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ABSTRACT 
In this manuscript, we introduce a new  concept, which called 

PU-algebra X . We state and prove some theorems about 

fundamental properties  of it. Moreover ,we give the concepts 

of a weak right self-maps, weak left self-maps and 

investigated some its properties. Further, we have proved that 

every associative PU-algebra is a group and every p-

semisimple algebra is an abelian group. We define the centre 

of a PU-algebra X and show that it is a p-semisimple sub-

algebra of X, which consequently implies that every PU-

algebra contains a p-semisimple PU-algebra .Furthermore, we 

give the concepts of ideals (  -ideals , i=1,2,3,4) in PU-algebra 

,  classified they into classes correspond to various formula 

and we have proved that, they are coincide . 
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1. INTRODUCTION 
In 1966, Imai and Iseki [2] introduced two classes of abstract 

algebras: BCK-algebras and BCI-algebras. It is known that 

the class of BCK-algebras is a proper subclass of the class of 

BCI-algebras. In [1], Hu and Li introduced a wide class of 

abstract algebras: BCH-algebras. They are shown that the 

class of BCI-algebras is a proper subclass of the class of 

BCH-algebras. In [7], Neggers and Kim introduced the notion 

of d-algebras, which is a generalization of BCK-algebras and 

investigated a relation between d-algebras and BCK-algebras. 

Neggers et al. introduced the notion of Q-algebras [8], which 

is a generalization of BCH/BCI/BCK-algebras. Recently, Kim 

[3] defined a BE-algebra.[5] Meng, defined the notion of CI-

algebra as a generalization of a BE-algebra.[4] Megalai and 

Tamilarasi introduced the notion of a TM-algebra which is a 

generalization of BCK/BCI/BCH-algebras and several results 

are presented. In 2009 , C. Prabpayak and U. Leerawat [9,10] 

introduced algebraic structure which is called KU-algebras , 

and studied ideals and congruencies in KU-algebras .They 

gave the concept of homomorphisms of KU-algebras and 

investigated some related properties. Moreover they derived 

some straightforward consequences of the relations between 

quotient KU-algebras and isomorphisms and also investigated 

some of its properties. In this paper we will introduce a new 

algebraic structure called PU-algebra, which is a dual for TM-

algebra and investigated severed basic properties. Moreover 

we derived new view of several ideals on PU-algebra and 

studied some properties of them. 

2. PRELIMINARIES 
Now we will recall some known concepts related to PU-

algebra from the literature which will be helpful in further 

study of this article. 

Definition 2.1[9].By a KU-algebra we mean an algebra (X, *, 

0) of type (2, 0) with a single binary operation * that satisfies 

the following identities:  

for any x, y, z   X, 

(ku1):    (x * y) * [(y * z) * (x * z)] = 0, 

(ku2):     x * 0 = 0,  

(ku3):     0 * x = x   ,  

(ku4) :     x * y = 0 = y * x   implies   x = y. 

Example 2.2: Let X = {0, 1, 2, 3, 4} in which * is defined by 

the following table: 

* 0 1 2 3 4 

0 0 1 2 3 4 

1 0 0 2 3 4 

2 0 1 0 3 3 

3 0 0 2 0 2 

4 0 0 0 0 0 

 

     It is easy to show that X is a KU - algebra.  

Lemma 2.3 [6]. In a KU-algebra ( X , * , 0) , the following 

hold : 

(i) x ≤  y imply y * z  ≤  x * z . 

(ii) z * (y *  x) = y *   (z * x) . 

Definition 2.4. A PU-algebra is a non-empty set X with a 

constant 0  X and a binary operation  satisfying the 

following conditions: 

(I) 0  x = x, 

(II) (x  z)  (y  z) = y  x for any x, y, z  X. 

On X we can define a binary relation " ≤ " by:   x ≤ y if and 

only if y  x = 0. 

Example 2.5. Let X = {0, 1, 2, 3, 4} in which  is defined by  

 0 1 2 3 4 

0 0 1 2 3 4 

1 4 0 1 2 3 

2 3 4 0 1 2 

3 2 3 4 0 1 

4 1 2 3 4 0 

Using the algorithms in Appendix, we can prove that (X, , 0) 

is a PU-algebra, but not a KU-algebra , since 0401 
.On the other hand, in Example 2.2., X is a KU-algebra, but is 

not a PU-algebra since (2  1)  (3  1) = 1  0   3  2 = 2, 

which means that PU-algebra and KU-algebra are deferent. 
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Example 2.6. (ℝ, , 0) where  is defined by x  y = y – x for 

all x, y  ℝ is a  PU-algebra. 

