
International Journal of Computer Applications (0975 – 8887)

Volume 111 – No 3, February 2015

1

A New HDFS Structure Model to Evaluate the

Performance of Word Count Application on Different File

Size

Mohammad Badrul Alam
Miah

Dept. of Information and
Communication Technology

Mawlana Bhashani Science and
Technology University
Santosh, Tangail-1902,

Bangladesh

Mehedi Hasan
Dept. of Information and

Communication Technology
Mawlana Bhashani Science and

Technology University
Santosh, Tangail-1902,

Bangladesh

Md. Kamal Uddin
Dept. of Information and

Communication Technology
Mawlana Bhashani Science and

Technology University
Santosh, Tangail-1902,

Bangladesh

ABSTRACT

MapReduce is a powerful distributed processing model for large

datasets. Hadoop is an open source framework and

implementation of MapReduce. Hadoop distributed file system

(HDFS) has become very popular to build large scale and high

performance distributed data processing system. HDFS is

designed mainly to handle big size files, so the processing of

massive small files is a challenge in native HDFS. This paper

focuses on introducing an approach to optimize the performance

of processing of massive small files on HDFS. We design a new

HDFS structure model which main idea is to merge the small

files and write the small files at source direct into merged file.

Experimental results show that the proposed scheme can

improve the storage and access efficiencies of massive small

files effectively on HDFS.

Keywords

Hadoop, MapReduce, HDFS, Big data, Cluster

1. INTRODUCTION
The Apache Hadoop software library is a framework that allows

for the distributed processing of large data sets across clusters of

computers using simple programming models to handle bid data.

It is designed to scale up from single servers to thousands of

machines, each offering local computation and storage [1].

Hadoop is used by Yahoo. Yahoo has more than 100,000 CPUs

in >40,000 computers running Hadoop. Facebook use Apache

Hadoop to store copies of internal log and dimension data

sources and use it as a source for reporting/analytics and

machine learning. Currently they have 2 major clusters: A 1100-

machine cluster with 8800 cores and about 12 PB raw storage

and a 300-machine cluster with 2400 cores and about 3 PB raw

storage. A wide variety of websites like Twitter, Amazon,

Alibaba, EBay etc. use Hadoop to manage massive amount of

data on a daily basis [2].

MapReduce is a programming model and an associated

implementation for processing and generating large data sets.

Users specify a map function that processes a key/value pair to

generate a set of intermediate key/value pairs, and a reduce

function that merges all intermediate values associated with the

same intermediate key. Many real world tasks are expressible in

this mode [3].

The Hadoop Distributed File System (HDFS) is a distributed file

system designed to run on commodity hardware. It has many

similarities with existing distributed file systems. However, the

differences from other distributed file systems are significant.

HDFS is highly fault-tolerant and is designed to be deployed on

low-cost hardware. HDFS provides high throughput access to

application data and is suitable for applications that have large

data sets [1].

HDFS is designed mainly to streaming access of large files. The

default block size of HDFS is 128MB. When data is represented

in files significantly smaller than the default block size the

performance degrades dramatically. The problem is that HDFS

can‟t handle lots of files. Every file, directory and block in

HDFS is represented as an object in the namenode‟s memory,

each of which occupies 150 bytes, as a rule of thumb. So 10

million files, each using a block, would use about 3 gigabytes of

memory [4].

Other problem is while running map/reduce jobs. The loading of

thousands of small files cause a lot of time, specifically, if small

files are in snappy compressed form.

The number of blocks also increase as the number of small files

increase. This causes, increase number of map tasks. Though

increase in number of map tasks sometimes increase in

parallelism and hence, job efficiency, but, too many mappers

will cause too much load on the cluster causing slowness of job

execution.

2. BACKGROUND

2.1 Hadoop
Hadoop is a platform that provides both distributed storage and

computational capabilities. Hadoop was first conceived to fix a

scalability issue that existed in Nutch, 2 an open source crawler

and search engine. At the time Google had published papers that

described its novel distributed file system, the Google File

System (GFS), and MapReduce, a computational framework

for parallel processing. The successful implementation of these

papers‟ concepts in Nutch resulted in its split into two separate

projects, the second of which became Hadoop, a first-class

Apache project [5]. Hadoop is an open source framework for

writing and running distributed applications that process large

amounts of data. Actually Hadoop is a framework of tools. The

objective of Hadoop is to support running applications on Big

Data & handle it. So, Hadoop is data storage and processing

system. It includes two core components:

