
International Journal of Computer Applications (0975 – 8887)  

Volume 111 – No 15, February 2015 

8 

OpenCL Parallel Blocked Approach for Solving All Pairs 

Shortest Path Problem on GPU 

Manish Pandey 
Department of Computer Science Engineering 
Maulana Azad National Institute of Technology 

Bhopal, India 

 
 

Sanjay Sharma 
Department of Mathematics and Computer 

Applications  
Maulana Azad National Institute of Technology 

Bhopal, India 

ABSTRACT 
All-Pairs Shortest Path Problem (APSP) finds a large number 

of practical applications in real world. This paper presents a 

blocked parallel approach for APSP using an open standard 

framework OpenCL, which provides development 

environment for utilizing heterogeneous computing elements 

of computer system and to take advantage of massive parallel 

capabilities of multi-core processors such as graphics 

processing unit (GPU) and CPU. This blocked parallel 

approach exploits the local shared memory of GPU, thereby 

enhancing the overall performance. The proposed solution is 

for directed and dense graphs with no negative cycles and is 

based on blocked Floyd Warshall (FW) and Kleene‟s 

algorithm. Like Floyd Warshall this approach is also in-place 

and therefore requires no extra memory. 
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1. INTRODUCTION 
The all-pairs shortest path (APSP) targets to find the shortest 

path between every pair of vertices in a directed/undirected 

weighted graph, where cost is simply the sum of weights of 

edges composing the path. APSP may be solved by running a 

single source shortest path (SSSP) algorithm for all n vertices 

or by using APSP algorithms like Johnson algorithm or 

Floyd-Warshall (FW). APSP finds applications in various 

areas like geographical information system, intelligent 

transportation systems, IP routing [7], VLSI design etc.  

A comparison of time complexities of different algorithms 

for SSSP and APSP is compared below. . In most of the 

cases an instance of the problem is represented in the form of 

directed weighted graph stored in the form of cost adjacency 

matrix of size [n ×  n ] 

Consider a weighted graph G (V, E) stored in the form of 

weight adjacency matrix represented by a W where wij ϵ W 

for all  i, j  ϵ E. Each edge has an associated weight. Negative 

weigh cycles are not allowed 

wij =  

0                            if i = j

weight of edge  i, j                if i ≠ j and  i, j  ϵ E

infinity                                       if i ≠ j and  i, j ϵ E

  

 

Although the theoretical time complexity of these well 

known algorithms is bounded by polynomial time, yet some 

applications require size of input data to be very large and 

therefore computational complexity for these well known 

algorithms also grow beyond practical limits.  

GPU is not only a graphics engine to perform graphics 

acceleration tasks like gaming, rendering, image processing 

etc. In recent years GPUs spawned some new areas of 

research and programmability thus it is now referred to as 

general purpose GPU (GPGPU)[20][21]. Now various GPU 

implementations are proposed and GPU has become a cost 

effective platform for high performance computing (HPC). 

OpenCL provides a development environment for utilizing 

heterogeneous platforms and to take advantage of graphics 

processing unit (GPU). 

Contribution of this paper: In this paper we have proposed 

an OpenCL blocked parallel approach for APSP based on 

Kleene‟s algorithm and compared the results with our 

previous implementation which involve parallel 

implementation of FW and parallel implementation of R-

kleene. R-kleene works by recursively partitioning the matrix 

into sub-matrices and applies the computation on those sub-

matrices. And in blocked approach aim is to utilize the GPU 

cache and shared memory. We have also used vectorization 

technique to improve blocked approach as it involves 

matrices. 

Organization of the paper:  Section 2 describes related 

work in the field of APSP. Section 3 comprises of OpenCL 

framework and different OpenCL models. Different parallel 

approaches to APSP based on Kleene‟s and Floyd-Warshall 

algorithm are explained in section 4 also an OpenCL parallel 

algorithms and tiled approach using Matrix-Multiply kernel 

is also explained. Experimental results are demonstrated in 

section 5. Section 6 presents conclusion and future work.  

2. RELATED WORK 
Parallel approaches for solving APSP using single source 

shortest path algorithm is discussed in [1][14] or by using 

parallel versions of APSP algorithms [4][18] or Johnson‟s  

Algorithm[21] The algorithms presented in these papers are 

in-place  and are also capable of providing high level of 

parallelism but these algorithms cannot fully exploit 

Algorithm Problem Time Complexity 

Dijkstra SSSP О n2  

Floyd–Warshall APSP О n3  

Johnson APSP О n2logn + ne  
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architectural capabilities of GPU due to absence of high data 

reuse. Many algorithms have been proposed for solving 

APSP problem using Floyd-Warshall (FW) yet there is large 

scope in enhancing its performance. A divide and conquer 

approach using R-Kleene‟s algorithm have been proposed for 

dense graphs for APSP in [12]. This approach is in-place and 

recursive in nature. Challanges in parallel graph processing is 

discussed in[3]  

Our computations involve matrices and therefore some fast 

matrix multiplication algorithms such as [19][6] are also our 

area of concern. As CPU implementations have several 

limitations of performance so some cache optimization 

techniques and cache friendly implementations are given in 

[2]and [5] using recursion for dense graphs. In [10] to reduce 

TLB misses blocked data layout and mortan layout are given 

for FW. In [2] block size is adjusted according to the cache 

parameters and matrix size to improve performance and to 

reduce cache misses. Our work is similar to the work by 

Venkataraman et. al [17] but unlike their work we have 

proposed OpenCL based implementation involving high 

level of parallelism, data reuse that fully exploits 

architectural benefits of GPU as a low cost computational 

resource. 