Proposition 2.7. In PU-algebra (X, , 0) the following hold 

for all x, y, z  X: 

(a) x  x = 0. 

(b) (x  z)  z = x. 

(c) x  (y  z) = y  (x  z). 

(d) x  (y  x) = y  0. 

(e) (x  y)  0 = y  x. 

(f) If x ≤ y, then x  0 = y  0. 

(g) (x  y)  0 = (x  z)  (y  z). 

(h) x  y ≤ z if and only if z  y ≤ x. 

(i) x ≤ y if and only if y  z ≤ x  z. 

(j) In PU-algebra (X, , 0) , the following are equivalent: 

    (1) x = y,  

    (2) x  z = y  z, 

    (3) z  x = z  y. 

(k) The right and the left cancellation laws hold in X. 

Proof: 

(a) Putting x = y = 0 in Definition 2.4. (II), we get (0  z)  (0 

 z) = 0  0. Then 

     z  z = 0                                            (by Definition 2.4. (I)). 

(b) (x  z)  z = (x  z)  (0  z)        (by Definition 2.4. (I)) 

                       = 0  x   = x             (by Definition 2.4. (I), (II)) 

 (c) x  (y  z) = [(x  z)  z]  (y  z)       (from (b))  

                       = y  (x  z)         (by Definition 2.4. (II)). 

(d) x  (y  x) = y  (x  x)               (from Proposition 2.7 (c)) 

                       = y  0                       (from Proposition 2.7 (a)). 

(e) (x  y)  0 = (x  y)  (y  y)     (from Proposition 2.7  (a)) 

                       = y  x                      (by Definition 2.4. (II)). 

(f) x ≤ y  y  x = 0              (by the definition of PU-algebra) 

               x  0 = x  (y  x) = y  0(from Proposition 2.7 

(d)). 

(g) (x  y)  0 = y  x                      (from Proposition 2.7  (e)) 

                       = (x  z)  (y  z)          (by Definition 2.4. (II)). 

(h) x  y ≤ z  z  (x  y) = 0  x  (z  y) = 0 (from 

Proposition 2.7 (c)) 

                     z  y ≤ x. 

(i) x ≤ y  y  x = 0          (by the definition of PU-algebra) 

               (x  z)  (y  z) = 0     (by Definition 2.4. (II)) 

               y  z ≤ x  z. 

(j) ((1)  (3)): Clear. 

     ((3)  (2)): z  x = z  y  (x  z)  0 = (y  z)  0   (from 

Proposition 2.7 (e)) 

                                              ((x  z)  0)  0 = ((y  z)  0) 

 0 

                                              x  z = y  z   (from 

Proposition 2.7 (b)). 

     ((2)  (1)): x  z = y  z  (x  z)  z = (y  z)  z  

                                              x = y(from Proposition 2.7 

(b)). 

(k) Follows directly from (j).  

Proposition 2.8. If (X, , 0) is a PU-algebra, then for any x, y, 

z  X, 

(1) (z  x)  (z  y) = x  y,  

(2) (x  y)  z = (z  y)  x. 

Proof: 

 (1) By the definition of PU-algebra, we have that 

      (z  x)  (z  y) = [(x  y)  (z  y)]  [0  (z  y)] = 0  (x 

 y) = x  y. 

(2) (x  y)  z = [z  (x  y)]  0   (from Proposition 2.7 (e)) 

                       = [x  (z  y)]  0    (from Proposition 2.7 (c)) 

                       = (z  y)  x              (from Proposition 2.7 (e)). 

Lemma 2.9. If (X, , 0) is a PU-algebra, then (X, ≤) is a 

partially ordered set.  

Proof: By Proposition 2.7. (a), we have that x  x = 0 i.e. x ≤ 

x.  

Let x ≤ y, y ≤ x, then x  y = 0 = y  x. It follows that  

     x = 0  x                                   (by Definition 2.4. (I))  

        = (y  x)  (0  x)   = 0  y=y  (by Definition 2.4. (II) 

,(I))             

Let x ≤ y, y ≤ z i.e. y  x = 0 = z  y. It follows that  

z  x = 0  (z  x)                        (by Definition 2.4. (I))  

         = (y  x)  (z  x) = z  y=0   (by Definition 2.4. (II))             

i.e. x ≤ z. Therefore (X, ≤) is a partially ordered set. 

