Records

Time

Without

RLE

(T1)

Time

with

RLE

(T2)

Time

Diff. (T1-

T2)

%age of

Efficiency

10 9.21 6.1 3.11 33.77

20 17.03 10.38 6.65 39.05

50 29.62 19.54 10.08 34.03

100 18.97 8.34 10.63 56.04

250 79.59 42.97 36.62 46.01

Fig 4: Comparative Data Analysis With/Without RLE

5. CONCLUSION
The inclination of proposed work shows that the significant

database performance gains can be kept by implementing the

Optimal Compression schemes that work directly on

compressed data. Furthermore our focus on column oriented

compression allowed us to optimize the storage space and

enhance the searching efficiency in the column-store is greater

than row-store. Through this work the time efficiency is

increase by 43.42% and storage space has been reduced by

almost 50%. Hence we observe through this research work as

a significant role in understanding the considerable

performance gains of Column-oriented design while this

paper centered on quite simple query so as to refine the

performance edge of column-oriented compression

6. ACKNOWLEDGMENTS
First of all, I express my sincere gratitude to the Almighty

Allah. I am very great full to my advisor Dr Shish Ahmad and

for his encouragement, and many fruitful discussions from the

very early stage of this project. I would like to thank Dr (Prof)

Rizwan Beg, Former Head of Department of Computer

Science and Engineering, Integral University, Lucknow. I

would like to thanks Mrs. Kavita Agarwal (HOD), for her

great help. Finally, I wish to express my appreciation to my

family for my continuous love and encouragement, for always

believing in me, for never failing to provide all the support,

and for coping with the pressure that naturally comes with

such endeavor.

5. REFERENCES
[1] S. Idreos, F. Groffen, N. Nes, S. Manegold, S.

Mullender, M. Kersten. MonetDB: Two Decades of

Research in Column-oriented Database Artitectures.

2012.W.-K. Chen, Linear Networks and Systems.

Belmont, Calif.: Wadsworth, pp. 123-135, 1993. (Book

style)

[2] P. Boncz, M. Zukowski, N. Nes. MonetDB/X100:

Hyper-pipeliningquery execution. In CIDR, 2005K.

Elissa, “An Overview of Decision Theory," unpublished.

(Unplublished manuscript)

[3] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M.

Cherniack, M.Ferreira, E. Lau, A. Lin, S. R. Madden, E.

J. O‟Neil, P. E. O‟Neil, A. Rasin, N. Tran, S. B. Zdonik.

C-Store: A Column-Oriented DBMS. In VLDB, pages

553–564, 2005

[4] http:///www.Data Business Intelligence and Column

Database Technology/InfinitDB/by Calpont.mht

[5] Column-oriented DBMS-Wikipedia, the free

encyclopedia.mht

[6] Gheorghe MATEI: Column-Oriented Databases, an

Alternative for Analytical Environment

[7] Data/HRG/Home.htm

[8] D.J. Abadi, S.R. Madden, N. Hachem. Column-stores vs.

row-stores: how different are they really? In Proc.

SIGMOD, 2008.

[9] P. E. O‟Neil, X. Chen, E. J. O‟Neil. Adjoined Dimension

Column Index (ADC Index) to Improve Star Schema

Query Performance. In ICDE, 2008

[10] P. E. O‟Neil, E. J. O‟Neil, X. Chen. The Star Schema

Benchmark (SSB). http: //www.cs.umb.edu

[11] G.P.Copeland, S.Khosafian. A Decomposition Storage

Model. Proceedingsof ACM SIGMOD 1985.

[12] Daniel J.Abadi, Samuel R Madden,Miguel

C.Ferreira.:Integrating Compression and Execution in

Column –Oriented Database Systems

International Journal of Computer Applications (0975 – 8887)

Volume 111 – No 5, February 2015

34

[13] Daniel J.Abadi, Samuel R Madden,Miguel

C.Ferreira.:Integrating Compression and Execution in

Column –Oriented Database Systems

[14] G.Graefe and L.Shapiro. Data compression and database

performance. In ACM/IEEE-CS Symp. On Applied

computing pages 22 -27, April 1991.

[15] M. A. Roth and S. J. V. Horn. Database compression.

SIGMOD Rec., 22(3):31{39, 1993.

[16] Z. Chen, J. Gehrke, and F. Korn. Query optimization in

compressed database systems. In SIGMOD '01, Pages

271- 282, 2001

[17] M. Zukowski, S. Heman, N. Nes, and P. Boncz.Super-

scalar ram-cpu cache compression. In ICDE, 2006.

[18] Shish Ahmad. Evaluation of security risk associated with

different network layers‟ published in International

Journal of computer application Jul 2012

IJCATM : www.ijcaonline.org