GPU implementation of FW for smaller graphs is given in 

[8] and for larger graphs shared memory and cache efficient 

GPU implementations for APSP using FW are given in 

[16][9].To further enhance the performance some 

optimization techniques like tiling, loop unrolling and SIMD 

vectorization can be used. 

3. OPENCL FRAMEWORK 
OpenCL is an open standard framework for parallel 

programming composed of several computational resources 

(CPU, GPU and other processors). Thus one can achieve 

considerable acceleration in parallel processing as it utilizes 

all the computational resources. The main advantage with 

OpenCL is its portability as it provides cross vendor software 

portability [25]. 

OpenCL framework [15][23][24]  comprises of following 

models:  

3.1 OpenCL Platform Model 
High level representation of heterogeneous system is 

demonstrated by Platform model as shown in Fig. 1. It 

consists of a host and OpenCL device. A host is any 

computer with a CPU and standard operating system. 

OpenCL device can be GPU, DSP or a multi-core CPU [25]. 

OpenCL device is collection of compute units which is 

further composed of one or more processing elements. 

 

Fig.1 OpenCL Platform Model [23] 

Processing elements within a compute unit will execute same 

instruction sequence while compute units can execute 

independently. Different GPU vendors follow different 

architectures but all follow a similar design pattern which is 

illustrated in Fig. 2. 

 

Fig.2 AMD GPU Compute Device [23] 

3.2 OpenCL Execution Model 
OpenCL execution model define how the kernel execution 

takes place and how kernel interact with host and with other 

kernels and it comprises of two components: kernels and host 

program. Kernels are further categorized into two types: 

OpenCL kernels and Native Kernels. Kernels execute on 

OpenCL devices and host execute on CPU (host system) 

Workgroups evenly divide the index space of NDRange in 

each dimension. And the index space within a workgroup is 

referred as local index space which is defined for each work 

item. Size of index space in each dimension is indicated with 

uppercase and ID is indicated using lowercase. See figure 3 

A work-item can be uniquely identified by its global 

ID gx , gy  or by the combination of its local ID lx , ly  and 

work group ID wx , wy  as shown in relation below: 

gx =  wx ∗  Lx + lx     (1)                                                           

gy =  wy ∗  Ly + ly     (2) 

 

 Fig.3 Relation between global ID and local ID, work-

group ID in 2-D index space [23] 

In fig.3, NDRange index space of size Gx  by Gy   12 ∗ 12  is 

divided into 9 work-groups, each having size  3 ∗ 3 . The 

shaded block has a global ID of  gx , gy =  6,5  and a work-

group plus local ID of  wx , wy =   1,1  and lx , ly =

  2,1 . 

3.3 OpenCL Memory Model 
OpenCL memory model defines different regions of memory 

and how they are related to platform and different execution 

model. This is shown in Fig. 4. There are generally five 

different regions of memory: 
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Host memory: This memory is limited to host only and 

OpenCL only defines the interaction of host memory with 

OpenCL objects. 

Global memory: All work items in all work groups have 

read/write access to this region of memory and can be 

allocated only by the host during the runtime. 

Constant memory: Region of memory which stays constant 

throughout the execution of kernel. Work-items have read 

only access to this region. 

Local memory: Region of memory is local to work group. It 

can be implemented dedicatedly on OpenCL device or may 

be mapped on to regions of Global memory. 

Private memory: Region that is private for work-item. 

 

Fig.4 OpenCL Memory Model [23] 

3.4 OpenCL Programming Model 
A programmer can freely combine any of the programming 

models available in OpenCL. OpenCL is basically defined 

with two programming models:  data parallel and task 

parallel model. However hybrid model can also be used. 

4. OPENCL IMPLEMENTATION FOR 

SOLVING APSP PROBLEM 
In the following sub-sections we owe to present an OpenCL 

blocked approach based on Kleene‟s algorithm [11], that was 

originally used for finding transitive closure and can be 

extended to shortest path problems also. The work embodied 

in the following sections is compared with OpenCL 

implementation of Floyd Warshall and Recursive Kleene‟s 

algorithms [26] and therefore OpenCL Floyd Warshall is our 

starting point 

4.1 APSP Problem 
APSP is the most fundamental problem in graph theory and 

our solution will follow a well-known algorithm called 

Floyd-Warshall (FW)[21]. FW sequential implementation 

uses three nested loops (fig.5). 

