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ABSTRACT
Computing systems have been playing an important role in vari-
ous medical fields, notably in image diagnosis. Highlighted among
the existing exams that allow diagnostic aids and the application
of computing systems in parallel is Computed Tomography (CT).
This work focuses on the segmentation and reconstruction phases
of CT lung images using the Adaptive Crisp Active Contour Model
2D (ACACM) and the OpenGL library to present and analyse the
results in three dimensions. The results of the proposed method
were compared with those of the 3D Region Growing method and
then evaluated by two pulmonologists. The results showed the su-
periority of the proposed method, thus confirming that that this
method could integrate medical diagnostic aid systems in the pul-
monology field. Finally, some applications are shown utiizando
segmentation and 3D reconstruction proposals demonstrating that
the proposed method can be used to aid in medical diagnosis.
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1. INTRODUCTION
A large number of diseases that affect the population of the world
are lung-related. Therefore, research in the field of Pulmonology
has great importance in public health studies and focuses mainly
on asthma, bronchiectasis and Chronic Obstructive Pulmonary Dis-
ease (COPD) [33, 15].
The World Health Organization (WHO) estimates that there are 300
million people who suffer from asthma, and this disease causes
around 250 thousand deaths per year worldwide [4]. Also, WHO

estimates that 210 million people have COPD. This disease caused
the death of over 300 thousand people in 2005 [32]. Recent studies
reveal that COPD is present in the 20 to 45 year-old age bracket, al-
though it is characterized as an over-50-year-old disease. WHO es-
timates that the number of deaths due to COPD will increase 30%
by 2015, and by 2030 COPD will be the third cause of mortality
worldwide [9].
In the period from 1992 to 2006, 15% of all hospitalizations fi-
nanced by the Brazilian Federal Health System (SUS) were due to
pulmonary diseases, of which asthma and COPD together summed
up 562,016 hospitalizations [4].
Thus, it is of fundamental importance for the public health system
to obtain an early and correct diagnosis of any pulmonary disease.
Diagnostic aid is important from a clinical point of view as it in-
creases the amount of information the specialist has concerning the
patients state of health. Therefore, with such data certain illnesses
can be detected precociously, and lives saved lives in some cases.
Also, some techniques allow the clinical image of the disease to be
tracked appropriately [11, 21].
The segmentation stage of CT pulmonology images is essential for
the correct and accurate medical diagnosis, as this stage delimits
the lung area in CT images of the thorax, which must be analyzed
by the diagnostic aid or by a specialist.
The segmentation of objects and structures in medical images is
a process that, in most cases, is more complex if compared to the
segmentation of other image types, such as metallographic and syn-
thetic aperture radar remote sensing. This is due to the variability
of structures and/or internal organs, and the different visualization
planes of these images. Furthermore, there is the possibility of dis-
eases affecting these organs. All of which contribute to increase the
difficulty to develop efficient techniques for medical image seg-
mentation [11, 21].
Lung segmentation techniques have been developed to optimize
this step. Among these techniques, [30] and [11] used the re-
gion growing method to obtain lung segmentations of CT images.
[12], [17] and [29] put together Mathematical Morphology, Region
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Growing, Thresholding and Edge Detection methods to obtain even
more accurate results. [7] e [19] used traditional Active Contour
Model (ACM) techniques for lung segmentation; meanwhile [27]
used the Watershed transform.
Another methodology for lung segmentation is the 3D Region
Growing approach, and this is applied to segment the lung and its
internal structures, such as the vessels and airways [3, 18, 31, 22].
This method works similarly to the 2D region growing technique
that is initialized by a seed point and then expanded through its
neighbors, obeying an aggregation rule.
However, the traditional threshold-based segmentation methods,
and the Region Growing, Edge Detection and Watershed meth-
ods do not normally present consistent results in CT thorax images
[14, 24]. This may happen due to the lack of precision in the detec-
tion of lung edges generated by the internal structures such as veins,
arteries and airways [8] or due to pulmonary disease or noise which
can distort the radiological densities expressed in HU (Hounsfield
units) of the lungs [14]. Also, segmentation techniques that utilize
edge information or region characteristics separately, in general,
present insufficient results and are only adequate for specific cases
[14]. This is because these techniques often include structures that
do not constitute the pulmonary tissue, such as the hilum and parts
of the thorax cavity [17, 28, 29, 10] which are not under analysis.
In order to overcome the technical restrictions of the previously
mentioned methods, other segmentation techniques have been de-
veloped. The most important ones are the Pulmonary Emphysema
Detection System (PEDS) [13], the Active Crisp Contour Method
[24] and the Active 2D Hilbert Contour method [14]. The PEDS
system automatically segment the lung using the Region Growing
technique associated with morphological closing and erosion oper-
ations [13].
In this work, the Adaptive Crisp Active Contour two-dimensional
Method (ACACM) was used for lung segmentation [24]. This
method has shown itself to be superior compared to other CT image
lung segmentation methods, in efficiency, as well as efficacy. This
work aimed to segment a whole lung in a CT thorax exam, segment-
ing each image individually through ACACM, and used the result
of each piece of the CT exam to generate a three dimensional (3D)
lung segmentation. The results were compared to the 3D Region
Growing method results, which is the most widely used method for
this type of work found in the literature. Then, both methods were
evaluated by two physicians (pulmonologists).
These methods aim to assist medical diagnostic aids in pul-
monology diseases using 3D visualization and reconstruction from
two-dimensional CT images. After image segmentation it is pos-
sible to visualize and quantify the lung structures, as well as their
internal structures three-dimensionally. This facilitates the diagno-
sis by the medical experts and reduces/eliminates the subjectivity of
interpretation of the exam. The results obtained from the proposed
method and the 3D Region Growing method were evaluated and
validated by two medical specialties (physicians/pulmonologists).
One of the important contributions of this work is to use the pro-
posed method on personal computers (PC), maintaining, or in some
cases improving the performance. Also a PC reduces the process-
ing costs, the use of the CT scanner workstation as well as reducing
the overall time to evaluate a CT image.

