
International Journal of Computer Applications (0975 – 8887)  

Volume 111 – No 17, February 2015 

6 

Testing Android Anti-Malware against Malware 

Obfuscations 

 

Gunjan Kapse  
Computer Science Department 

Jayawantrao Sawant College of Engineering 
Pune, India 

Aruna Gupta 

Computer Science Department 
Jayawantrao Sawant College of Engineering 

Pune, India
 

 

ABSTRACT  
There is an increasing threat of malware on mobile. Since 

Android is the most popular and maximum sold mobile 

phone, the malware attack on Android mobile is increasing 

day by day. The commercial antimalware products available 

in the market can detect common and old malwares easily. 

Different types of transformations can be applied to a 

malware which make it difficult for antimalware to detect. 

The different transformations can be majorly classified into 

1.Trivial transformations, 2.DSA (Detectable by static 

analysis) transformation, and 3.NSA (Not detectable by static 

analysis). Researchers have evaluated the strength of different 

commercial antimalware tools by passing the transformed 

malware samples to them and found that all the antimalware 

tools can be evaded by applying either a single transformation 

or combination of transformations. We propose to add more 

malware samples in the framework namely KMIN, PJAPPS, 

ROOTEXPLOIT, and YZHC. These are Android malware 

samples. We shall apply Trivial, DSA and combination of 

DSA transformations to them. After transformation, we pass 

them to Android mobile antimalware products Aegis Lab, 

Bkav Security, CM Security, Rinix, and Hornet and 

systematically evaluate them regarding their resistance against 

various transformations. 

Keywords 
Malware, DSA, NSA, Mobile, Android.  

1. INTRODUCTION  
Android is an open source, Linux based lightweight operating 

system. First version of Google Android was launched in 

2008. Earlier, the mobile phones were not connected to 

internet, so there was no malware spread. But since the 

discovery of smart phones which offer high computing power 

and better connectivity, the propagation of threat has 

increased. In September 2008, security research group from 

Chinese university announced first attack for Android. Since 

2011, the Android malware has spread over very fast [6]. Now 

mobile virus is becoming a big concern. Cabir virus appeared 

when Bluetooth was used to communicate between devices. 

SMS Trojans on Android are DroidDream, DroidKungFu, and 

Plankton. They try to acquire root access of the device and 

can remotely install applications on device without any user 

intervention. DroidKungFu and Plankton also sends sensitive 

information of device to the attacker. Android malware 

Geinimi was discovered in 2010. If the Geinimi malware is 

installed on a phone, it can receive commands from a remote 

server which allow the owner of that server to control the 

phone. It can collect specific information including location 

coordinates and unique identifiers for the device (IMEI) and 

SIM card (IMSI). Spyware is also a kind of malicious code 

which collects the user’s private information.  

2. OBFUSCATION TECHNIQUES 

2.1 Trivial obfuscations 
Trivial obfuscations [1] are the kind of transformations in 

which the application code is not modified. Modifications like 

changing the signature of APK, changing the package name in 

AndroidManifest.xml, Disassemble and reassemble the 

Android APK are performed in trivial transformation. Apktool 

is used to obtain the AndroidManifest.xml and Smali code 

from the APK [8, 9]. Package name in Android Manifest.xml 

can be changed in trivial obfuscation. Signature of APK can 

also be changed after opening it in Android SDK and 

exporting signed application package. 

2.2 DSA Obfuscations 
After running the Apktool, dex2jar tool can be used to get the 

jar file from classes.dex. The java code can be obtained from 

this jar. DSA obfuscation involves changing the code thus 

obtained. DSA stand for Detectable by static analysis. 

Changing method name, class name or identifier name are 

such obfuscations. Encoding data, junk code insertion, 

reordering code can also be performed under this category.  

2.3 NSA obfuscations 
It is the category of obfuscation which cannot be detected by 

static analysis. Following are the obfuscations in this 

category. 

