
International Journal of Computer Applications (0975 – 8887)  

Volume 111 – No 4, February 2015 

24 

Power Efficient Scheduling Scheme based on PSO for 

Real Time Systems 

Medhat H A Awadalla 
Electrical and Computer Engineering Department, SQU, Oman 

Communication and Computers Department, Helwan University, Egypt 

 

ABSTRACT 

Power efficient design of real-time embedded systems based 

on multi-processors becomes more important as system 

functionality is increasingly realized through heuristic 

approaches. This paper targets energy-efficient scheduling of 

tasks over multiple processors, where tasks share a common 

deadline. It addresses the problem of energy-aware static 

partitioning of periodic real time tasks on heterogeneous 

multiprocessor platforms. A modified Particle Swarm 

Optimization variant based on priority assignment and min-

min algorithms for task partitioning is proposed. The 

proposed approach aims to minimize the overall energy 

consumption, meanwhile avoid deadline violations. An 

energy-aware cost function is proposed to be considered in the 

proposed approach. Extensive simulated experiments and 

comparisons with related approaches are conducted in order to 

validate the effectiveness of the proposed technique. The 

achieved results demonstrate that the proposed partitioning 

scheme significantly outperforms in terms of the number of 

executed iterations to accomplish a specific task in addition to 

the energy savings. 

Keywords 
Task Partitioning, Task Assignment, Heterogeneous 

Multiprocessors, Particle Swarm Optimization, Min-min, 

Priority assignment algorithm  

1. INTRODUCTION 
The energy usage of computer systems is becoming an 

important consideration, especially for battery operated 

systems. Nowadays, embedded systems are involved in most 

details of our life such as smart phones, pocket PCs, Personal 

Digital Assistants (PDAs), multimedia devices, ... etc. As the 

applications on these devices are being complicated, there is a 

need to increase the performance while keeping the energy 

consumption of these devices in accepted levels especially for 

the portable battery-powered ones. So, minimizing energy 

consumption to prolong the battery life while achieving higher 

performance is a critical issue in the design of portable 

embedded systems. Various methods for reducing energy 

consumption have been investigated, both at the circuit level 

and at the operating systems level.  As the processor is one of 

the most important power consumers in any computing 

system, today’s chip multiprocessor (CMP) or multiprocessor 

system on chip (MPSoC) platforms can deliver a higher 

performance at the cost of lower power consumption than 

uniprocessor systems. Embedded systems today are often 

implemented upon platforms comprised of different kinds of 

processing units, such as CPU's, DSP chips, graphics co-

processors, math co-processors, etc., with each kind of 

processing unit specialized to perform a different function 

most efficiently. Such platforms are commonly referred to as 

heterogeneous platforms [1-3]. TI’s OMAP™ mobile 

processors are good example of these heterogeneous 

platforms [4]. The multiprocessor scheduling of recurrent 

real-time tasks can be generally carried out under the 

partitioned scheme or under the global scheme. In the 

partitioned scheme, the tasks are statically partitioned among 

the processors and all instances (jobs) of a task are executed 

on the same processor and no job is permitted to migrate 

among processors. In the global scheme, a task can migrate 

from one processor to another during the execution of 

different jobs. Furthermore, an individual job of a task that is 

preempted from some processor, may resume execution in a 

different processor. Nevertheless, in both schemes, 

parallelism is prohibited, i.e., no job of any task can be 

executed at the same time on more than one processor. This 

paper considers the partitioned scheduling scheme. The main 

advantage of the partitioned scheduling is that after 

partitioning the tasks among processors, the multiprocessor 

scheduling problem is reduced to a set of traditional 

uniprocessor ones.  

The problem of partitioning tasks among processors [5], 

sometimes  referred to as Task Assignment Problem (TAP), is 

an intractable NP-Hard problem even if the processors are 

homogeneous [6]. So, approximation algorithms and heuristic 

techniques are used to solve this problem. This paper proposes 

a modified Particle Swarm Optimization (PSO) variant based 

on Min-min technique and priority assignment algorithm for 

energy-aware task partitioning on heterogeneous 

multiprocessor platforms. The rest of this paper is organized 

as follows: Section 2 reviews existing research on task 

partitioning upon heterogeneous platforms and related areas. 