2. EXPERIMENTAL PROCEDURES
This work proposes a new segmentation and 3D lung reconstruction
method. The Adaptive Crisp Active Contour Method (ACACM)
was used to segment the lung from each part of the CT thorax
image, and a new methodology using the open-source computer

graphics library (OpenGL) was proposed to reconstruct the lung
and its respective 3D visualization.

2.1 Medical Image Acquisition
The tomographic models used to acquire the complete exams were
the Toshiba Aquilion (TA), the GE Medical system LightSpeed16
(GEMSL) and the Phillips Brilliance 10 (PB). All images had a
512 x 512 resolution with 16 bits. Table 1 gives the characteris-
tics of these exams, conceded by a pulmonologist, with the patients
authorization. These images constitute an image cluster obtained in
partnership with the Walter Cantdio Hospital of the Federal Univer-
sity of Cear, submitted to an earlier study [33, 15]. This study was
approved and evaluated by the UFC Research Ethics Committee
COMEPE, (Protocol n 35/06) and complied with the requirements
of Resolution n 196/96 of the National Health Council, concerning
research in human beings [33, 15].

Table 1. Description of the exams used to analyze the
2D and 3D algorithms.

Number of Number of Slice Tomographic Kind of
exam images thickness model Pathology

1 908 0.5 mm TA Normal
2 297 0.5 mm TA Normal
3 685 0.5 mm TA Normal
4 760 0.5 mm TA Normal
5 229 3.0 mm TA COPD
6 278 1.25 mm GEMSB Normal
7 267 1.25 mm GEMSB Fibrosis
8 239 1.25 mm GEMSB Normal
9 276 2.0 mm PB Fibrosis

10 296 2.0 mm PB Normal
11 597 1.0 mm PB COPD

The CT lung images shown in Table 1, were acquired on apex,
hilum and on the base of the axial plane, under the following con-
ditions: Each slice was 1.5 mm thick, field of vision was 312 mm,
electrical tension in the tube was 120 kV, electric current in the tube
was 200 mA, lung window adjustment: centre and width, were -
600 and 1600 HU respectively, the dimension of the reconstructed
window was 512 × 512 pixels and the voxels had dimensions of
0, 585× 0, 585× 1, 5 mm and were quantified in 16 bits.