Remark 2.10. Every PU-algebra (X,, 0) satisfying  (y  x)  x 

= y  x  for all  

 x, y  X is a trivial algebra. 

Proof: Putting x = y in the equation (y  x)  x = y  x, we 

have 0  x = 0. By Definition 2.4. (I), x = 0. Hence X is a 

trivial algebra.  

Proposition 2.11. If (X, , 0) is a PU-algebra, then (x  y)  

(z  u) = (x  z)  (y  u) for all x, y, z and u  X. 

Proof: Let (X, , 0) be a PU-algebra, then for all x, y, z and u 

 X we have that 

(x  y)  (z  u) = 0  [(x  y)  (z  u)]                                     

(by Definition 2.4. (I)) 

                          = [(y  u)  (y  u)]  [(x  y)  (z  u)]      

(from Proposition 2.7 (a)) 
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                          = [[(x  y)  (z  u)]  (y  u)]  (y  u)      

(from Proposition 2.8 (2)) 

                          = [[(y  u)  (z  u)]  (x  y)]  (y  u)      

(from Proposition 2.8 (2)) 

                          = [(z  y)  (x  y)]  (y  u)                           

(by Definition 2.4. (II)) 

                          = (x  z)  (y  u)                                            

(by Definition 2.4. (II)). 

Corollary 2.12. If (X, , 0) is a PU-algebra, then (x  y)  z = 

(x  0)  (y  z) for all x, y and z  X.  

Proof: Let (X, , 0) be a PU-algebra, then for all x, y, z  X 

we have that                  (x  y)  z = (x  y)  (0  z)                                                    

(by Definition 2.4. (I)) 

                  = (x  0)  (y  z)                                                 

(from Proposition 2.11).   

All material on each page should fit within a rectangle of 18 x 

23.5 cm (7" x 9.25"), centered on the page, beginning 2.54 cm 

(1") from the top of the page and ending with 2.54 cm (1") 

from the bottom.  The right and left margins should be 1.9 cm 

(.75”). The text should be in two 8.45 cm (3.33") columns 

with a .83 cm (.33") gutter. 

3. G-PART AND P-RADICAL OF A PU -

ALGEBRA  
Definition 3.1. Let X be a PU-algebra.  For any subset S of X, 

we define G(S) = {x  S: x  0 = x} , in particular if S = X, 

then we say that G(X) is the G-part of X. It is clear that if (X, 

, 0) is a PU-algebra and if x  G(X), then  x = 0  x = x  0. 

For any PU-algebra X, the set  B(X) = {x  X: x  0 = 0} is   

called a P-radical of X. A PU-algebra X is said to be P-

semisimple, if every element of X is minimal,  i.e  

 B(X)={0}.The following property is obvious: G(X) B(X) = 

{0}.we define 

   xxXxsettheandxabXxbaA  0*)0*(,*,),(
 is called the center of X. 

Proposition 3.2. Let  (X, , 0) be a PU-algebra and x, y, z  

X, then  

                            (a) y  G(X)  x  (y  x) = y.  

                            (b) y  B(X)  x  (y  x) = 0.  

                            (C) x  G(X)  x  0  G(X).  

Proof: (a) By Proposition 2.7. (d), x  (y  x) = y  0 = y  y 

 G(X). 

(b) By Proposition 2.7. (d), x  (y  x) = y  0 = 0  y  

B(X).  

(c) x  G(X)  x  0 = x                     (by the definition of 

G(X)) 

                      x  0 = (x  0)  0       (by Proposition 2.7 (b)) 

                      x  0  G(X).  

Proposition 3.3. The following are equivalent in PU-algebra 

(X, , 0)  :  

(1) x = y  z, 

(2) y = z  x,  

(3) z = x  y for all x, y, z  G(X). 

Proof: (1)  (2): x = y  z  z  x = z  (y  z) = y  0 = y 

(by Proposition 2.7 (d) and the definition of G(X)).  

(2)  (3): y = z  x  x  y = x  (z  x) = z  0 = z. 

(3)  (1): z = x  y  y  z = y  (x  y) = x  0 = x. 

Lemma 3.4. If G(X) = X, then X is P-semisimple.  