Consider a weighted graph G (V, E) stored using adjacency 

matrix representation by a weight matrix W where wij  ϵ W 

for all < 𝑖 , 𝑗 >  ϵ E.  

wij =  

0                          if i = j

weight of edge  i, j               if i ≠ j and  i, j ϵ E

infinity                                       if i ≠ j and  i, j ϵ E

  

ALGORITHM FLOYD-WARSHALL(W) 

1      n← rows (W) 

2      𝐷(0)← W 

3      for k = 1 to n do 

4       for i = 1 to n do 

5                for j = 1 to n do 

6     𝑑𝑖𝑗
(𝑘)

← 𝑚𝑖𝑛(𝑑𝑖𝑗
 𝑘−1 

, 𝑑𝑖𝑘
 𝑘−1 

+ 𝑑𝑘𝑗
(𝑘−1)

) 

7                end for 

8          end for 

9      end for 

 

Fig.5 FW Algorithm pseudo code 

4.2 OpenCL Parallel Implementation of 

Floyd-Warshall 
Parallel implementation of FW algorithm requires N2   work 

items to be created, where N is the total number of nodes. So, 

each work item (i, j) finds the shortest path between nodes i 

and j. In parallel implementation a 2-D kernel FW_KERNEL 

(A, k) is designed as shown in Fig. 7 

Pseudo code for OpenCL parallel FW OpenCL_Parallel_FW 

(A, n) is shown in Fig.6, which calls kernel FW_KERNEL 

(A, k)  

ALGORITHM OPENCL_PARALLEL_FW(A, N) 

1      for k = 1 to n do 

2         for all elements in matrix A, where 1≤ i , j ≤ n in 

parallel do 

3 call FW_KERNEL (A, k) 

4          end for 

5      end for 

 

 Fig.6 Pseudo code for OpenCL parallel FW algorithm 

KERNEL FW_KERNEL(A, K) 

1     (i, j) ← getThreadID 

2    A[i, j] ← min(A[i,  j], A[i,  k] + A[k,  j]) 

 

Fig.7 Pseudo code for FW kernel in OpenCL 

In each kth iteration of outermost for loop, n2 work-items 

(threads) invokes kernel that  computes shortest path between 

every possible pair of vertices  i, j  going through no vertex 

higher than vertex k , each using its thread_id  i, j , in 

parallel, where 1 ≤  i , j ≤  n. In final iteration when k = n is 

completed, output matrix A will hold shortest path between 
every possible pair of vertices  i, j  going through no more 

vertex higher than vertex n that is the shortest distance 

between all-pairs of nodes. 

4.3 Blocked approach to APSP problem 

using kleene’s algorithm 
The blocked approach for solving APSP is inspired by 

Kleene‟s algorithm [11] that was originally used for finding 

transitive closure for computing the existence of path 

between every possible pair of vertices  i, j  and is also 

applicable for shortest path problem in a closed semi ring. 

Algorithm is as shown in Fig.8 

Kleene‟s algorithm divides the nodes of the graph into  n √s  

zones as shown in Fig. 9. Nodes 1 to √s will be in zone 1, 

nodes √s +1 through 2√s will be in zone 2, and so on. Thus 
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adjacency matrix corresponding to the graph is divided into 

n2 s  sub matrices each having size √s × √s. A sub matrix 

Mij  refers all the edge from nodes in zone i to nodes in zone 

j. For √s = 4, nodes 1to 4 will be in zone 1, nodes 5 to 6 will 

be in zone 2 and so on nodes n - √s + 1 to n will be in zone  

n √s  (Fig. 9) 

ALGORITHM  KLEENE’S_APSP (M, N, S) 

1  /* Divide the graph ‟M‟ into  𝑛 √𝑠  zones */ 

2     for k = 1 to  𝑛 √𝑠  do 

3   /* 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑀𝑘,𝑘
∗ , APSP solution using FW for 𝑀𝑘 ,𝑘*/ 

4 𝑀𝑘 ,𝑘= 𝑀𝑘 ,𝑘
∗  

5       for i = 1 to   𝑛 √𝑠  do 

6              for j = 1 to   𝑛 √𝑠  do 

7      𝑀𝑖,𝑗=𝑀𝑖 ,𝑗  + 𝑀𝑖,𝑘  × 𝑀𝑘 ,𝑘  × 

𝑀𝑘 ,𝑗  

8                end for 

9          end for 

10    end for 

 

 Fig.8 Kleene’s Algorithm 

Fig.9 A  n×n matrix having  𝐧 √𝐬   Zones, where each 

zone is size √s × √s  

Each entry eij ∈  Mij   refers to the shortest path from every 

possible pair of vertex from zone „i‟ to zone „j‟ possibly 

going through some vertex in zone „k‟ and is computed using 

 eij +=   eik
n
k=1 ∗  ekj . Here operator „+‟ refers to „min‟ and 

operator „*‟ refers to „+‟ 

 

Fig.10 Shortest path from vertex ‘x’  to vertex ‘y’ through 

vertex ‘z’ such that x ∈ Zone I, vertex y ∈ Zone j, z ∈ 

Zone k 

For n = 16 and √s = 4 Kleene‟s algorithms in fig.8 unrolls to 

following steps in the first iteration of outermost loop for k = 

1. 