 Hadoop Distributed File System (HDFS), for storage

 MapReduce, for parallel data processing

International Journal of Computer Applications (0975 – 8887)

Volume 111 – No 3, February 2015

2

2.2 Hadoop Distributed File System (HDFS)
HDFS is the storage component of Hadoop. It‟s a distributed file

system that‟s modeled after the Google File System (GFS) paper

[3]. HDFS is optimized for high throughput and works best when

reading and writing large files (gigabytes and larger). To support

this throughput HDFS leverages unusually large (for a file

system) block sizes and data locality optimizations to reduce

network input/output (I/O). Scalability and availability are also

key traits of HDFS, achieved in part due to data replication and

fault tolerance. HDFS replicates files for a configured number of

times, is tolerant of both software and hardware failure, and

automatically re-replicates data blocks on nodes that have failed.

Figure 1 shows a logical representation of the components in

HDFS: the namenode and the datanode. It also shows an

application that‟s using the Hadoop file system library to access

HDFS. Now that you have a bit of HDFS knowledge, it‟s

time to look at MapReduce, Hadoop‟s computation engine. A

set of machines running HDFS and MapReduce is known as a

Hadoop Cluster. Individual machines are known as nodes. A

cluster can have as few as one node, as many as several

thousands.

HDFS, the Hadoop Distributed File System, is responsible for

storing data on the cluster. Data files are split into blocks (128MB

in size) and distributed across multiple nodes in the cluster. Each

block is replicated multiple times. Default is to replicate each

block three times. Replicas are stored on different nodes. This

ensures both reliability and availability.

Fig 1: Hadoop cluster model

2.3 MapReduce
MapReduce is a software framework for easily writing

applications which process vast amounts of data (multi-terabyte

data-sets) in-parallel on large clusters (thousands of nodes) of

commodity hardware in a reliable, fault-tolerant manner.

A MapReduce job usually splits the input data-set into

independent chunks which are processed by the map tasks in a

completely parallel manner. The framework sorts the outputs of

the maps, which are then input to the reduce tasks. Typically

both the input and the output of the job are stored in a file-

system. The framework takes care of scheduling tasks,

monitoring them and re-executes the failed tasks.

Typically the compute nodes and the storage nodes are the same,

that is, the MapReduce framework and the Hadoop Distributed

File System are running on the same set of nodes. This

configuration allows the framework to effectively schedule tasks

on the nodes where data is already present, resulting in very high

aggregate bandwidth across the cluster.

The MapReduce framework consists of a single master

JobTracker and one slave TaskTracker per cluster-node. The

master is responsible for scheduling the jobs' component tasks

on the slaves, monitoring them and re-executing the failed tasks.

The slaves execute the tasks as directed by the master.

Minimally, applications specify the input/output locations and

supply map and reduce functions via implementations of

appropriate interfaces and/or abstract-classes. These, and other

job parameters, comprise the job configuration. The Hadoop job

client then submits the job (jar/executable etc.) and configuration

to the JobTracker which then assumes the responsibility of

distributing the software/configuration to the slaves, scheduling

tasks and monitoring them, providing status and diagnostic

information to the job-client [1].

3. IMPLEMENTATION DETAILS
In this section, implementations of different experiments are

discussed.

3.1 Single Node Cluster
In order to evaluate the performance of the word count

application on small files, experiments must have been done. Our

performance evaluation of word count application on small files

is Hadoop based test bed. Hadoop is a framework that has two

main components: HDFS and MapReduce. In this section, we

describes how we‟ve tried to set up and configure a single-node

Hadoop on Ubuntu desktop so that we can execute word count

application on many small files on single node Hadoop cluster

and evaluate the performance of word count application on small

files. It is single node Hadoop cluster with master and slave on

same machine. Before implementing single-node Hadoop cluster

on Ubuntu desktop, we must need to install: (1) Java^TM 1.6.x or

later version; (2) SSH and SSHD must be running to use the

Hadoop scripts that manage remote Hadoop daemons [6]. Then

we have to create an SSH key for the Hadoop user.

Then we need to create a dedicated Hadoop group and a user in

that group and give permission to the specific user to access the

Hadoop features. We need to do so for avoiding unusual access

to Hadoop cluster from various users. There is a problem with

IPv6 on Ubuntu and it is related to Hadoop, so it is better to

disable it.