2.2 Automatic CT image lung segmentation using
ACACM

The ACACM method [24] appeared as an evolution of the Crisp
Active Contour Method [26] for thorax CT image lung segmenta-
tions. The ACACM can identify the edges of objects with concav-
ities, projections or bifurcations without restrictions. Therefore the
total energy at a point c(s) of ACACM is given by [24]:

ECRAD[c(s)] = Eintadap
[c(s)] +EextCRAD

[c(s)], (1)

where Eintadap
is the internal adaptive energy and EextCRAD

is
the external Crisp Adaptive energy.
The internal proposed ACACM 2D energy is given by [24]:

Eintadap
[c(s)] = wcontFcont[c(s)] + wadapFadap[c(s)], (2)

where Fcont[c(s)] is the same Continuity force used in the tradi-
tional ACM proposed by [20] and Fadap[c(s)] is the new Balloon
Adaptive force. The parameters wcont and wadap are the weights
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associated with each force to adjust the importance of each one
of its respective terms in the calculation of the internal energy
Eintadap

.
The Balloon Adaptive force uses topology information of the curve
to expand the contour. This information is specific for each point,
and assumes that the curve possess distinct formats along its topol-
ogy. In this way, the Adaptive Balloon force dislocates each point
of the curve towards the edges of the object of interest, adapting the
topology it is placed onto.
To calculate this new internal force, information based on the coor-
dinates of the point of interest of the immediate neighbours and the
information based on the form of the curve is obtained. The data of
the coordinates of the point of interest of the immediate neighbours
is used to calculat Fadap. These coordinates are used to determine
the mean point of the neighbours, which is used as reference to de-
termine the direction of Fadap. The other information is given by
the location analysis of this mean point, determining if it is inside
or outside the curve.
After finding this topology data Fadap is given by [25]:

Fadap[c(s)] =
√
E2

x +E2
y , (3)

where Ex and Ey components are defined by:

Ex = |x(s)± xm| , (4)

and

Ey = |y(s)± ym| , (5)

where x(s) and y(s) are the coordinates of the point c(s) where
Fadap is being calculated, xm and ym are the coordinates of the
neighbours mean point. The topology information concerning lo-
cation determines the plus or minus sign used in Equations 4 and 5,
negative means the point is external to the curve and positive when
the point is internal.
Concerning the external energy of the ACACM method, the pro-
posed EextCRAD

uses the concept of Lung Densities Analysis
(LDA) of a neighbourhood applied to the Crisp ACM method [24].
This is done to obtain the percentages of the 6 ui classes, in which
i varies from 0 to 5:

—u0 - Hyper aerated (−1000 to −950 HU) ;
—u1 - Normally aerated (−950 to −500 HU);
—u2 - Poorly aerated (−500 to −100 HU);
—u3 - Not aerated (−100 to 100 HU);
—u4 - Bone (600 to 2000 HU);
—u5 - Areas not classified (densities that do not fit with the others).

To bypass the external Crisp energy restrictions, this new energy in-
corporates a multilayer perceptron artificial neural network (MLP)
to determine the origin of each edge found in the thorax CT im-
ages. The inputs of this MLP are the 6 percentages of the ui classes
found by the LDA method [26]. Meanwhile there is only one out-
put to indicate that the edges found in thorax images are or are not
pulmonary walls.
In this method just one hidden layer is used in the topology of MLP
is used, and this layer is responsible for solving non linearly sepa-
rable problems. Thus, to demonstrate the quantity of neurons in the
hidden layer (HN) the solution described by [34] was used:

HN =
2×max (M1,M2)

3
, (6)

in wich M1 and M2 are the quantities of neurons in the input and
output, respectively.

The result of Equation 6 uses M1 as the 6 percentages of the ui

classes and M2 as the only output to determine if the edge belongs
to the lung or not. This results in a 6/4/1 configuration, in other
words, 6 entry neurons, 4 neurons in the occult layer and 1 neuron
in the output. The specified topology is verified by the method of
cross-validation [16], in which a conjunction of samples is sepa-
rated randomly, and one group is used for the training of the neural
network and the other for experimental tests, in order to validate
the classifier.
The training data were extracted from thorax CT images in the
apex, hilum and base positions of patients with COPD, fibrosis and
healthy volunteers as described in Section 2.1.
The data for the training phase are selected manually in order to ob-
tain a greater representation of different pulmonary structures. On
average, 150 pixels were added per image, indicating whether the
origin of the edges found by the Sobel operator were from the pul-
monary wall or were made up of the bone edges, veins airways, air
and other structures. In this training step 500 images from different
exams, diseases and levels of cuts were used.
The data of the input group was obtained from a P pixel (xp, yp),
where xp and yp are the coordinates of the pixel used in the func-
tion f(xp, yp, si), to obtain all ui percentages used as input of
MLP. The training of the neural network is carried out and tested
according to the cross-validation [16].
Using the previously trained MLP, the execution phase of its output
is given by the function:

fmlp(u) =
{

1, when the detected edge constitutes a pulmonary wall and
0, otherwise.

(7)
Using fmlp to determine the origin of the edges found in thorax
CT images, the external energy EextCRAD

, defined in Equation 1,
is given by:

EextCRAD
(x, y) =

{
S(x, y), para fmlp(u) = 1 and
1, otherwise, (8)

where S(x, y) is the Sobel operator, and u is the percentage vec-
tor of the LDA method [26], using the coordinates (x, y) of the
analyzed pixel.
The external energy of this method is capable of identifying the
origin of the edges of fibrosis, emphysema and healthy lungs. This
is because MLP has been trained to recognize these patterns, as they
are the more common cases seen on lungs in thorax CT images. The
MLP adopted by this work was retrained inserting fibrosis that was
not used by [24], in thus increasing the scope of applications for
this method.
The automatic segmentation of the lungs in thorax CT images uses
the automated curve initialization, the addition and the point re-
moval methods are described in ACACM [24].
The first step to automatically segment the lung in CT images is
to open the DICOM image using the open-source library DCMTK.
After that, the external force of the image is calculated using the
LDA method and a MLP to detect the origin of the edges obtained
by the Sobel operator. The edges detected within the lung are ex-
cluded from the external energy, however they are used as the ini-
tialization of the curve.
The curve is initialized using the proposed method, in which the
false lung edges determine the point of initialization within the
lung. This point is a regular polygon centroid used as the initial-
ization of the curve.
This curve moves by successive iterations of the three method se-
quence: ACACM minimizing its energy moving the points of the
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curve, angle-based point removal and point addition in the curve.
In the flowchart this method sequence is called cycles, and the letter
n indicates the order of the results obtained in each n cycle.
The curve is labelled stable when the perimeter does not increase
after two successive iterations. When this happens, lung segmen-
tation is concluded, and the generated polygon is said to be the
segmentation result of the object of interest.

2.3 3D visualization
Application Programming Interface (API) Open Graphics Library
was used for the 3D visualization. This API is an open specification
and multiplatform of a modelling and graphical routine library used
for computer graphic applications, such as games and visualization
systems [2].
OpenGL is extremely efficient and many of its algorithms are in-
stalled in modern graphic hardware [1]. It operates in a similar way
to a C library, and provides a number of functions. Normally a pro-
gram is based on OpenGL or it is an OpenGL application, which
means that it is written in some programming language that calls
one or more OpenGL libraries. The OpenGL applications vary from
CAD tools to modelling programs used to create cinema characters,
such as a dinosaur [1].
Besides basic graphics, such as lines and polygons, OpenGL sup-
ports illumination, colouring, texture mapping, transparency and
animation, among other special effects. Nowadays, OpenGL is rec-
ognized and accepted as an API standard for the development of
real time graphical 3D applications [5].
This work used two libraries from OpenGL, GLU and GLUT, both
open source. GLU (OpenGL Utility Library) contains numerous
routines that uses low level OpenGL commands to execute tasks
such as, for an example, define the matrixes for the projection
and orientation of the visualization, and rendering of a surface [5].
GLUT (OpenGL Utility Toolkit) is a platform with an independent
toolkit that includes graphical interface elements [1].
Thus, the 3D visualization system in this work was developed in
C/C++ language, and call routines from the OpenGL library. GLU
library is called to render objects, configure their looks and their il-
lumination. The GLUT library, which is a multiplatform visualiza-
tion system, is used to create windows and receive user commands.
To model the 3D objects the data structure was assumed to be a
stacked block of 2D data and since the 2D data are images then
the 3D data were considered to be a block of piled images. These
images have a space between them, which depends on each appli-
cation.
In the specific case of CT imaging, the spacing between images, or
planes, is one of the properties stored in the DICOM pattern, de-
fined by the Slice Thickness property. The size of a pixel is also
specific for each application when these images are modelled in
3D, and in the DICOM pattern, which is determined by the Pixel
Spacing property. Using these two parameters it is possible to re-
construct a CT exam on the same scale that it was generated.
Each plane represents an image, so each plane can have a curve,
represented by a determined polygon. As previously seen, these
curves are composed of points and are connected with their neigh-
bours. Figure 1(a) illustrates the data structure used in this model,
where each plane possesses a curve composed of interconnected
points. In this Figure the points are presented in red, and the con-
nections between them in green.
To render an object in 3D, the points that belong to each plane must
be connected to the other layers, and not just to the neighbouring
points of their original plane, as in the data structure of the ACACM
method. Thus each point of a layer is connected to the two nearest