Section 3 defines the problem and describes task, processor, 

and power models used in this paper. Section 4 presents PSO, 

Min-min and priority assignment techniques for task 

partitioning and introduces our proposed approach. Section 5 

presents simulation results for the proposed algorithm and 

discusses these results. Section 6 summarizes our conclusions. 

2. RELATED WORK 
The use of heterogeneous multi-core architectures has 

increased because of their potential energy efficiency 

compared to the homogeneous multi-core architectures. The 

shift from homogeneous multi-core to  heterogeneous multi-

core architectures creates many challenges for scheduling 

applications on the heterogeneous multicore system.  

The authors [7 ] have  studied the energy-efficient scheduling 

on Intel’s QuickIA heterogeneous prototype platform [8]. A 

regression model is developed to estimate the energy 

consumption on the real  heterogeneous multi-core platform. 

The author of [9] proved that task partitioning among 

heterogeneous multiprocessors is intractable (strongly NP 

hard), represented the problem as an equivalent Integer Linear 

Programming (ILP) problem, and designed a 2-step 

approximation algorithm for solving this problem. The idea of 

LP relaxations to ILP problems is used in the first step to map 

most tasks, while in the second step the algorithm maps the 

remaining tasks using exhaustive enumeration. This two-step 

algorithm takes time polynomial in the number of tasks, and 

exponential in the number of processors. They used tree 



International Journal of Computer Applications (0975 – 8887)  

Volume 111 – No 4, February 2015 

25 

partitioning in the second step instead of exhaustive 

enumeration to make the algorithm takes time polynomial in 

the number of tasks, and polynomial in the number of 

processors. In [9] authors have compared 11 heuristics for 

mapping a set of independent tasks onto heterogeneous 

distributed computing systems. The best one that has 

minimum makespan, that is defined as the maximum 

completion time for the whole processors, was the Genetic 

Algorithm (GA) followed by Min-min algorithm. In [10], 

Chen and Cheng (2005) applied the Ant Colony Optimization 

(ACO) algorithm. They proved that ACO outperforms both 

GA and LP-based approaches in terms of obtaining feasible 

solutions as well as processing time. Abdelhalim [5] presented 

a modified algorithm based on the Particle Swarm 

Optimization (PSO) for solving this problem and showed that 

his approach outperforms the major existing methods such as 

GA and ACO methods. Then, his PSO approach is developed 

to can further optimize the solution to reduce the energy 

consumption by minimizing average utilization of processors 

(without using any energy or power model). Finally, a 

tradeoff between minimizing the design makespan as well as 

energy consumption is obtained. In [11] Visalakshi and 

Sivanandam, presented a hybrid PSO method for solving the 

task assignment problem. Their algorithm has been developed 

to dynamically schedule heterogeneous tasks onto 

heterogeneous processors in a distributed setup. It considers 

load balancing and handles independent non-preemptive 

tasks. The hybrid PSO yields a better result than the normal 

PSO when applied to the task assignment problem. The results 

are also compared with GA. The results infer that the PSO 

performs better than the GA. In [12], Omidi and Rahmani 

used PSO for task scheduling in multiprocessor systems as an 

important step for efficient utilization of resources. They 

considered independent tasks on homogeneous multiprocessor 

systems. Apart from all these efforts, this paper integrates the 

PSO approach with a polynomial-time partitioning 

techniques; Min-min and priority assignment. The proposed 

approach takes into account energy efficiency during task 

partitioning among heterogeneous cores in MPSoCs. 

3. SYSTEM MODEL 
This paper considers the problem of power-aware task 

partitioning on heterogeneous multiprocessor platforms. So, 

models of task, processor, and power are presented. The same 

model in [13-14] has been used again for the sake of 

qualitative comparison.  