Completing the above steps, we can now setup Hadoop by

downloading it from apache site and extract all the files in the

downloaded package to any local directory. We have to make

sure to change the owner of all the contents to the created user

and hadoop group.

We have to set Hadoop environment variable exporting java

path, hadoop path, etc. The environment variable that has to be

configured for Hadoop is JAVA_HOME. Open hadoop-env.sh,

set the JAVA_HOME environment variable.

International Journal of Computer Applications (0975 – 8887)

Volume 111 – No 3, February 2015

3

Fig 2: Command prompt

To set the directory where HDFS will store its data blocks,

specify temporary directory, specify the port of our MapReduce

job tracker, etc. we must tell Hadoop these by configuring its

some configuration files named core-site.xml, mapred-site.xml,

hdfs-site.xml, etc. To verifying single node Apache Hadoop

Setup, commanding „hadoop version‟ on command prompt, the

following result in the figure will appear.

Now we‟ve got Hadoop up and running on our Ubuntu desktop.

Hadoop comes with several web interfaces which provide

concise information about what‟s happening in your Hadoop

cluster such that: The name node web UI shows you a cluster

summary including information about total/remaining capacity,

live and dead nodes; he JobTracker web UI provides information

about general job statistics of the Hadoop cluster,

running/completed/failed jobs and a job history log file; The task

tracker web UI shows you running and non-running tasks [7].

Fig 3: HDFS structure model

To start our cluster we need to run all the Hadoop daemon such

as namenode, datanode, jobtracker and a tasktracker on the

machine through commanding „start-dfs.sh‟ and „start-yarn.sh‟

on the command prompt. The Java process status tool „jps‟ list

all processes in Hadoop.

3.2 HDFS Structure Model
We design a new HDFS structure model which main idea is to

merge the small files and write the small files at source direct

into merged file and then replicates the merged file through data

pipeline. The new HDFS structure is shown as Figure.

In the previous related work to handle massive small files,

everyone tried mainly to merge small file that are already placed

in datanode in different ways. In native HDFS the data files are

written to datanode directly without considering the size of data

files. So we introduce structure model where the data files are

gone through an intermediate step in which data files are first

find out to be small files or large file. If the data files are small

files then the small files are merged to a large merged file. A

local index file is built for a merged file, and is also merged into

the merged file. Then the merged file is written to HDFS. If data

files are large enough than default HDFS block size then the

general data pipeline is maintained. Thus the efficiency of

accessing massive small file is significantly increased, when

reading files. The client needs to query namenode for file

metadata. According to the metadata, the client connects with

appropriate datanodes where blocks locate. When the local index

file is firstly read, based on the offset and length, the requested

file is split from the block, and is returned to the client.

In this scheme we merge the small files first then we want to

write merged file to datanode. For merging process, a

computational machine is needed. So we introduce a fast-node to

do these merging step. This fast-node is highly configured

machine that easily merge the small files in short time.

Table 1. File size vs run time

F (KB) Tm (ms) TR (ms)

10 3671 3501

50 3854 3594

100 3994 3651

200 4221 3846

500 5715 4713

Fig 4: Plloting graph for different file size of file and their

run time

4. EVALUATION
In order to evaluate performance of word count application on

small files on single node cluster, experiments have been

performed within single node cluster. To investigate the

efficiency of the proposed HDFS structure model, we also show

some mathematical and graphical explanations. The test perform

on single node cluster and this paper has mainly tested read and

write operations.

My machine‟s specifications are Intel Core i5 2.26 GHz, 64-bit,

2GB of RAM and running Ubuntu 14.04 LTS operating system.

Hadoop 2.4.0 version is installed on it with default settings.

Performing word count MapReduce application in single cluster

Hadoop for various file size we get the following times that are

spent by map task and reduce task

Here, F, Tm and Tr indicate text file size in kilobyte, total time

spent by all map tasks in millisecond and total time spent by all

reduce

tasks in millisecond, respectively. Plotting the previous table

values, we get the following two curves in the graph.

International Journal of Computer Applications (0975 – 8887)

Volume 111 – No 3, February 2015

4

From the experiment resulted graph, we can say that the total

spent times by both map and reduce task are insignificantly

increased according to increasing file size.

Our next experiment is to run word count application to count

distinct words occurring times on 1000 files with the size of

100bytes each and then again run word count application on a

whole one merged file of the size 100KB. In such way, we‟ve

also perform the test for 200KB and 300KB size. The resulted

data is given bellow in the table.