Proof: Assume that G(X) = X. Then {0} = G(X)  B(X) = X 

 B(X) = B(X), and hence X is P-semisimple.  

Definition 3.5. Let (X, , 0) be a PU-algebra. For a fixed a  

X.  

The map Ra: X  X given by Ra(y) = y  a for all y  X is 

called a right self-maps of X.  Similarly the map La: X  X 

given by La(y) = a  y for all y  X is called a left self-maps 

of X.  

Definition 3.6.  Let (X, , 0) be a PU-algebra. For a fixed a  

X.  

The map Ta: X  X given by Ta(y) = (y  a)  (a  0) for all 

y  X is called a weak right self-maps of X. 

 Similarly the map Ma: X  X given by Ma(y) = (a  0)  (a 

 y) for all y  X is called a weak left self-maps of X.  

Theorem 3.7. Let (X, , 0) be a PU-algebra, then Lx = Mx  

Lx if and only if              (x  0)  (x  (x  y)) = x  y for all 

x, y  X.  

Proof: (): Let (X, , 0) be a PU-algebra and Lx = Mx  Lx 

for all x  X. Then         x  y = Lx(y) = (Mx  Lx)(y) = 

Mx(Lx(y)) = Mx(x  y) = (x  0)  (x  (x  y)) for all  x, y  

X.  

(): Let (X, , 0) be a PU-algebra and (x  0)  (x  (x  y)) 

= x  y for all x, y  X, then Lx(y) = x  y = (x  0)  (x  

Lx(y)) = Mx(Lx(y)) = (Mx  Lx)(y). Hence              Lx = Mx 

 Lx.  

Definition 3.8. A non-empty subset I of a PU-algebra (X, , 

0) is called a PU-sub algebra of X if x  y  I whenever x, y 

 I.  

Lemma 3.9. If (X, , 0) is a PU-algebra, then:  

                    (a) G(X) is a PU-sub algebra of X.  

                    (b) B(X) is a PU-sub algebra of X. 

Proof: (a) Assume that (X, , 0) is a PU-algebra and x, y  

G(X), i.e. x  0 = x,         y  0 = y. Then by Proposition 2.7. 

(g), (x  y)  0 = (x  0)  (y  0) = x  y. Hence      x  y  

G(X). Therefore G(X) is a PU-sub algebra of X.  

(b) Assume that (X, , 0) is a PU-algebra and x, y  B(X), i.e. 

x  0 = 0 = y  0.  Then by Proposition 2.7. (g), (x  y)  0 = 

(x  0)  (y  0) = 0  0 = 0. Hence                x  y  B(X). 

Therefore B(X) is a PU-sub algebra of X. 

Lemma 3.10. If (X, , 0) is a PU-algebra, then   

(a) x  (y  z) = (x  y)  z for all x  G(X) and y, z  X. 

(b) x  y = y  x for all x, y  G(X).  

Proof:   

(a) By the definition of G(X) and Proposition 2.11, we have                             
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    x  (y  z) = (x  0)  (y  z) = (x  y)  (0  z) = (x  y)  z  

(by Definition 2.4.(I)).  

(b) By Definition 2.4. (I) and the definition of G(X), we have  

      x  y = (0  x)  (y  0) 

               = (0  y)  (x  0)                               (by Proposition 

2.11)  

               = y  x                (by Definition 2.4. (I) and the 

definition of G(X)).  

Theorem 3.11. If (X, , 0) is PU-algebra, then G(X) is an 

abelian group.  

Proof: Let (X, , 0) be a PU-algebra. Then for all x  G(X) 

we have 

 x = 0  x = x  0. By Proposition 2.7. (a), we have x  x = 0 

for all x  G(X). By Lemma 3.10. (b), we have x  y = y  x 

for all x, y  G(X). Finally by Lemma 3.10. (a), we have x  

(y  z) = (x  y)  z for all x, y and z  G(X). Therefore G(X) 

is an abelian group.  

In Example 2.5., (X, , 0) is a PU-algebra, but associatively 

does not hold, since            1  (2  1) = 2  0 = 3 ≠ 0 = 1  1 

= (1  2)  1. 

Theorem 3.12. If (X, , 0) is associative PU-algebra, then 

G(X) = X and B(X) = {0}.  