3.1 Task Model 
A periodic real-time task τi  generates an infinite sequence of 

task instances (jobs). Each job executes for C time units at 

most, be generated every T time units, and has a relative 

deadline D time units after its arrival. 

This paper considers a periodic task set {τ1,τ2,…,τn }  of  n 

independent real-time tasks. A task is τi  represented as 3-

tuple ( Cij, Di, Ti) where Cij is the Worst-Case Execution Time 

(WCET) of task τi on processor j, D is the relative deadline, 

and T is the period. Implicit deadlines are considered in this 

paper, i.e., the relative deadline is assumed to be the same as 

the period. Each task τi has a utilization Uij = Cij /Tij  on 

processor j. An n x m utilization matrix [15] can be defined 

where each row represents a task and each column represents 

a processor. 

3.2 Processor Model 
A heterogeneous multiprocessor platform with m preemptive 

processors based on CMOS technology is defined as 

{P1,P2,…,Pm }. 

This paper considers Dynamic Voltage/Frequency Scaling 

(DVFS) processors that supports variable frequency (speed) 

and voltage levels continuously, i.e., DVFS processors can 

operate at any speed/voltage in its range (ideal). Of course, 

practical DVFS processors supports discrete speed/voltage 

levels (non-ideal). So, the desired speed/voltage of the ideal 

DVFS processor is rounded to the nearest higher 

speed/voltage level of the practical DVFS processor supports. 

The time (energy) required to change the processor speed is 

very small compared to that required to complete a task. It is 

assumed that the speed/voltage change overhead, similar to 

the context switch overhead, is incorporated in the task 

execution time. In this work, it is assumed that the processor’s 

maximum speed (frequency) is 1 and all other speeds are 

normalized with respect to the maximum speed. When 

MPSoCs platforms are considered, there are per-core and full-

chip DVFS techniques [16-17]. In the per-core DVFS, each 

core operates at individual frequency/voltage, and has no 

operating frequency constraint. On the other hand, the 

practical full-chip DVFS designs restrict that all the cores in 

one chip operate at the same clock frequency/voltage. For 

each processor, the tasks are scheduled according to Earliest 

Deadline First (EDF) scheduling algorithm. So, a processor 

utilization Uj  which is the sum of the utilizations of tasks 

assigned to this processor cannot exceed 1, i.e., Uj=∑uij ≤1. 

3.3 Power Model 
The power consumption in CMOS circuits has two main 

components: dynamic and static power. The dynamic power 

consumption which arises due to switching activity can be 

represented as in [10]: 

Pdynamic=Ceff * Vdd 
2 * f                                          (1)                                               

Where Ceff is the effective switching capacitance, Vdd is the 

supply voltage, and f is the processor clock frequency (speed) 

which can be expressed in terms of a constant k, supply 

voltage Vdd and threshold voltage Vth as follows: 

f=k * (Vdd-Vth) 
2 / Vdd                                         (2)                                                      

The static power consumption is primarily occurred due to 

leakage currents (Ileak) [2], and the static (leakage) power 

(Pleak) can be expressed as: 

Pleak=Ileak * Vdd                                               (3)                                                        

When the processor is idle, a major portion of the power 

consumption comes from the leakage. Currently, leakage 

power is rapidly becoming the dominant source of power 

consumption in circuits and persists whether a computer is 

active or idle [10]. So, lowering supply voltage is one of the 

most effective ways to reduce both dynamic and leakage 

power consumption. As a result, it reduces energy 

consumption where the energy consumption is the power 

dissipated over time. For simplicity reasons, Eq. (1) is reduced 

to a simplified power model P = f 3 using normalized values 

where f is the processor speed (frequency). Then, a simplified 

energy model E= f 2 (using normalized values) can be used.  

4. THE PROPOSED APPROACH 
Before introducing our proposed approach in this paper, a 

background on PSO and priority assignment and min-min 

techniques will be presented. 