Step 1    M11 = M11
∗  

Step 2  M11 += M11 ∗  M11 ∗ M11  

Step 3  M12 += M11 ∗  M11 ∗ M12  

Step 4  M13 += M11 ∗  M11 ∗ M13  

Step 5  M14 += M11 ∗  M11 ∗ M14  

Step 6  M21 += M21 ∗  M11 ∗ M11  

Step 7  M22 += M21 ∗  M11 ∗ M12  

Step 8  M23 += M21 ∗  M11 ∗ M13  

Step 9  M24 += M21 ∗  M11 ∗ M14  

Step 10  M31 += M31 ∗  M11 ∗ M11  

Step 11  M32 += M31 ∗  M11 ∗ M12  

Step 12  M33 += M31 ∗  M11 ∗ M13  

Step 13  M34 += M31 ∗  M11 ∗ M14  

Step 14  M41 += M41 ∗  M11 ∗ M11  

Step 15  M42 += M41 ∗  M11 ∗ M12  

Step 16  M43 += M41 ∗  M11 ∗ M13  

Step 17  M44 += M41 ∗  M11 ∗ M14  

 

Fig.11 Loop unrolling for k = 1, n = 16 and √s = 4  in 

Kleene’s Algorithm 

Following simplifications can be performed on Kleene‟s 

Algorithm of fig. 8 

I. For iterations when   i == j == k  , the Line 7 of 

Kleene‟s algorithm (fig.8) is equivalent to Mk,k= Mk,k  + Mk,k  

× Mk,k  × Mk,k     (eq. Step 2 in fig.11). This step calculates the 

shortest path from every possible vertex from zone „k‟ to 

zone „k‟ (itself) going through zone „k‟ (fig.10). Because 

shortest path between every possible pair of vertex in zone 

„k‟ going through no zone higher than zone „k‟ has already 

been computed in previous step using Mk,k= Mk,k
∗  (eq. Step 1 

in fig. 11), this statement is redundant and therefore can be 

eliminated. 
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II. For iterations when i == k , Line 7 of Kleene‟s 

algorithm is equivalent to Mi,j=Mi,j  + Mk,k  × Mk,k  ×  Mk,j. 

This step can be simplified to Mi,j=Mi,j  + Mk,k  × Mk,j using  

 Mk,k  × Mk,k  = Mk,k  (eq. Step 3 to 5 in Fig. 11) 

III. For iterations when j == k , Line 7 of Kleene‟s 

algorithm is equivalent to Mi,j=Mi,j  + Mi,k  × Mk,k  × Mk,k . 

This step can be simplified to Mi,j=Mi,j  + Mi,k  × Mk,k  using  

 Mk,k  × Mk,k  = Mk,k  (eq. Step 6, 10 and 14 in Fig. 11) 

IV For iterations when   i ≠ j ≠ k  , the Line 7 of Kleene‟s 

algorithm (fig.8) is equivalent to Mi,j=Mi,j  + Mi,k  ×  Mk,j (eq. 

Steps 7, 8, 9, 11, 12 and 13) using either  Mi,k =  Mi,k  × Mk,k  

or  Mk,j =  Mk,k  × Mk,j  that are already computed (eq. Step 6 

or Step 3) 

Performing above simplifications we yield the following 

modified Kleene‟s algorithm as shown in fig. 12 

ALGORITHM MODIFIED_KLEENE’S_APSP_VER1(M, 

N, S) 

1  /* Divide the graph ‟M‟ into  𝑛 √𝑠  zones */ 

2     for k = 1 to  𝑛 √𝑠  do 

3   /* 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑀𝑘,𝑘
∗ , APSP solution using FW for 𝑀𝑘 ,𝑘*/ 

4 𝑀𝑘 ,𝑘= 𝑀𝑘 ,𝑘
∗  

5       for i = 1 to   𝑛 √𝑠  do 

6              for j = 1 to   𝑛 √𝑠  do 

7  if((i == j) &&(j ≠ k)) 

8      𝑀𝑖,𝑗=𝑀𝑖 ,𝑗  + 𝑀𝑘 ,𝑘  × 𝑀𝑘 ,𝑗  

9  else 

10         if((i  ≠  j) &&( j== k )) 

11   𝑀𝑖,𝑗=𝑀𝑖 ,𝑗  + 𝑀𝑖,𝑘  × 𝑀𝑘 ,𝑘   

12        else 

13   𝑀𝑖,𝑗=𝑀𝑖 ,𝑗  + 𝑀𝑖,𝑘  ×  𝑀𝑘 ,𝑗  

14               end for 

15        end for 

16   end for 

 

Fig.12 Modified Kleene’s Algorithm 

For n = 16 and √s = 4 modified Kleene‟s algorithms in fig.12 

unrolls to following steps (fig. 13) in the first iteration of 

outermost loop for k = 1. 