Proof: If (X, , 0) is associative PU-algebra, then clearly G(X) 

 X. If x  X, then    x  0 = x  (x  x) = (x  x)  x = 0  x 

= x, and it follows that   x  G(X). Hence             X  G(X). 

Thus G(X) = X. For the second part, clearly {0}  B(X). If x 

 B(X), then x = 0  x = (x  x)  x = x  (x  x) = x  0 = 0 

and B(X)  {0}. Thus B(X) = {0}.  

Theorem 3.13. Every associative PU-algebra (X, , 0) is a 

group.  

Proof: Putting x = y = z in the associative law (x  y)  z = x 

 (y  z) and using Definition 2.4. (I) and Proposition 2.7 (a), 

we obtain 0  x = x  0 = x. This means that 0 is the identity 

of X. Also by Proposition 2.7 (a), every element x of X has an 

inverse. Therefore (X, ) is a group. 

4. NEW VIEW OF IDEALS ON PU-

ALGEBRA 
Definition 4.1[9]. A non-empty subset I of a PU-algebra (X, 

, 0) is called an ideal of X if for any x, y  X,  

(i) 0  I,  

(ii) x  y, x  I imply y  I.  

Definition 4.2[9]. A non empty subset I of a PU-algebra X is 

called a KU-ideal of X if it satisfies the following conditions:  

 (1)   0   I,   

(2)    x * (y * z)  I, y   I imply x * z   I, for all x , y , z
X . 

Theorem 4.3. Let (X, , 0) be a PU-algebra and let I be a non-

empty subset of X.  Then I is an ideal of X if and only if I is a 

KU-ideal of X.  

Proof: (): Suppose that I is an ideal of X. It is clear that 0  

I. Let x * (y * z)  I and     y   I, it follows by Proposition 

2.7.(c) that y * (x * z)  I. Since I is an ideal of X, then x * z 
  I. Hence I is a KU-ideal of X. 

(): Suppose that I is a KU-ideal of X. It is clear that 0  I. 

Put x = 0 in the definition of KU-ideal we have that 0  (y  z) 

 I, y  I imply  0  z   I. By using the definition of PU-

algebra, we have 0  (y  z) = y  z and 0  z = z, i.e. y  z  

I,  y  I imply z  I. Therefore I is an ideal of X.  

Example 4.4. Let X = {0, a, b, c} in which  is defined by the 

following table:   

 0 a b c 

0 0 a b c 

a a 0 c b 

b b c 0 a 

c c b a 0 

 Using the algorithms in Appendix , we can prove that (X, , 

0) is a PU-algebra. It is easy to show that I1 = {0, a}, I2 = {0, 

b},     I3 = {0, c} are KU-ideals of X. 

Definition 4.5. A non-empty subset I of a PU-algebra (X, , 

0) is called a PU1-ideal of X if it satisfies the following 

conditions:  

(i) 0  I,  

(ii) y  x, x  z  I imply y  z  I, for all x , y , zX . 

 

Theorem 4.6. Let (X, , 0) be a PU-algebra and let I be a non-

empty subset of X.  Then I is an ideal of X if and only if I is a 

PU1-ideal of X. 

Proof: (): Suppose that I is an ideal of X. It is clear that 0  

I. Let y  x, x  z  I. Since y  x = (x  z)  (y  z) (by 

Definition 2.4. (II)), then we have (x  z)  (y  z)  I and x  

z  I. It follows by the definition of ideal that y  z  I. 

Therefore I is a       PU1-ideal of X.  

(): Suppose that I is a PU1-ideal of X. It is clear that 0  I. 

Put y = 0                        in the definition of PU1-ideal and by 

using the definition of PU-algebra, we get          x  I, x  z  

I imply    z  I. Therefore I is an ideal of X. 

Definition 4.7. A non-empty subset I of a PU-algebra (X, , 

0) is called a PU2-ideal of X if for any x, y, z  X,  

(i) 0  I,  

(ii) (x  y)  z  I , z  y  I imply x  I. 

Theorem 4.8. Let (X, , 0) be a PU-algebra and let I be a non-

empty subset of X. Then I is an ideal of X if and only if I is a 

PU2-ideal of X. 

Proof: (): It is clear that 0  I. Let (x  y)  z  I , z  y  

I. Since (X, , 0) is     PU-algebra, then (z  y)  x = (x  y)  

z  I, it follows by the definition of an ideal of PU-algebra 

that x  I. Hence I is a PU2-ideal of X. 