4.1 PSO 
In [18], Higashino et al. developed the PSO algorithm 

simulating the behavior of swarms in the nature, such as birds, 

fish, etc. In PSO, the potential solutions, called particles, fly 

through the problem space by following the current optimum 



International Journal of Computer Applications (0975 – 8887)  

Volume 111 – No 4, February 2015 

26 

particles. PSO has been successfully applied in many 

scientific areas and there are many variants of the algorithm. 

A survey of PSO methods and applications could be found in 

[19].  At the beginning, a set (swarm) of random solutions 

(particles) is used to initialize the PSO algorithm that starts 

iterations looking for optimal solution. During every iteration, 

each particle is updated by two best values. The first one is 

the personal best pbest that the particle has achieved so far. 

The second is the global best gbest obtained by any particle in 

the swarm. After finding the two best values, the particle 

updates its velocity and position according to equations (4) 

and (5) respectively. The typical procedure of PSO is shown 

in figure 1. 

initialize the population randomly. 

DO 

{ 

For each particle. 

{ 

Calculate fitness value  

If the fitness value is better than the best fitness value (pbest) 

in history then set current value as the new pbest. 

} 

Choose the particle with the best fitness value of all particles 

as the gbest. 

For each particle. 

{ 

Calculate new velocity: 

Vnew= W. Vo1d +C1. R1. (pbest - X) + C2. R2.(gbest-X)       (4) 

(Where W is inertia constant, R1 and R2 are random values. C1 

and C2 are constant values 

 and X is particle position. ) 

Update particle position: 

Xnew= Xold + Vnew                                                             (5)                                                                                                                            

} 

} 

Until termination criterion is met. 

Fig. 1 The typical procedure of PSO. 

The random numbers R1 and R2 are generated uniformly 

between 0 and 1 and the constants C1 (self-knowledge factor) 

and C2 (social-knowledge factor) are usually in the range from 

1.5 to 2.5. Finally, the inertia factor W can be fixed or varied 

with a decreasing value as the algorithm proceeds [12],  or it 

may be restarted as in [5]. PSO has been applied to solve the 

problem of task partitioning for homogeneous multiprocessor 

as in [12] and also for heterogeneous multiprocessors [5,11]. 

Considering a system consisting of m processors and n tasks. 

A possible solution (particle) is a vector of n elements, where 

each element is associated to a given task. Each element takes 

an integer value i where 1≤i≤m and represents the processor 

that the task is assigned to. Thus, the search space size is mn. 

There are k particles in the swarm that form swarm 

(population) size; these particles are initialized randomly. 

4.2 Min-Min Algorithm 
The Min-min algorithm is designed [9] for mapping tasks in 

heterogeneous computing systems. It first finds the minimum 

completion time of all unmapped tasks, where the completion 

time of a task on a machine equals task’s execution time on 

that machine plus execution times of all tasks mapped to that 

machine. Next, the task which has minimum completion time 

is selected, similar technique called Max-min selects the task 

with maximum completion time, and mapped to the machine. 

Finally, the newly mapped task is removed and the process 

repeats until all tasks are mapped. To handle real-time tasks 

on multiprocessor system, task utilization is considered 

instead of execution time and completion utilization is used. 

Of course, tasks that make the processor’s utilization exceeds 

1 are unaccepted. If there is no accepted alternative, then the 

task set is unfeasible. 

4.3 Proposed Priority Assignment 

Algorithm 
To optimize  Min-min algorithm, Priorities have been 

determined from Directed Acyclic Graph, DAG, and then 

assigned to the tasks in such way that the important task will 

be assigned to the processor that eventually leads to a better 

scheduling. Priority assignment algorithm flowchart is 

illustrated in Figure 2. In this paper, real-time tasks are 

considered.  

Each task is characterized by the following parameters: 

ts (T) :  is the starting time of task T of G. 

ts (T, P) :  is the starting time of task T on processor P. 

tf (T) : is the finishing time of task T. 

w (T) : is the processing time of task T. 