Table 2. Comparison of reading time

File Size 1000 files (Sec.) 1 file (Sec.)

100KB 1956 7.7

200KB 2257 8.1

300KB 2548 8.9

Fig 4: Plotting graph for comparison of reading time

We plot the resulted data and compare the reading time for 1000

files and for 1 file of the total same size. The graph shows that

how the processing of massive small files affect the system

greatly and degrade the performance of HDFS. It also indicates

that the processing of the large merged file consumes very lower

reading time. Thus, our proposed HDFS structure model can

efficiently improve the storage and access efficiencies of

massive small files effectively on HDFS.

Lastly, in our proposed HDFS structure model, we design a data

pipeline that merge the small files first and then write merged

file to datanode directly unlike storing the small files into HDFS

first after then merged it to merged file which takes double times

to maintain. First time, by storing small files on HDFS already

creates burden on namenode uploading metadata. Writing

massive small files on HDFS would be very slow. Second time,

merging massive small files locally and store them again in

HDFS would take higher time than our proposed method. In our

proposed method, it takes high time to writing massive small

files than the native HDFS but it reduces the total time needed

by two steps in native HDFS. It also reduce the burden on

namenode greatly uploading very smaller metadata.

5. CONCLUSION AND FUTURE WORK
We identified the small file problem in HDFS (Hadoop

Distributed File System) and proposed a HDFS structure model

that can process massive number of small files better. The

experimental analysis indicates that the proposed method can

efficiently reduce the burden of HDFS and improve the read and

write performance of massive small files.

Our future research will focus on compressing the data on

Hadoop cluster using different compression algorithms. In order

to improve the performance of heterogeneous cluster, we will

also research various data placement techniques.

6. ACKNOWLEDGMENTS
The authors are grateful to the participants who contributed to

this research.

7. REFERENCES
[1] Apache Hadoop. http://hadoop.apache.org. [Last accessed:

20th December 2014]

[2] Hadoop Wiki.

https://wiki.apache.org/hadoop/PoweredBy#M. [Last

accessed 20th December 2014]

[3] J. Dean and S. Ghemawat, “MapReduce: Simplified Data

Processing on Large Clusters,” Commun. ACM, vol. 51, no.

1, pp. 107–113, Jan. 2008.

[4] Cloudera. http://blog.cloudera.com/blog/2009/02/the-small-

files-problem. [Last accessed: 20th December 2014]

[5] Chuck Lam, “Hadoop in Action”, Manning Publications,

2011.

[6] Apache Hadoop.

http://hadoop.apache.org/docs/stable2/hadoop-project-

dist/hadoop-common/SingleNodeSetup.html. [Last

accessed: 10th April 2014].

[7] “Running Hadoop On Ubuntu Linux (Single-Node Cluster)

- Michael G. Noll.” [Online]. Available:

http://www.michael-noll.com/tutorials/running-hadoop-on-

ubuntu-linux-single-node-cluster/. [Last accessed: 20th May

2014].

[8] N. Mirajkar, S. Bhujbal, and A. Deshmukh, “Perform

wordcount Map-Reduce Job in Single Node Apache

Hadoop cluster and compress data using Lempel-Ziv-

Oberhumer (LZO) algorithm,” arXiv:1307.1517 [cs], July

2013.

[9] N. Mirajkar, S. Bhujbal, and A. Deshmukh, “Perform

wordcount Map-Reduce Job in Single Node Apache

Hadoop cluster and compress data using Lempel-Ziv-

Oberhumer (LZO) algorithm,” arXiv:1307.1517 [cs], July

2013.

[10] B. Dong, Q. Zheng, F. Tian, K.-M. Chao, R. Ma, and R.

Anane, “An optimized approach for storing and accessing

small files on cloud storage,” Journal of Network and

Computer Applications, vol. 35, no. 6, pp. 1847–1862, Nov.

2012.

[11] Y. Zhang and D. Liu, “Improving the Efficiency of Storing

for Small Files in HDFS,” in 2012 International

Conference on Computer Science Service System (CSSS),

2012, pp. 2239–2242.

[12] “Welcome to Apache™ Hadoop®!”. http://hadoop.apac

[Last accessed: 20th December 2014]

[13] he.org/docs/r2.4.0/. [Last accessed: 5th July 2014]

IJCATM : www.ijcaonline.org