:)(
 It is clear that 0  I. Let x  y  I, x  I. It follows by 

the definition of         PU-algebra and its properties that x  y 

= (y  x)  0  I and x = 0  x  I. Since I is a   PU2-ideal of 

a PU-algebra, then y  I. Hence I is an ideal of X.   
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Definition 4.9. A non-empty subset I of a PU-algebra (X, , 

0) is called a PU3-ideal of X if, 

(i) 0 I, 

(ii) (a * (b * x)) * x   I, for all a, b   I and x   X. 

Theorem 4.10. Let (X, , 0) be a PU-algebra and let I be a 

non-empty subset of X. Then I is a PU3-ideal of X if and only 

if I is a PU1-ideal of X. 

Proof: Let I be a PU3-ideal of X, obviously 0   I. Let x * y, 

y * z   I. Now applying (Definition 2.4. (I), (II)), we get  

.)())(()())()(()(

)())()(()()(0

0

Izxzxbazxzxzyyx

zxzxzyyxzxzx

ba

































  

Hence I is a PU1-ideal of X.  

Conversely. If I is a PU1-ideal of X, it is clear that 0 I and 

(by Theorem 4.6)   I is an ideal of X. 

To prove (ii) ( of Definition 4.9), observe that  (a *  (b * x)) * 

(a  * (b * x)) = 0   I, for a, b   I and xX . By Proposition 

2.7.(c), we have a  ((a  (b  x))  (b  x))  I.  Since I is an 

ideal and a  I, it follows that ((a  (b  x))  (b  x))  I. By 

Proposition 2.7.(c), we have b  ((a  (b  x))  x)  I. Since I 

is an ideal and b  I, it follows that (a  (b  x))  x  I. 

Therefore I is a PU3-ideal of X. 

Lemma 4.11 : If I is a PU3-ideal of a PU-algebra X ,then for 

every a   I and x   X,  

 (a * x) * x   I  

Proof: Clear. 

Corollary 4.12 : If a   I and x   a , then x I . 

Proof: The condition x   a in PU-algebra mean a * x = 0 and 

by Lemma 4.11, we get  x = 0 * x = (a * x) * x I. 

Definition 4.13. A non-empty subset I of a PU-algebra (X, , 

0) is called a PU4-ideal of X if, 

0 I, 

      (ii) (a * 0) * b   I, for all a, b   I. 

Lemma 4.14. If (X, , 0) is a PU-algebra, then (x * (y * z)) * 

z = (y * 0) * x for all        x, y, z  X. 

Proof: Let (X, , 0) be a PU-algebra and let x, y, z  X, then 

we have that                 (x * (y * z)) * z = (z * (y * z)) * x                

(by Proposition 2.8 (2))  

                 = (y * (z * z)) * x                (by Proposition 2.7 (c)) 

                 = (y * 0) * x                        (by Proposition 2.7 (a)). 

Theorem 4.15. Let (X, , 0) be a PU-algebra and let I be a 

non-empty subset of X. Then I is a PU3-ideal of X if and only 

if I is a PU4-ideal of X. 

Proof: Follows directly by using Lemma 4.14.   

The following result is a direct consequence of Theorems 

(4.3, 4.6, 4.8, 4.10 and 4.15) 

Theorem 4.16. If X is PU-algebra, then the following are 

equivalent: 

 (1) I is an ideal of X.                    (2) I is a KU-ideal of X. 

 (3) I is a PU1-ideal of X.              (4) I is a PU2-ideal of X. 

 (5) I is a PU3-ideal of X.              (6) I is a PU4-ideal of X. 

Lemma 4.17. Let (X, , 0) be a PU-algebra and 
 

IiiA
  be a 

family of  PU1-ideals of X, then 
 Ii iA

 is also PU1-ideal 

of X. 

Proof: Let x, y and z  X be such that y  x, x  z  

 Ii iA
 . Then y  x, x  z  Ai for all i  I. But Ai is a 

PU1-ideal of X for all i  I. Then y  z  Ai for all i  I, and 

hence we get y  z  
 Ii iA

 . Therefore 
 Ii iA

 is also 

PU1-ideal of X. 

Remark 4.18. Let (X, , 0) be a PU-algebra. 

1) If 
 

IiiA
 is a family of KU-ideals of X, then 

 Ii iA
  is 

also KU-ideal of X. 