The algorithm starts by assigning levels for the tasks (the root 

task has level 0). The level of a task graph is defined as:  

This Level function indirectly conveys precedence relations 

between the tasks. If the task Ti is an ancestor of task Tj, then 

Level (Ti) < Level (Tj). If there is no path between the two 

tasks, then there is no precedence relation between them and 

the order of their execution can be arbitrary. 

Secondly, the sequence of tasks’ execution in each level is 

determined. For the root level (T1, T2) shown in Figure 3, if 

there is only one parent task, then it comes first.  

If there is more than one parent task, the number of children 

for each parent in the next level is calculated and their parent 

has got a priority according to that number in a descending 

order. The parent with the highest number of children comes 

first (T1 executed before T2). If two or more parents have the 

same number of children (T3, T4 and T5) then the parent that 

has a common child is to be executed first (T4 and T5 will be 

executed before T3). When two parents have the same 

common child, they will be listed in an arbitrary order (T4 and 

T5). 

 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 111 – No 4, February 2015 

27 

 

Fig. 2: Priority assignment Flowchart 

 

 

 

Fig. 3: Example of DAG with 8 tasks 

For example, in the random generated task graph shown in 

figure 3,  the level for each task can be determined. 

T1= Level 0 

T2, T3 and T4= level of (T1) +1 = Level 1 

T6= level of (T2) +1 = Level 2 

T7= Max {level of (T1), T2 and T3) +1 = Level 2  Where T1 

(Level 0) < T1 (Level 1) 

T8= Max {level of (T2), T3 and T5) +1 = Level 2  

Where T2 (Level 1) = T3 (Level 1) = T5 (Level 1) 

T9= Max {level of (T6), T7 and T8) +1 = Level 3  

 Where T6 (Level 2) = T7 (Level 2) = T8 (Level 2) 

An  illustrative example  

DAG shown in figure 4. Based on the priority assignment 

algorithm, Table 1 shows All possibilities of tasks orders 

based on their priorities, where RA is random order. Min-min 

algorithm will be invoked to determine which of these 

possibilities  will have the minimum execution time and feeds 

it to PSO approach to start its optimization capability to 

enhance the system performance in terms of minimizing the 

total execution time and power saving. 

Table 1  All task order  possibilities based on their priorities  

Possible task order    RA. RA. RA. RA. RA.  ET. 

1 T1 T2 T3 T4 T5 T6 T7 T8 T9 26 

2 T1 T2 T3 T4 T5 T6 T8 T7 T9 26 

3 T1 T2 T3 T4 T5 T7 T6 T8 T9 26 

4 T1 T2 T3 T4 T5 T7 T8 T6 T9 26 



International Journal of Computer Applications (0975 – 8887)  

Volume 111 – No 4, February 2015 

28 

5 T1 T2 T3 T4 T5 T8 T6 T7 T9 26 

6 T1 T2 T3 T4 T5 T8 T7 T6 T9 26 

7 T1 T2 T3 T5 T4 T6 T7 T8 T9 23 

8 T1 T2 T3 T5 T4 T6 T8 T7 T9 23 

9 T1 T2 T3 T5 T4 T7 T6 T8 T9 25 

10 T1 T2 T3 T5 T4 T7 T8 T6 T9 25 

11 T1 T2 T3 T5 T4 T8 T6 T7 T9 25 

12 T1 T2 T3 T5 T4 T8 T7 T6 T9 25 

 

 

Figure 4:  Example DAG with nine tasks 

4.4 The Proposed Modified PSO Approach 
The modified PSO approach proposed in this paper, simply 

modifies the initialization step in the PSO procedure by 

assigning priorities for each task and then incorporating a 

Min-min solution (particle) in the randomly generated 

population. This approach gives the PSO algorithm a push to 

start from a good solution and then the PSO goes on trying to 

optimize the solution resulting in the Min-min solution in the 

worst case, PSO in the illustrated example starts with some 

tasks such as order 6 or 7 as shown in table 1 because they 

have the minimum execution time. A cost function favoring 

makespan (maximum processor accumulative utilization)  

minimization is proposed. Then, a penalty is added to the 

infeasible solutions that exceed the processing capacity of any 

processor. In other words, the cost is represented as follows 

(Chen and L. Thiele, 2009): 