 

Step 1    𝑀11 = 𝑀11
∗  

Step 2  𝑀12 += 𝑀11 ∗ 𝑀12  

Step 3  𝑀13 += 𝑀11 ∗ 𝑀13  

Step 4  𝑀14 += 𝑀11 ∗ 𝑀14  

Step 5  𝑀21 += 𝑀21 ∗ 𝑀11  

Step 6  𝑀22 += 𝑀21 ∗ 𝑀12  

Step 7  𝑀23 += 𝑀21 ∗ 𝑀13  

Step 8  𝑀24 += 𝑀21 ∗ 𝑀14  

Step 9  𝑀31 += 𝑀31 ∗ 𝑀11  

Step 10  𝑀32 += 𝑀31 ∗ 𝑀12  

Step 11  𝑀33 += 𝑀31 ∗ 𝑀13  

Step 12  𝑀34 += 𝑀31 ∗ 𝑀14  

Step 13  𝑀41 += 𝑀41 ∗ 𝑀11  

Step 14  M42 += M41 ∗ M12  

Step 15  M43 += M41 ∗ M13  

Step 16  M44 += M41 ∗ M14  

 

Fig.13 Loop unrolling for k = 1, n = 16 and √s = 4  in 

modified Kleene’s Algorithm of Fig.12 

Following is the precedence graph for the steps in Fig 13 

illustrating potential parallelism in modified Kleene‟s 

Algorithm of fig.12 

 

Fig.14 Precedence graph showing parallelism in the steps 

of modified kleene’s algorithm for k = 1, n = 16, √s=4 

Each iteration of the outermost for loop consists of three 

phases that has to be executed sequentially but the set of 

steps within each phase are independent and therefore can be 

executed in parallel. Following is the algorithm that 

incorporates above phases. 

ALGORITHM MODIFIED_KLEENE’S_APSP_VER2(M, 

N, S) 

1 /* Divide the graph ‟M‟ into  𝑛 √𝑠  zones */ 

2     for k = 1 to  𝑛 √𝑠  do 

3             /*  𝑃ℎ𝑎𝑠𝑒 𝐼*/ 

4 𝑀𝑘 ,𝑘= 𝑀𝑘 ,𝑘
∗  

 

5       /* Phase II */ 

6 for i = 1 to   𝑛 √𝑠  such that (i ≠ k) do 

7      𝑀𝑘 ,𝑖=𝑀𝑘 ,𝑖  + 𝑀𝑘 ,𝑘  × 𝑀𝑘,𝑖  

8      𝑀𝑖,𝑘=𝑀𝑖,𝑘  + 𝑀𝑖,𝑘  × 𝑀𝑘 ,𝑘  

9 end for 

 

10           /*Phase III */ 

11  for i = 1 to   𝑛 √𝑠   such that (i ≠ k) do 
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12  for j = 1 to   𝑛 √𝑠  such that (j ≠ k) do 

13   𝑀𝑖,𝑗=𝑀𝑖 ,𝑗  + 𝑀𝑖 ,𝑘  × 𝑀𝑘 ,𝑗  

14  end for 

15 end for 

16    end for 

 

Fig.15 Three Phase Modified Kleene’s Algorithm 

4.4 OpenCL Parallel Implementation of 

three phase blocked algorithm 
OpenCL implementation of blocked algorithm requires a host 

program to be designed that will execute over CPU and 

OpenCL kernels that will execute over OpenCL devices such 
as CPU and or GPU and other compute devices as specified 

in the host program. Each instance of the kernel can be 

executed concurrently by all the work-item that belongs to 

the same work group over single compute unit. All such 

work groups can be executed concurrently over compute 

units. 

The algorithm outlined in fig. 15 requires  n √s  sequential 

iterations of the outermost for loop. The outermost for loop 

contains three phases that are required to be executed 

sequentially, within each iteration. The set of matrix 

operations within each phase can be executed concurrently. 

Thus for solving a two dimensional  N × N  graph problem a 

2-dimensional NDRange is required to be created .Block size 

in a graph is chosen as  √s × √s  , where ′s ′ is the size of 

shared local memory of GPU. Thus if and when required the 

blocks in heavy reuse can be brought from global memory to 

local shared memory of the GPU to reduce memory latency. 

Thus for solving a  N × N  graph problem a two dimensional 

NDRange is formed where there are  √s × √s   work-items 

per work-group. The number of work-groups in each 

dimension depends on the number of sub-matrices involved 

in a particular phase. Fig.16 outlines the algorithm for host 

program. Fig.17, Fig.18 and Fig.19 outlines the algorithm for 

Phase-1, Phase-2 and Phase-3 kernels respectively.  