(a) (b) (c)

Fig. 1. Rendering stages a) overlapping of the existing curves in each im-
age; b) connection of different layers generating triangles; and c) rendered
surface.

points of the layer immediately superior to it. This operation gener-
ates a net, linking all the layers through traced lines between them.
Figure 1(b) presents an example of these connections, in which the
lines between points of the same layer are in green, and the lines
between points of different layers are in red.
To complete the rendering proposed in this work, the net presented
in Figure 1(b) is used to generate the surface of the 3D object.
These surfaces are generated by triangles, in which two neighbour-
ing points of a layer and the closest point to these in a superior layer
compose each triangle. A sample of an object generated this way is
shown in Figure 1(c).
Properties such as colour, lighting, texture, including the surface
transparency can be configured using the OpenGL library.
Therefore the 3D visualization to render objects uses three distinct
stages: overlap the curves presented in each image, connect the
points of different layers to build triangles and generate surfaces
from these triangles.

3. EXPERIMENTAL TESTS AND DISCUSSIONS
In this work, the Adaptive Crisp Active Contour Model is com-
pared with the 3D Region Growing method for the segmentation of
the lung in CT exams. A total of 11 complete CT thorax exams of
healthy, fibrosis and COPD patients were used.
The configuration used in the ACACM is adapted from [24], using
the parameters α = 0.6, β = 0.1 and τ = 0.3 in the compo-
sition of the total energy. Figure 2 shows a step-by-step example
of the segmentation carried out by this method from the initializa-
tion in Figure 2(a) to the stabilization in Figure 2(f). It is important
to mention that each image of a slice of the CT exam possess the
initialization of its contour independently of the other slices. Each
contour seeks its own stabilization independently according to the
flowchart in Figure ??. Figure 2 presents the evolution of the con-
tour group through 3D visualization proposed in this article.
The 3D Region Growing (RG) method uses the same methodology
proposed by [23], using the same initialization as in the ACACM
method applied in three dimensions, while the adopted neighbour-
ing region addition method uses information from the anatomy of
the lung, by adding voxels that are in some intensity bracket inside
the lung: normally aerated, poorly aerated or hyper aerated. This
addition takes place by successive iterations, until stabilization is
reached, when no voxel is added.
The 3D RG method was chosen because it is automatic form of the
radiologist makes the scanner for the lungs. The method is semi-
automatic utiizado by the radiologist, he will click on regions of
interest and delimiting the regions of interest by expanding the
click of your region through neighbors that are in the range of pre-
defined radiographic density as aerated regions, little aerated, etc.
When this operation is performed manually take approximately 40
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Example of the evolution of the ACACM method for the lung
segmentation of thorax CT exams: a) initialization b) to c) evolution of the
method and f) final result.

minutes. Thus, this automatic implementation of 3D RG makes the
fastest method, which makes a lot of authors use this methodology
in medical image processing.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Example of the evolution of the 3D RG method for the lung seg-
mentation of CT thorax exams: a) initialization b) and c) evolution of the
method and d) final result.