Cost = Max(Uj) + Penalty     for j = 1,2, …, m                     (7)                                               

Penalty = Sum(Uj > 1)           for j = 1,2, ... , m                    (8)                                                  

Next, the cost function is developed to incorporate energy 

where the proposed PSO approach tries to find energy 

efficient solutions. Aydin and Yang (2003) considered energy 

aware task partitioning for homogeneous multiprocessors and 

introduced some helpful proofed theorems and propositions. 

Some of them are presented here. 

Proposition 1:  For a single processor system and a set of 

periodic real-time tasks with total utilization ≤ 1. The optimal 

speed to minimize the total energy consumption while 

meeting all the deadlines is constant and equal to total 

utilization (Aydin, and Q. Yang, (2003)). 

Proposition 2: A task assignment that evenly divides the total 

load among all the processors, if it exists, will minimize the 

total energy consumption for any number of tasks. So, 

minimizing the makespan will minimize energy consumption 

especially when full-chip DVFS multiprocessor platforms are 

considered, the makespan cost function, Eq. (9), will be used 

as all processors on the chip have to operate at the same 

frequency which is the maximum processor utilization, Aydin, 

and Q. Yang (2003). On the other hand, if per-core DVFS 

multiprocessor platforms are assumed, an energy-aware cost 

function needs to be proposed. An energy-aware cost function 

depends on average utilization of processors, but it does not 

give an accurate measure for energy consumption. Then, a 

tradeoff between average and maximum utilization is 

introduced. This paper introduces an energy-aware cost 

function considering simplified energy model as follows: 

 Cost = Sum(Uj 
2) / m + Penalty for j 1,2, …, m               (9)                                               

When applying PSO, the parameters used are the swarm size 

k = 100, No. of iterations=100, C1 = C2 = 2 [5], and the inertia 

W = 1 that, according to the PSO variant used, may be fixed 

or may decrease linearly until reaching 0 or it may be then 

restarted (re-excited) to 1 to decrease linearly again. 

5. EXPERIMENTS AND DISCUSSION 
The approaches have been implemented using MATLABTM. 

Utilization matrices have been uniformly generated of light 

tasks with utilization ranges from 0.05 to 0.25 and medium 

tasks with utilization ranges from 0.25 to 0.5. The 

implemented approaches are Min-min, Max-min, PSO with 

fixed inertia (PSO-fi), PSO with varied inertia (PSO-vi), PSO 

with re-excited inertia (PSOre), and our proposed Min-min 

based PSO approach (PSOm). With relatively small search 

spaces, all PSO variants show good results with reasonable 

number of iterations. But, when search spaces grow, so much 

iterations are needed to get good results using PSO 

approaches. 

PSO variants using variable inertia such as PSO-vi and PSO-

re show better performance than PSO with fixed inertia (PSO-

fi) with the same number of iterations and the same problem 

instances. Figures 5 and 6 below show comparisons among 

Min-min, Max-min, and PSO variants with 200 iterations for 

light tasks scheduled on 4 and 10 cores respectively. 

Our proposed approach gives the PSO algorithm a push 

toward the best solution using a particle (solution) 

obtained by Min-min. This makes PSO gives better results 

with reasonable number of iterations slightly  more than in [ ]. 



International Journal of Computer Applications (0975 – 8887)  

Volume 111 – No 4, February 2015 

29 

In the worst case, our proposed approach gives Min-min 

performance if it could not optimize the solution. 