ALGORITHM FOR HOST PROGRAM  IMPLEMENTING 

PARALLEL BLOCKED APPROACH 

1    /* Divide the graph ‟M‟ into  𝑁 √𝑠  zones having 

size  √𝑠 × √𝑠  

2   BLOCKSIZE = √𝑠; 

3     for k = 1 to  𝑛 √𝑠  do 

4  // Phase1 

5        //Set a two Dimensional Global Work group size √𝑠 ×

√𝑠    

6 globalWorkSize_p1[2] = {BLOCKSIZE , 

BLOCKSIZE}; 

7       //Set a two Dimensional Local Work group size √𝑠 ×

√𝑠   

8 localWorkSize_p1[2] = {BLOCKSIZE, 

BLOCKSIZE}; 

9     /* Invoke Phase1 kernel “Kernel_PH1”with given 

global and       10    local work group sizes and argument 

value „k‟ that decides the  11     portion of the matrix in 

global/shared local memory where   

12    instance of this kernel is executed by  work items 

concurrently* 

13  Phase1_Kernel (kernel_PH1,globalWorkSize_p1, 

14 localWorkSize_p1, &k); 

  //Phase2 

15     /* Set a two Dimensional Global Work group  

16    size  2√𝑠 ×  (𝑁 √𝑠) − 1 √𝑠  */   

17 globalWorkSize_p2[2]; 

18 globalWorkSize_p2[0] =  𝑁 − 𝐵𝐿𝑂𝐶𝐾𝑆𝐼𝑍𝐸  

19 globalWorkSize_p2[1] = 2*BLOCKSIZE; 

20    //Set a two Dimensional Local Work group size √𝑠 ×

√𝑠  

21 localWorkSize_p2[2] = {BLOCKSIZE, 

BLOCKSIZE}; 

22 Phase2_Kernel (kernel_PH2, globalWorkSize_p2, 

23 localWorkSize_p2, &k); 

//Phase3 

24     /* Set a two Dimensional Global Work group  

25    size   ×  (𝑁 √𝑠) − 1 √𝑠 ×  (𝑁 √𝑠) − 1 √𝑠  */ 

  

26 globalWorkSize_p3[2]; 

27 globalWorkSize_p3[0] =  𝑛 − 𝐵𝐿𝑂𝐶𝐾𝑆𝐼𝑍𝐸 ; 

28 globalWorkSize_p3[1] =  𝑛 − 𝐵𝐿𝑂𝐶𝐾𝑆𝐼𝑍𝐸 ; 

29    //Set a two Dimensional Local Work group size √𝑠 ×

√𝑠  

30 localWorkSize_p3[2] = {BLOCKSIZE, 

BLOCKSIZE}; 

31 Phase3_Kernel (kernel_PH3, globalWorkSize_p2, 

32 localWorkSize_p2, &k); 

33     end for 

 

Fig.16 Pseudocode for host program implementing 

OpenCL Blocked Parallel Approach. 

   

 Phase1_Kernel (globalWorkSize_p1, 
localWorkSize_p1, pblock ) 

1    /* kernel function for phase1, uses FW to solve APSP  

2    “adjMbuff ”stores adjacency matrix in device global 

memory*/ 

3    kernel_PH1( adjMbuff,  pblock) 

4          { 

5         //local thread id 

6         int lxid = get_local_id(0); 
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7         int lyid = get_local_id(1); 

8         // Calculates the offset of elements in Global memory 

9          int offset =pblock*BLOCKSIZE*N + pblock 

*BLOCKSIZE; 

10       // Reserve  √𝑠 × √𝑠 space in local shared memory 

11     __local float Ms[BLOCKSIZE][BLOCKSIZE]; 

12      // Transfer submatrix into local shared memory 

13 Ms[lyid][lxid] = adjMbuff[offset + lyid*N + lxid]; 

14 barrier( ); 

15 for(int k=0; k<BLOCKSIZE; k++) 

16 { 

17 float tempweight = combine(Ms[lyid][k], 

Ms[k][lxid]); 

18  if(tempweight < Ms[lyid][lxid]) 

19  { 

20   Ms[lyid][lxid] = tempweight;  

21  } 

22  barrier( ); 

23 } 

24     /* Transferring sub-matrix from local shared memory 

back to  

25   global memory*/ 

26 adjMbuff[offset + lyid*N + lxid] = Ms[lyid][lxid]; 

27 barrier( ); 

28      } 

 Fig.17 Kernel for Phase 1 

Phase2_Kernel (globalWorkSize_p1, 
localWorkSize_p1, pblock ) 

1     //kerenl function for phase2, “adjMbuff ”stores 

adjacency matrix 2     in device global memory*/ 

3    Kernel_PH2(  adjMbuff, pblock) 

4 { 

5 // global thread_ID 

6 int bxid = get_group_id(0); 

7 int byid = get_group_id(1); 

8 //local thraed id 

9 int lxid = get_local_id(0); 

10 int lyid = get_local_id(1); 

11 /* Reserve local shared memory for primary and 

current  

12     blocks*/ 

13 __local float Ps[BLOCKSIZE][BLOCKSIZE];  

14 __local float Cs[BLOCK_SIZE][BLOCK_SIZE];  

15 // variable to skip primary block 

16 skip = (bxid < pblock) ? 0 : 1;  

17 if(byid == 0) 

18       { 

19 // Transferring blocks to local shared memory 

20 Ps[lyid][lxid] = adjMbuff [pblock*BLOCKSIZE*N 

+        21             pblock*BLOCKSIZE + lyid*N + lxid]; 