The results of the 3D segmentation visualization using ACACM for
each slice are shown in pink, following the visualization structure
proposed in Section 2.3 using only the 3D contour of the object to
build the visualization. The 3D Region Growing segmentation is
presented in blue and uses a solid construction of the whole region
obtained by this method. Therefore, some of the lighting and shad-
owing effects are not the same as the results obtained by the ACM
Adaptive Crisp 3D. The construction prevents such effects when
using the graphical library OpenGL as in this work.
The segmentation of structures other than the lung, such as the tra-
chea, is common with the 3D RG method, as well as the exclusion
of pulmonary parts that present diseases such as fibrosis. Thus, to
evaluate the results obtained by these two methods, a qualitative
evaluation made by two specialists and an evaluation of the pro-
cessing time to measure the cost benefit of each method is neces-
sary.

3.1 Qualitative evaluation by pulmonology physicians
The segmentation of the 3D method is performed using a complete
thorax CT exam, in these kinds of exams the number of images can

vary from one procedure to another, depending on the patients body
structure and the thickness of the slice of the DICOM image. Thus,
since thorax CT exams vary from 250 to 1000 images, an evaluation
of all images by a pulmonologist physician becomes impracticable.
Thus, a sample of the images to be analyzed is necessary.
The set of images for analysis was made up of 3 images for each
CT exam region, totalling 12 images per exam. As 11 complete
exams were used, a total of 132 images were employed in the eval-
uation by specialized physicians for the lung segmentation in tho-
rax CT exams, corresponding to 264 lungs evaluations. This was
accomplished using qualitative metrics due to the impossibility of
using quantitative ones, as it would be impracticable for a special-
ist physician to manually segment a total of 132 images, which is
overly dull, tedious and tiresome.
Therefore a qualitative evaluation was used for the lung segmenta-
tion assessment of the 3D Region Growing and ACACM methods.
This evaluation consisted of attributing grades to the segmentations
of the two methods by the two pulmonologist physicians responsi-
ble. The grades attributed have values ranging from 1 to 5:

(1) Worst, no part of the object of interest is found;
(2) Bad, just a small part of the object of interest is obtained;
(3) Reasonable, medium quality, with some serious errors;
(4) Good, with few errors;
(5) Best, high quality, as good as is required.

The physicians that assessed the results of the said methods are pro-
fessors and pulmonologists at the Walter Cantdio University Hos-
pital of the Federal University of Cear (UFC), and are nominated
physician 1 (M1) and physician 2 (M2).
The assessment of the physicians here was used to build the Con-
tingency Table, also called confusion matrix, for the evaluation of
each method. The lines present the assessments of the physician
M1 and the columns those of physician M2, for all the 264 lungs
analyzed. The contingency tables of the physicians evaluation of
3D Region Growing and the ACACM 2D are shown in Tables 2
and 3, respectively.

Table 2. Qualitative assessment by physicians M1 and M2 for the
results obtained by 3D RG.

M2

M1

Grade 1 2 3 4 5 Total(M1) [%]
1 0 0 0 0 0 0 (0)
2 0 5 10 5 0 20 (7.58)
3 0 1 62 60 0 123 (46.59)
4 0 0 6 61 9 76 (28.78)
5 0 0 0 6 39 45 (17.05)

Total(M2) 0 6 78 132 48 264 (100)
[%] (0) (2.27) (29.55) (50) (18.18) (100)

Based on the presented contingency tables it is possible to measure
the inter observer concordance, using the kappa index (K) [6]. Thus
the value of Kappa obtained through the data in Table 2 is 0.464,
indicating a moderate agreement between the physicians for the
assessment of the 3D Region Growing method.
But for the results obtained by ACACM, the Kappa value obtained
through the data in Table 3 is 0.614, indicating a substantial agree-
ment between the physicians.
For a better analysis of the results, Table 4 presents a summary of
the percentages obtained by the 3D RG and ACACM methods in
the assessments by the physicians, extracted from Tables 2 and 3,
respectively.
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Table 3. Qualitative assessment by physicians M1 and M2 for the
results obtained by ACACM.