Figures 7 and 8 show the performance of our proposed 

approach with 100 iterations and light tasks assigned to 4 and 

10 cores respectively. It is obvious that our proposed approach 

behaves so better when the search space grows. 

 

Fig. 5: A comparison of partitioning methods with light 

tasks partitioned upon 4 processors 

 

Fig. 6: A comparison of partitioning methods with light 

tasks partitioned upon 10 processors. 

When medium tasks are used, the proposed approach behaves 

the same way and shows better performance especially with 

large search spaces. Figures 9 and 10 show the case when 

medium tasks are partitioned on 8 and 16 processors 

respectively. 

As mentioned earlier, when full-chip DVFS is considered the 

makespan cost function is used. If per-core DVFS is 

considered, the introduced energy-aware cost function, Eq. 

(8), is taken into account. Figures 11 and 12 show the case of 

partitioning light tasks on per-core DVFS platforms of 4 and 

10 cores respectively. It is clear that using makespan cost 

function, Eq. (6), increases the feasibility (schedulability) of 

the task set more than using Eq. (8) as a cost function which is 

more energy efficient. 

 

Fig. 7: A comparison among Min-min, PSO-vi, and PSO-

m techniques with light tasks partitioned upon 4 

processors. 

 

Fig. 8 A comparison among Min-min, PSO-vi, and PSO-m 

techniques with medium tasks partitioned upon 8 

processors. 

 

Fig. 9: A comparison among Min-min, PSO-vi, and 

PSO-m techniques with medium tasks partitioned upon 16 

processors. 

 

Fig. 10 A comparison among PSO-fi, PSO-vi, and PSO-m 

techniques with light tasks partitioned upon 4 processors. 

 

Fig. 11 A comparison among PSO-fi, PSO-vi, and PSO-m 

techniques with light tasks partitioned upon 10 processors. 



International Journal of Computer Applications (0975 – 8887)  

Volume 111 – No 4, February 2015 

30 

It is worth to be noted that another Max-min particle 

(solution), in addition to Min-min particle, may be added to 

the population in the initialization step when the task set 

nature requires that, i.e., when Max-min gives better solutions 

than Min-min. This occurs when task utilizations are diverse, 

e.g., when there is a long task in a short-task task set.  

6. CONCLUSIONS 
This paper considered the problem of power-aware task 

partitioning on heterogeneous multiprocessor platforms. The 

paper proposed a modified PSO variant based on Min-min 

and priority assignment algorithms that outperformed its 

counterparts in less number of iterations for the same problem 

instance. Also, the energy-aware cost function is addressed in 

this paper and it differentiated between the full-chip and per-

core DVFS processors. As a future work, any verified 

polynomial-time partitioning technique can be added as a 

particle to the population in the initialization step to give the 

PSO algorithm a forward push to get better solutions. 

7. REFERENCES 
[1] Dawei, L. and  Wu, J., (2012).Task Partitioning Upon 

Energy-Aware Scheduling for Frame-Based Tasks on 

Heterogeneous Multiprocessor Platforms.  41st Int. Conf. 

on Parallel Processing, pp. 430 – 439. 

[2] Kong, F. Yi, W. and Deng, Q. (2012). Energy-Efficient 

Scheduling of Real-Time Tasks on Cluster-Based 

Multicores. In DATE’11, pp. 1-6. 

[3] Chen, J.-J. and Thiele, L. (2009). Task partitioning and 

platform synthesis for energy efficiency. In the 15th 

IEEE Int. Conf. on Embedded and Real-Time Computing 

Systems and Applications, pp. 393-402.  

[4] Texas Instruments (TI), OMAP™ Mobile Processors. 

Available at: 

http://www.ti.com/general/docs/gencontent.tsp?content  

Id=46946 [last accessed 15/2/2012].  

[5] Abdelhalim, M. B. (2008). Task assignment for 

Heterogeneous Multiprocessors using Re-Excited 

Particle Swarm Optimization. In 2008 Int. Conf. on 

Computer and Electrical Engineering, pp. 23-27. 