2) If 
 

IiiA
 is a family of PU1-ideals of X, then 

 Ii iA
  

is also PU1-ideal of X. 

3) If 
 

IiiA
 is a family of PU2-ideals of X, then 

 Ii iA
  

is also PU2-ideal of X. 

4) If 
 

IiiA
 is a family of PU3-ideals of X, then 

 Ii iA
  

is also PU3-ideal of X. 

5) If 
 

IiiA
 is a family of PU4-ideals of X, then 

 Ii iA
  

is also PU4-ideal of X. 

Proposition 4.19. If (X, , 0) is a PU-algebra, then  

                          (a) G(X) is a PU1-ideal of X. 

                          (b) B(X) is a PU1-ideal of X. 

Proof: (a) Clearly 0  G(X). Let x  y  G(X), x  G(X). 

Then We have that 

 y  0 = x  (y  x)                       (by Proposition 2.7. (d)) 

          = x  ((x  y)  0)               (by Proposition 2.7. (e)) 

          = x  (x  y)                        (by the definition of G(X)). 

Since G(X) is a PU-sub algebra of X, then y  0  G(X). 

Hence by Proposition 2.7. (b), we have that y  0 = (y  0)  0 

= y, then y  G(X), thus G(X) is an ideal of X. Therefore by 

Theorem 4.6., we have that G(X) is a PU1-ideal of X. 

(b) Clearly 0  B(X). Let x  y  B(X), x  B(X). we have 

that 

y  0 = x  (y  x) = x  ((x  y)  0) (by Proposition 2.7. 

(d),(e)) 

          = x  0 = 0                 (by the definition of B(X)).  
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Then y  B(X), and thus B(X) is an ideal of X. Therefore by 

Theorem 4.6., we have that B(X) is a PU1-ideal of X. 

5. HOMOMORPHISMS OF PU-

ALGEBRA 
Definition 5.1. Let (X, , 0) and (X\, \, 0\) be PU-algebras. A 

map f: X  X\ is called a homomorphism if f(x  y) = f(x) \ 

f(y) for all x, y  X.  

Theorem 5.2. Let (X, , 0) and (X\, \, 0\) be PU-algebras, 

and f: X  X\ be a homomorphism, then  

(1) f(0) = 0\. 

(2) If S is a PU-sub algebra of X, then f(S) is a PU-sub 

algebra of X\. 

(3) If S is a PU-sub algebra of X\, then f -1(S) is a PU-sub 

algebra of X. 

(4) If x ≤ y, then f(x) ≤ f(y).  

(5) If B is a PU1-ideal of X\, then f -1(B) is a PU1-ideal of X. 

(6) ker f is a PU1-ideal of X. 

Proof: (1) f(0) = f(0  0) = f(0) \ f(0) = 0\ (by Definition 2.4. 

(I), Definition 5.1. and Proposition 2.7. (a)). 

(2) Let x\, y\  f(S). It follows that x\ = f(x), y\ = f(y) for 

some x, y  S. It follows by Definition 5.1., that x\ \ y\ = f(x) 

\ f(y) = f(x  y). Since S is a PU-sub algebra of X, then   x  

y  S and hence x\ \ y\ = f(x  y)  f(S) which complete the 

proof. 

(3) Let x, y  f -1(S). It follows that f(x), f(y)  S. Since S is 

a PU-sub algebra of X\ and f is a homomorphism, then f(x) \ 

f(y) = f(x  y)  S. It follows that x  y  f -1(S). Hence f -

1(S) is a PU-sub algebra of X. 

(4) Since x ≤ y, then y  x = 0. It follows that f(y  x) = f(0) = 

0\. Since f is a homomorphism, then f(y) \ f(x) = 0\. 

Therefore f(x) ≤ f(y). 

(5) Since B is a PU1-ideal of X\, then 0\  B (i.e. f(0)  B). It 

follows that 0  f -1(B). Let x, y, z  X be such that y  x  f 

-1(B), x  z  f -1(B). It follows that f(y  x)  B, f(x  z)  

B. Since f is a homomorphism, then   f(y) \ f(x)  B, f(x) \ 

f(z)  B.   Since B is a PU1-ideal of X\, then f(y) \ f(z)  B. 

Since f is a homomorphism,        then f(y  z)  B. It follows 

that y  z  f -1(B). Therefore f -1(B) is a PU1-ideal of X. 