M2

M1

Grade 1 2 3 4 5 Total(M1) [%]
1 0 0 0 0 0 0 (0)
2 0 1 0 0 0 1 (0.38)
3 0 0 1 2 1 4 (1.51)
4 0 0 4 201 11 216 (81.82)
5 0 0 0 13 30 43 (16.29)

Total(M2) 0 1 5 216 42 264 (100)
[%] (0) (0.38) (1.89) (81.82) (15.9) (100)

Table 4. Qualitative assessment by physicians
M1 and M2 for the results obtained by the 3D

RG and ACACM methods.
Classification 3D RG ACACM

method M1 [%] M2 [%] M1 [%] M2 [%]

1 0.00 0.00 0.00 0.00

2 7.58 2.27 0.38 0.38

3 46.59 29.55 1.51 1.89
4 28.78 50.00 81.80 81.82

5 17.05 18.18 16.29 15.90

Satisfactory 45.83 68.18 98.11 97.72

The percentage indexes shown in Table 4 for physician agreement
show that the assessment results of the 3D RG method are diver-
gent. This can be seen in the classifications 3 and 4. In the classifi-
cation 3 the physician M1 has 46.59% and physician M2 29.55%,
meanwhile in classification 4, the physician M1 has 28.78% and
physician M2 50%. This analysis presents the disagreement be-
tween the evaluating physicians, and is shown by the Kappa index
of 0.464, indicating moderate agreement between them.
The same analysis for the ACACM results concerning the agree-
ment between the physicians, and using the percentage index ob-
tained from Table 4, shows that the assessment is convergent, and
the difference between the physicians is less than 1% for all classi-
fication levels. This fact is supported by the Kappa index of 0.614,
indicating a substantial agreement between them.
However, analyzing the indexes obtained from Table 4 concern-
ing the quality of the segmentation results indicates that the two
methods for classes 1 and 5 are close. They do not have incidence
of class 1 because no doctor assign the worst rating for the result.
Meanwhile, the results on class 5, the percentages obtained by the
3D RG method were 17.05% and 18.18%, a little higher than the
ones obtained by ACACM that were 16.29% and 15.9%, however,
the results for classes 2, 3 and 4 are distinct between these methods.
In class 4, the results obtained by the 3D RG were 28.78%
and 50%, indicating that physician M1 observed few mistakes in
28.78% and physician M2 identified 50% in this method. However,
both physicians obtain the same 81.82% for ACACM, indicating an
acceptable class (few errors) in more than 80% of the images.
Considering the serious errors determined by class 3, the results
obtained by 3D RG were 46.59% and 29.55% by ACACM were
1.51% and 1.89%, indicating that for ACACM the presence of se-
rious errors was less than 2% according to both physicians. This
does not occur for the 3D RG method, where physician M1 iden-
tifies the classification reasonable (serious errors) in 46.59% and
physician M2 29.55%.
While for class 2, the results obtained by 3D RG were 7.58% and
2.27% and for ACACM they were 0.38% and 0.38%, indicating
that both physicians identified a bad segmentation, as just a small

part of the object of interest was obtained by both methods. The
incidence for 3D RG was more significant as it achieved 7.58%,
in just one image while ACACM produced a percentage index of
0.38%.
Considering the general segmentation quality, two of the classes,
class 4 and class 5 were considered satisfactory. These two classes
are considered satisfactory because they indicate that the segmen-
tations did not possess any flaws or only minor errors, and therefore
the physicians can use the results to analyze the internal regions as
they are similar to the ideal region or they are the region of interest
itself. Besides, any minor errors can be corrected manually. Thus,
satisfactory results are obtained by adding classes 4 and 5.
Following this the 3D RG method obtained 45.83% and 68.18%,
while the ACACM 2D method obtained 98.11% and 97.72% of
satisfactory results according to the physicians M1 and M2, respec-
tively. Thus the ACACM applied to the 3D segmentation of the lung
in thorax CT images is superior to the 3D RG according to the two
pulmonology physicians. The ACACM model had only 1.89% and
2.28% of unsatisfactory results.
Figures 4 and 5 show some example results of these methods pre-
sented by the physicians. One example in Figure 4 shows two dis-
tinct classifications presented by the physicians, due to the presence
of the hilum and the trachea as pulmonary regions. Physician M1
considered this a serious error and physician M2 considered it a
minor error.
Thus in Figure 4 for the 3D RG method physician M1 attributed
grade 3 to the lung on the left of the Figure 4(b) due to the presence
of the trachea and on both lungs of Figure 4(e) due to the pres-
ence of the hilum; however M1 attributed grade 5 to the lung on the
right of Figure 4(b). For the ACACM method, physician M1 as-
sessed the segmentation results of Figure 4(c) with grade 5 and the
results shown in Figure 4(f) with grade 4. The analysis of physician
M2 was the same as physician M1, except for the results with the
presence of the hilum or trachea to which he attributed grade 4 as
this physician consider this to be a minor error.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Example of the lung segmentation in CT images, a) and d) original
images. The hilum is aggregated to the pulmonary region by the 3d RG as
seen in b) and e), which does not happen with ACACM; the ACACM results
are shown in c), and f).