[6] Aydin, H. and Yang,  Q. (2003). Energy-Aware 

Partitioning for Multiprocessor Real-Time Systems. In 

IPDPS, pp. 1- 9. 

[7] Cong J. and Yuan B., Energy-efficient scheduling on 

heterogeneous multi-core architectures. In ISLPED '12 

Proceedings of the 2012 ACM/IEEE international 

symposium on Low power electronics and design, 2012, 

pp. 345-350. 

[8] Chitlur N., (2012) QuickIA: Exploring heterogeneous 

architectures on real prototypes. HPCA ’12, pp. 1–8. 

[9] Baruah, S. (2004). Partitioning real-time tasks among 

heterogeneous multiprocessors. ICPP, Montreal, Quebec, 

Canada, pp. 467-474. 

[10] Braun, T. D., Siegel, H. J., Beck, N., Boloni, L. L. 

Maheswaran,  M. Reuther, A. I., Robertson, J. P., Theys, 

M. D., Yao, B., Hensgen, D. and Freund, R. F. (2001). A 

Comparison of Eleven Static Heuristics for Mapping a 

Class of Independent Tasks onto Heterogeneous 

Distributed Computing Systems. Journal of Parallel and 

Distributed Computing, vol. 61, 2001, pp. 810-837. 

[11] [9] Chen, H. and Cheng, A. M. K. (2005). Applying 

Ant Colony Optimization to the partitioned scheduling 

problem for heterogeneous multiprocessors.  ACM 

SIGBED Review, Vol. 2 , No. 2, 2005, pp. 11-14.  

[12] Visalakshi, P. and Sivanandam, S. N. (2009). Dynamic 

Task Scheduling with Load Balancing using Hybrid 

Particle Swarm Optimization.  Int. J. Open Problems 

Compt. Math, Vol. 2, No. 3, pp. 475 – 48. 

[13] Abdullah E., Shalan M., Awadalla M., Saad E. M. 

(2014). Energy-efficient task allocation techniques for 

asymmetric multiprocessor embedded systems. ACM 

Transactions on Embedded Computing Systems (Impact 

Factor: 1.18). 

[14] Saad, E. M., Awadalla, M.A., Shalan, M., and Elewi, A. 

2012. Energy-Aware Task Partitioning on Heterogeneous 

Multiprocessor Platforms. IJCSI International Journal of 

Computer Science Issues, Vol. 9, Issue 2, No 1, ISSN 

(Online): 1694-0814, Pp. 176-183. 

[15] Omidi, A.  and Rahmani, A. M. (2009). Multiprocessor 

Independent Tasks Scheduling Using A Novel Heuristic 

PSO Algorithm.  pp. 369 – 373. 

[16] Chen, J. and Kuo, C. (2007). Energy-efficient scheduling 

for real time systems on dynamic voltage scaling (DVS) 

platforms. 13th IEEE Int. Conf., RTCSA, pp. 28-38. 

[17] Koufaty, D. Reddy, D. and Hahn, S. (2010). Bias 

Scheduling in Heterogeneous Multicore Architectures. In 

Proceedings of the 5th ACM European Conference on 

Computer Systems (EuroSys), pp. 125 - 138. 

[18] Higashino, W. Capretz, M. A. M. and Toledo, M. B. F. 

(2014). Evaluation of Particle Swarm Optimization 

Applied to Grid Scheduling. Proc. Of 23rd IEEE 

WETICE Conf., Parma, Italy, pp. 1-6. 

[19] Chou Q. , Ge D, and Zhang R., (2014). PSO Based 

Optimization of Testing and Maintenance Cost in NPPs. 

Hindawi Publishing Corporation Science and 

Technology of Nuclear Installations, Volume 2014, pp. 

1-9.  

 

IJCATM : www.ijcaonline.org 

https://www.researchgate.net/researcher/2043842198_Abdullah_Elewi/
https://www.researchgate.net/researcher/2043871231_Medhat_Awadalla/