2.3.1 Reflection  
It involves converting a method call into call through 

reflection. Modern software languages like VB.NET and Java 

have reflection API. With such an API we can query and 

access types and members at runtime identified by their name. 

Reflection is the ability of a program to examine and modify 

the structure and behaviour (specifically the values, meta-

data, properties and functions) of the program at runtime. 

2.3.2 Byte code encryption:  
It involves storing the application code in encrypted form 

which is decrypted at runtime with decryption routine. The 

antimalware has the decryption routine. User defined class 

loader loads the dex file and decrypts it. Since it is directly 

decrypted at runtime, static analysis of code is not possible. 

3. SYSTEM ARCHITECTURE 
To assess the strength of different antimalware tools available 

in market, we obfuscate the malware in different forms and 

test them with the antimalware tools. Figure 1 shows the 

process of applying different obfuscation methods to malware 

samples. The sequence of execution of applying 

transformation and testing them is: 

i Apply trivial obfuscation techniques to malware 

samples one by one and test the obfuscated malware 

with antimalware tool. If the transformed malware is 



International Journal of Computer Applications (0975 – 8887)  

Volume 111 – No 17, February 2015 

7 

detected, then stop. Else, apply next trivial 

transformation. 

ii Apply the different DSA obfuscation techniques to 

malware sample one by one. If the antimalware is 

able to detect the transformation then stop. Else 

apply next DSA transformation. 

iii Apply combination of DSA transformations. Test 

the transformed malware with Antimalware. If 

malware is detected, then stop. Else apply next 

combination of DSA obfuscation. 

 

 

Results of testing different antimalware tools against various 

obfuscations of DroidDream malware are shown in figure 2. 

Cross indicate failure of detection. Other malwares tested with 

transformations are Geinimi, Fakeplayer, Bgserv, Basebridge, 

and Plankton. Results show that all of the antimalware 

products can be evaded after applying some transformation or 

combination of transformation. 

We plan to do comprehensive study and test one more set of 

antimalware products against obfuscation attacks with another 

set of malware samples. The antimalware tools which we shall 

use are Aegis Lab, Bkav Security, CM Security, Rinix, and 

Hornet which are android mobile antimalware products. The 

malware families to be used are KMIN, PJAPPS, 

ROOTEXPLOIT, and YZHC. 

Fig 1. Assessing anti malware

 

 
Fig 2. Droid Dream obfuscations and Result of Testing with Anti-malware 

4. MALWARE DETECTION 

TECHNIQUES 

4.1 Signature based detection 
It matches the application’s signature which is actually a 

sequence of bytes with the antimalware signature. It matches, 

and then the application is detected as malware. This 

technique is used to detect variants of same malware family or 

we can say existing malware or transformations of that 

malware. Advantage of Signature based detection is that it has 

less false positives means very less wrong detection. It can 

detect the malware fast. Polymorphic malware 

transforms/mutates itself, keeping the original code intact[7]. 

The polymorphic engine of virus generates mutants of virus 

every time it is executed. For each variant of malware, the 

signature is different. So it is hard to detect polymorphic 

virus. Disadvantage is that, it cannot detect new and 

unfamiliar malware. 

4.2 Behaviour based detection 
It detects patterns in a dataset that do not conform to a fixed 

normal behaviour. It tries to estimate abnormal behaviour by 

checking the deviation of behavior from normal behaviour 

and comparing it with a threshold. If it exceeds the given 

threshold, then it is categorized as malware. Advantage of 

Behaviour based detection is that it can detect previously 

unseen or new malwares. Disadvantage being that there can 

be many false positives that is, the tendency to classify a 

correct application as malware is high. Also it need big set of 

training data to construct normal profile. 