Other errors in the lung segmentation of the CT images that the
physicians disagreed upon are shown in Figure 5, in which, in ad-
dition to the error generated by the presence of the hilum or trachea,
there was also a lung disease, in this case fibrosis.
In Figure 5 the physicians agreed with the assessment that the dis-
ease existed. Thus for 3D RG they attributed grade 3 to both lungs
presented in Figure 5(b) due to the lack of the fibrosis regions in the
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Example of the lung with fibrosis segmentation in CT images, a)
and d) original images. The fibrosis region is excluded from the pulmonary
region by the 3D RG as seen in b) and e), which does not happen with
ACACM; the ACACM results are shown in c), and f).

segmentation, and considered this to be a serious error, as well as
the fact that the lung on the left also aggregated the trachea into its
region. Also, the physicians assessed the segmentation of the lung
on the right of Figure 5(e) with grade 3 as the fibrosis regions were
not in the segmentation and this was considered a serious error; and
the lung on the left was given grade 2 as only part of the object was
segmented because fibrosis was present in the greater part of the
lung. For the ACACM 2D method the physicians attribute grade 4
to the lungs on the right of Figures 5(b) and 5(e) but also noted the
presence of minor errors and grade 3 to the lungs on the left of the
same Figures, due to the presence of some serious errors.

4. CONCLUSION AND FUTURE WORKS
This work proposed a new segmentation methodology for the lungs
in thorax CT exams, using a 2D segmentation method and the
OpenGL library for a 3D visualization and reconstruction.
The 2D segmentation method used is called Adaptive Crisp Active
Contours Model that is able to segment both healthy lungs, lungs
suffering from emphysema, and lungs with fibrosis. This latter dis-
ease is harder to segment as the diseased pulmonary tissue is sim-
ilar to healthy pulmonary tissue. This extra ability of this method
is possible because the MLP existing in the calculation of the ex-
ternal energy of the ACACM method that defines the origin of the
pulmonary edges can be adjusted.
The other main contribution of this article is the new method-
ology of reconstruction and visualization of lungs in 3D using
the OpenGL library. The combination of this methodology with
the ACACM method generated a new 3D automated segmentation
method of lungs in thorax CT images.
The new methodology of 3D segmentation of the lung is compared
with the 3D RG method in the segmentation of thorax CT exams of
healthy volunteers and patients with COPD and fibrosis. The results
were assessed in a qualitative form by two pulmonologist physi-
cians. According to the physicians M1 and M2 3D RG had 45.83%
and 68.18%, while the proposed method had 98.11% and 97.72%
of satisfactory results, respectively. This shows that the proposed
method is superior to 3D RG according to both pulmonology physi-
cians, and that ACACM has only 1.89% and 2.28% of unsatisfac-
tory results. Thus the physicians M1 and M2 concluded that the
proposed method was 2 and 1.5 times better than the 3D Region
Growing method, respectively.

The proposed method was also better than the 3D RG method
in terms of physician agreement for each method. The proposed
method received a substantial concordance, while the 3D RG just
had a moderate concordance. This was because the 3D RG method
presented errors, such as the hilum and trachea in the pulmonary
region, exclusion of part of the lung with disease, and the joining
of lungs, among another errors, whereas the proposed method did
not. These errors were evaluated in different ways by the two physi-
cians, generating a lower agreement than the proposed method.
However, the 3D RG method was superior in the processing time
by spending half the processing time of the proposed method.
This work and the results do not bring an end to this line of re-
search. Future works applying other techniques of computational
intelligence and pattern recognition to detect lung edges and to in-
vestigate and developed methods to recognize disease in lungs or
other organs, as well as to adapt the developed methods to detect
the pulmonary lobes are still required.
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