22 Cs[lyid][lxid] = adjMbuff[pblock*BLOCKSIZE*N 

+               23            (bxid+skip)*BLOCKSIZE + lyid*N + 

lxid]; 

24 barrier( ); 

25 for(int k=0; k<BLOCKSIZE; k++) 

26 { 

27 float tempweight = combine(Ps[lyid][k], 

Cs[k][lxid]); 

28 if(tempweight < Cs[lyid][lxid]) 

29 Cs[lyid][lxid] = tempweight; 

30 barrier( ); 

31 } 

32 /* Transferring current matrix back from local 

shared         33            memory to global memory*/ 

34 adjMbuff [ pblock*BLOCK_SIZE*N +                                 

35           (bxid+skip)*BLOCK_SIZE + lyid*N + lxid] =  

36 Cs[lyid][lxid]; 

37 barrier( ); 

38         } 

39 else 

40 { 

41 // Transferring blocks to local shared memory 

42 Ps[lyid][lxid] = adjMbuff [pblock*BLOCKSIZE*N 

+  

43 pblock*BLOCK_SIZE + lyid*N + lxid]; 

44 Cs[lyid][lxid] = 

adjMbuff[(bxid+skip)*BLOCKSIZE*N + 45

 pblock*BLOCK_SIZE + lyid*N + lxid]; 

46 barrier( ); 

47 for(int k=0; k<BLOCKSIZE; k++) 

48 { 

49 float tempweight = combine(Cs[lyid][k], 

Ps[k][lxid]); 

50 if(tempweight < Cs[lyid][lxid]) 

51 Cs[lyid][lxid] = tempweight; 

52 barrier(CLK_LOCAL_MEM_FENCE); 

53 } 

54 /* Transferring current matrix back from local 

shared  

55  memory to global memory*/         

56 adjMbuff[(bxid+skip)*BLOCK_SIZE*N +  
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57 pblock*BLOCK_SIZE + lyid*N + lxid] = 

Cs[lyid][lxid]; 

58 barrier( ); 

59 } 

60 } 

 

 Fig.18 Kernel for Phase 2 

Phase3_Kernel (globalWorkSize_p1, 
localWorkSize_p1, pblock ) 

1      //kerenl function for phase2, “adjMbuff ”stores 

adjacency  

2 matrix      in device global memory*/ 

3 Kernel_PH3( adjMbuff, pblock) 

4 { 

5 //block id 

6 int bxid = get_group_id(0); 

7 int byid = get_group_id(1); 

8 //local thraed id 

9 int lxid = get_local_id(0); 

10 int lyid = get_local_id(1); 

11 // Reserve space in local shared memory  

12 //current block 

13 __local float Cs[BLOCKSIZE][BLOCKSIZE];  

14 //row block  

15 __local float ROWs[BLOCKSIZE][BLOCKSIZE];  

16 //column block 

17 __local float COLs[BLOCKSIZE][BLOCKSIZE];  

18 // variable to skip primary block in x dimension 

19  skipx = (bxid < pblock) ? 0 : 1;  

20 // variable to skip primary block in y dimension 

21 skipy = (byid < pblock) ? 0 : 1;  

22 Cs[lyid][lxid]  = 

adjMbuff[(byid+skipy)*BLOCKSIZE*N 23 + 

(bxid+skipx)*BLOCK_SIZE + lyid*N + lxid]; 

24 COLs[lyid][lxid] = 

adjMbuff[pblock*BLOCK_SIZE*N + 25

 (bxid+skipx)*BLOCK_SIZE + lyid*N + lxid]; 

26

 ROWs[lyid][lxid]=adjMbuff[(byid+skipy)*BLOCK

SIZE*N 27 + pblock*BLOCK_SIZE + lyid*N + 

lxid]; 

28 barrier( ); 

29 for(int k=0; k<BLOCK_SIZE; k++) 

30 { 

31 float tempweight = combine(ROWs[lyid][k],  

32 COLs[k][lxid]); 

33 if(tempweight < Cs[lyid][lxid]) 

34 Cs[lyid][lxid] = tempweight; 

35 barrier( ); 

36 } 

37 adjMbuff[(byid+skipy)*BLOCK_SIZE*N +  

38 (bxid+skipx)*BLOCK_SIZE + lyid*N + lxid] =  

39 Cs[lyid][lxid]; 

40 barrier( ); 

41 } 

 

Fig.19 Kernel for Phase 3 

5. EXPERIMENTAL RESULTS 
We have tested OpenCL parallel blocked implementation on 

various GPUs and Intel CPU. Details of devices on which 

tests are performed, are given as follows: 

 AMD Radeon HD 6450(GPU):  2 Compute units, 

625 MHz clock, 2048MB Global Mem., 32KB 

Local Mem., 256 work group size on a system 

having Intel Core i5 CPU 650 @ 3.2 GHz and 

2048MB RAM with AMD APP SDK v2.8. 