5. RELATED WORK 
Mihai Christodorescu [5] introduced technique Semantic 

aware malware detection. The method first disassembles the 

binary program. It then generates CFG (Control Flow graph) 

of instruction sequence. The malicious behaviour is 

represented with templates with instruction sequences in 

which variables and symbolic constants are used. For each 

template node a matching node in program is searched and 



International Journal of Computer Applications (0975 – 8887)  

Volume 111 – No 17, February 2015 

8 

mapped. The node matching is done based on expressions 

used. Also the template variables and program expressions 

should have similar update pattern. Thus bindings are 

generated by unification of template and program node. False 

positive evaluation was done on 2000 binaries yielding no 

false positives. Obfuscation resilience was evaluation was also 

performed with Garbage insertion codes like nop insertion, 

stack op insertion and math op insertion.  Different variants of 

obfuscations were generated and tested. The tool could catch 

all the obfuscations except math op replacement 

transformation. 

Advantages 
i Obfuscations like register renaming can be detected 

by this method.  

ii Low value of false positives rate.  

iii Junk code insertion can be found and detected. 

Since it checks the flow of data and update patterns, 

such type of transformations can be detected. 

Disadvantages 
i IT mandates the IR instructions of template and that 

of the program to be same. No equivalent substitute 

of that operation is accepted. Example, if template 

has x=x+constant, then it is matched with program 

if same + operation is found and not any other 

equivalent operation. 

ii It enforces memory updates should be of same order 

for both program and the template. 

Zarni Aung, Win Zaw[4] introduced new model Permission-

Based Android Malware Detection. It is based on 3 phases. 1. 

Feature selection 2. K means clustering of the selected 

features 3. Classification of data set as good ware or malware. 

This was followed by performance evaluation with accuracy, 

precision and recall. The different permissions requested by 

an application are analysed like  

android.permission.INTERNET,  

android.permission.CHANGE_CONFIGURATION, 

 android.permission.WRITE_SMS, 

android.permission.SEND_SMS, 

android.permission.CALL_PHONE. 

The features which are extracted are stored in dataset with 

ARFF format. Best features are selected with largest value of 

Information gain. Then machine learning is used for malware 

classification and detection. K means clustering and Decision 

tree classification is used. 

Advantage of this method is, it is able to detect new malware. 

It can also detect unfamiliar malware. 

Disadvantage being, it can have higher number of false 

Positives. 

Yu Feng, Saswat Anand [3] presented Apposcopy: It is a 

again a semantic way of identifying an application as 

goodware or malware. It aims at detecting a specific class of 

malware which steals private information of user. The 

algorithm combines static taint analysis and creation of Inter 

component call graph to detect Android malware application. 

There are 2 steps of doing this analysis:  

Step1: Construction of ICCG of given application: ICCG 

indicate the control flow of the signature. Nodes of ICCG 

represent different components. The edges between 

components indicate the communication between the 

components. For example component X starts component Y 

by calling start Activity method of Android.  

Step2: Static taint analysis: It indicates the truth values of 

data flow in the signature. Example of Data-flow predicates, 

is flow (i, Sr, j, Sn), express that the application contains flow 

from source Sr in component i to sink Sn in component j. It 

may indicate that component  sends the device and subscriber 

id of the phone over the Internet. 

Advantages  

i Good accuracy of detection.  

ii Can detect transformations such as: Change of 

component, method names.  

iii Redirection of method calls through proxy method.  

iv Encryption of component names, data type values of 

intents. 

Disadvantages 
i Unknown malware family cannot be detected by 

this approach. 

ii Not possible to detect below obfuscations: 

a. Dynamic loading of code at runtime. 

b. Change of method or class name in 

combination with Reflection cannot be 

detected. 

iii Detection of malware instantly on smart phones is 

not possible. 