(6) It is clear that 0  ker f. Let x, y, z  X be such that y  x, 

x  z  ker f, then      f(y  x) = 0\, f(x  z) = 0\. Since (X, , 

0) is PU-algebra, then y  x = (x  z)  (y  z). Since f is a 

homomorphism, then we have f(y  x) = f(x  z) \ f(y  z) = 

0\. It follows that 0\ \ f(y  z) = 0\, hence f(y  z) = 0\ (i.e. y 

 z  ker f). Therefore ker f is              a PU1-ideal of X. 

6. CONCLUSION 
In this manuscript, we introduce a new  concept, which called 

PU-algebra X . 

We state and prove some theorems about fundamental 

properties  of it.  Moreover ,we give the concepts of a weak 

right self-maps, weak left self-maps and investigated some its 

properties. Further, we have proved that every associative PU-

algebra is a group and every p-semisimple algebra is an 

abelian group. We define the centre of a PU-algebra X and 

show that it is a p-semisimple sub-algebra of X, which 

consequently implies that every PU-algebra contains a p-

semisimple PU-algebra.  

We posed the following problem, is the set Hom(X) of all PU-

homomorphisms of X into itself, is a PU- algebra?  We can  

proved that it is not always a PU-algebra. However, it may be 

established that Hom(X) is a PU-algebra, if X is an 

associative PU-algebra. But an associative PU-algebra is 

again a p-semisimple algebra. Thus homological study of PU-

algebras did not develop for PU-algebras in general. The 

future purpose of this paper is to study the set of all left-

regular self- maps of a positive implicative PU-algebra X, we 

can show that it forms a positive implicative PU-algebra. But 

no such effort was made for PU-algebras ,We form weakly 

positive implicative PU-algebras in terms of its Right Self-

maps and Weak Right Self-maps. Further, some properties of 

Weak Right Self- maps, Weak Left Self-maps and Weak Left-

Regular Self-maps can be studied. It can also shown that the 

set of all Weak Left-Regular Self-maps of a weakly positive 

implicative PU-algebra X, is a weakly positive implicative 

PU-algebra. Thus homological study has been made in the 

class of weakly positive implicative PU-algebras a class 

which contains the class of p-semisimple PU-algebras, the 

class of associative PU-algebra, the class of weakly 

implicative PU-algebras and weakly positive implicative PU-

algebras. As is well known , the concept of ideal I plays an 

important role in PU-algebras  X  and a lot of results on ideals 

can be obtained .We have classified ideals into the following 

classes as followes : Ideals have elements of  X , ideals have 

elements of  X and I and Ideals have elements of  I .We know 

that every ideal is not necessarily a sub-algebra. Thus a 

question arises -what type of ideals are sub-algebras? We 

hope in the further work can    answer these open questions .  
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Algorithms for PU-algebra  

Input (X: set with 0 element, : Binary operation) 

Output ("X is a PU-algebra or not") 

If X =


  then; 

Go to (1.) 

End if 

If X0  then go to (1.); 

EndIf 

Stop: = false 

i = 1; 

While 
Xi 

 and not (Stop) do 

If 0 * xi ≠ xi, then 

Stop: = true 

End if 

j = 1; 

While 
Xj 

,  and not (Stop) do 

k = 1; 

While 
Xk 

and not (stop) do 

If (xi * xk)*  (xj * xk) ≠ xj * xi, then 

Stop: = true 

End if 

End while 

End if 

End while 

If stop then 
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Output ("X is a PU-algebra") 

Else 

(1.) Output ("X is not a PU-algebra") 

End if    

End. 

Algorithms for PU-ideal in PU-algebra  

Input (X: PU-algebra, I: subset of X) 

Output ("I is a PU-ideal of X or not")  

If I =


  then  

Go to (1.);  

End if  

If 0   I then  

Go to (1.);  

End if  

Stop: = false  

i = 1;  

While 
Xi 

and not (stop) do  

j = 1  

While 
Xj 

and not (stop) do 

k = 1  

While 
Xk 

and not (stop) do 

If xj * xi   I, and xi * xk   I then  

If xj*  xk   I then 

Stop: = false  

End if  

End while 

End while 

End while  

If stop then 

Output ("I is a PU-ideal of X") 

Else 

(1.) Output ("I is not ("I is a PU-ideal of X") 

End if 

End. 
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