 NVIDIA GeForce GT 630M (GPU): 2 Compute 

units, 950 MHz clock, 1023MB Global Mem., 48 

KB Local Mem., 1024 work group size on a system 

having Intel Core i5 CPU-3210M @ 2.5GHz and 

4096MB RAM with NVIDIA GPU computing 

SDK 4.2. 

 AMD Radeon HD 6850 (GPU): 12 Compute units, 

860 MHz clock, 1024MB Global Mem., 32KB 

Local Mem., 256 work group size on a system 

having Intel Core i3 CPU 530 @ 2.93 GHz and 

4096MB RAM with AMD APP SDK v 2.8. 

 Intel Core i3-2310M (CPU): 4 Compute units, 

2095 MHz clock, 2048MB Global Mem., 32KB 

Local Mem., 1024 work group size with AMD 

APP SDK v2.8. 

Results of the OpenCL parallel blocked implementation is 

compared with sequential Floyd Warshall on Intel Core i3-

2310M (CPU): 2095 MHz clock, 2 GB RAM. We have also 

compared the results of OpenCL parallel blocked 

implementation with OpenCL parallel Floyd Warshall and 

OpenCL parallel R-Kleene [26] on various GPUs.  

We have tested our results on various randomly generated 

dense graphs having edges of the order of О(n2). Random 

weight values between 1 to 10 are assigned to edges of graph. 

All results of parallel implementation for APSP problem are 

verified with FW sequential implementation on host CPU. 

For measuring time, we have considered total kernel 

execution time. 

5.1 Results for OpenCL Parallel Blocked 

APSP Vs FW Iterative Sequential 
Figure 20 shows, log plot of execution time in milliseconds 

and no. of nodes in a graph for OpenCL parallel blocked 

APSP implementation on various devices and also for FW 

sequential implementation. Parallel blocked APSP (BAPSP 

OCL DEVICE) out performs iterative sequential FW on all 
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devices. 

 

Fig.20 Execution time of OpenCL Parallel Blocked APSP 

and FW Iterative Sequential. 

Figure 21 shows speedup for OpenCL parallel blocked APSP 

(OCL DEVICE) with respect to OpenCL parallel FW. It is 

evident from the figure that parallel blocked approach using 

OpenCL is up to 320x faster over AMD 6850 GPU, up to 

200x faster over NVIDIA 630 GPU, up to 120x faster over 

AMD 6450 GPU and approx 10x faster over Intel CPU. 

In figure 22 a comparison between OpenCL parallel blocked 

implementation Vs OpenCL parallel RKleene 

implementation over NVIDIA 630 GPU is presented. In 

figure 23 a comparison between OpenCL parallel blocked 

implementation Vs OpenCL parallel RKleene 

implementation over AMD 6850 GPU is presented. OpenCL 

parallel blocked APSP outperforms OpenCL recursive 

approach in both the cases due to explicit data reuse in phase-

2 and phase-3. The sub matrices in heavy use can be 

explicitly moved to local shared memory of GPU and thereby 

improving memory latency. Also high level of parallelism is 

also involved in each phase. We have implemented OpenCL 

approach for parallel FW and parallel R-Kleene as outlined 

in [26]. 

 

Fig.21. Speedup for OpeCL Parallel Blocked APSP w.r.t. 

OpenCL Parallel FW Approach[26]  

 

Fig.22. Execution time for OpenCL parallel blocked 

approach against OpenCL Parallel RKlene’s approach 

on NVIDIA 630 GPU. 

 

Fig.23. Execution time for OpenCL parallel blocked 

approach against OpenCL Parallel RKlene’s approach 

on AMD 6850 GPU. 

6. CONCLUSIONS AND FUTURE 

WORK 
OpenCL blocked parallel implementation showed a 

significant speedup up to 320x on AMD 6850 GPU and up to 

200x on NVIDIA 630 GPU, as compared to OpenCL parallel 

FW. This speedup is attributed to the fact that although high 

level of parallelism is involved in FW yet it is poor in data 

reuse. Blocked parallel approach outperforms OpenCL 

parallel recursive Kleene‟s approach as evident from fig. 22 

and fig.23. In Recursive Kleene‟s approach (RKleene) there 

is high level of parallelism and data reuse but this data reuse 

is due to intrinsic characteristic of the recursive program. It is 

attributed to the program and not explicitly controlled by 

programmer. Only until the matrix is divided into sufficient 

smallest size (base case), shared memory cannot be used 

explicitly at each recursive call, but in case of parallel 

blocked approach there is high level of parallelism and high 

data reuse during phase-2 and phase-3. Block size is 

programmer dependent and can be chosen in a way so that 

sub-matrix can be accommodated in local shared memory. 

Thus sub matrices in heavy use can be moved to local shared 

memory and therefore considerable speedup can be gained. 

In all our implementations so far only single OpenCL device 

CPU or GPU (but not both) is used for massive parallelism. 

OpenCL as a programming language can exploit the 

architectural benefits of heterogeneous and vendor 

independent computational devices. It would be interesting to 

develop an OpenCL approach that utilizes all such 

components by offloading an appropriate share of workload 

to these computational components. 
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