Daniel Arp, Michael Spreitzenbarth [2] introduced method 

DREBIN. Since monitoring of application at runtime impede 

lots of resources, DREBIN does broad static analysis of 

application for malware detection. It extracts different features 

from application’s AndroidManifest.xml and code. It then 

maps the features into vector space where each dimension is 

either 0 or 1. Number of dimension equals to total number of 

number of features. Applications with similar features thus 

reside close to each other. It uses SVM (Support Vector 

Machines) as the learning based detection method. The 

method also provides explanations about the detection results. 

The features extracted from xml and code is given different 

weights based on their severity. The detection result 

explanation is based on this weight. The runtime performance 

of the method is evaluated by applying on Google play store 

applications. Drebin analyses an application in 10 seconds. On 

older models, it takes 20 seconds to evaluate. Renaming of 

components between learning phase and detection phase may 

decrease the result strength. 

Advantages 
i This can be directly implemented on Smart phones 

and can be run when applications are downloaded.  

ii It can also give explanations about the detection. 

For example The application sends SMS message. 

Communication with host gval.amict.net etc. 

iii Number of false alarms is less. The method has high 

accuracy. It can detect new and unknown malware 

well. 

 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 111 – No 17, February 2015 

9 

Disadvantages  

i Not able to detect obfuscations which are not 

detectable by static analysis like Reflection and byte 

code encryption.  

ii Latest malware sample collection is required.  

iii If benign/good features or fake variants are included 

into malicious applications, the detection score of 

the method is lowered. 

6. CONCLUSION 
We studied the different malware obfuscation methods which 

are trivial, DSA and NSA obfuscations. We also introduced 

basic malware detection techniques which are signature based 

and behaviour based detection. We evaluated the strength of 

commercial antimalware products against different malware 

obfuscation methods. The result of evaluation shows that all 

the commercial antimalware products can be evaded by 

applying some transformation or combination of 

transformations. We shall collect more malware samples 

namely KMIN, PJAPPS, ROOTEXPLOIT, and YZHC and 

antimalware tools for android namely Aegis Lab, Bkav 

Security, CM Security, Rinix, and Hornet and assess the 

strength of antimalware products against transformed 

malware. 

7. REFERENCES 
[1] V. Rastogi, Y. Chen, and X. Jiang, “DroidChameleon: 

Evaluating Android anti-malware against transformation 

attacks”, Proc. ACM ASIACCS, May 2013, pp. 329–334. 

[2] D. Arp, M. Spreitzenbarth, M. H• ubner, H. Gascon, K. 

Rieck, and C. Siemens, “Drebin: Effective and  

explainable detection of android malware in your 

pocket”, NDSS, Internet Society,  February 2014, USA 

[3] Yu Feng, Saswat Anand, Isil Dillig, Alex Aiken, 

“Apposcopy: Semantics-Based Detection of Android 

Malware through Static Analysis,” in ACM SIGSOFT Int. 

Symp, November, 2014 

[4] Zarni Aung, Win Zaw, “Permission-Based Android 

Malware Detection,” in IJSTR Vol 2, Mar 2013 

[5] M. Christodorescu, S. Jha, S. Seshia, D. Song, and R. 

Bryant,“Semantics-aware malware detection,” in Proc. 

IEEE Symp. Security Privacy, May 2005, pp. 32–46. 

[6]  (2013, Feb.).CNET [Online]. Available: 

http://news.cnet.com/8301-1035_3-57569402-

94/android-ios-combine-for-91-percent-of-market/ 

[7] Symantec, Mountain View, CA, USA. (2013, Dec. 3). 

Server-Side Polymorphic Android Applications [Online]. 

Available: 

http://www.symantec.com/connect/blogs/server-side-

polymorphicandroid-applications 

[8] (2013, Dec. 3). Smali: An Assembler/Disassembler for 

Android’s Dex Format [Online]. Available: 

http://code.google.com/p/smali/ 

[9] (2013, Dec. 3). Android-Apktool: A Tool for 

Reengineering Android APK Files [Online]. Available: 

http://code.google.com/p/android-apktool/ 

 

IJCATM : www.ijcaonline.org 


