
International Journal of Computer Applications (0975 – 8887)

Volume 111 – No 15, February 2015

8

OpenCL Parallel Blocked Approach for Solving All Pairs

Shortest Path Problem on GPU

Manish Pandey
Department of Computer Science Engineering
Maulana Azad National Institute of Technology

Bhopal, India

Sanjay Sharma
Department of Mathematics and Computer

Applications
Maulana Azad National Institute of Technology

Bhopal, India

ABSTRACT
All-Pairs Shortest Path Problem (APSP) finds a large number

of practical applications in real world. This paper presents a

blocked parallel approach for APSP using an open standard

framework OpenCL, which provides development

environment for utilizing heterogeneous computing elements

of computer system and to take advantage of massive parallel

capabilities of multi-core processors such as graphics

processing unit (GPU) and CPU. This blocked parallel

approach exploits the local shared memory of GPU, thereby

enhancing the overall performance. The proposed solution is

for directed and dense graphs with no negative cycles and is

based on blocked Floyd Warshall (FW) and Kleene‟s

algorithm. Like Floyd Warshall this approach is also in-place

and therefore requires no extra memory.

General Terms
Heterogeneous Computing, Many core processing, GPU

Computing, High Performance Computing.

Keywords
OpenCL, Graphics processing Unit, All Pairs Shortest Path,

Floyd Warshall

1. INTRODUCTION
The all-pairs shortest path (APSP) targets to find the shortest

path between every pair of vertices in a directed/undirected

weighted graph, where cost is simply the sum of weights of

edges composing the path. APSP may be solved by running a

single source shortest path (SSSP) algorithm for all n vertices

or by using APSP algorithms like Johnson algorithm or

Floyd-Warshall (FW). APSP finds applications in various

areas like geographical information system, intelligent

transportation systems, IP routing [7], VLSI design etc.

A comparison of time complexities of different algorithms

for SSSP and APSP is compared below. . In most of the

cases an instance of the problem is represented in the form of

directed weighted graph stored in the form of cost adjacency

matrix of size [n × n]

Consider a weighted graph G (V, E) stored in the form of

weight adjacency matrix represented by a W where wij ϵ W

for all i, j ϵ E. Each edge has an associated weight. Negative

weigh cycles are not allowed

wij =

0 if i = j

weight of edge i, j if i ≠ j and i, j ϵ E

infinity if i ≠ j and i, j ϵ E

Although the theoretical time complexity of these well

known algorithms is bounded by polynomial time, yet some

applications require size of input data to be very large and

therefore computational complexity for these well known

algorithms also grow beyond practical limits.

GPU is not only a graphics engine to perform graphics

acceleration tasks like gaming, rendering, image processing

etc. In recent years GPUs spawned some new areas of

research and programmability thus it is now referred to as

general purpose GPU (GPGPU)[20][21]. Now various GPU

implementations are proposed and GPU has become a cost

effective platform for high performance computing (HPC).

OpenCL provides a development environment for utilizing

heterogeneous platforms and to take advantage of graphics

processing unit (GPU).

Contribution of this paper: In this paper we have proposed

an OpenCL blocked parallel approach for APSP based on

Kleene‟s algorithm and compared the results with our

previous implementation which involve parallel

implementation of FW and parallel implementation of R-

kleene. R-kleene works by recursively partitioning the matrix

into sub-matrices and applies the computation on those sub-

matrices. And in blocked approach aim is to utilize the GPU

cache and shared memory. We have also used vectorization

technique to improve blocked approach as it involves

matrices.

Organization of the paper: Section 2 describes related

work in the field of APSP. Section 3 comprises of OpenCL

framework and different OpenCL models. Different parallel

approaches to APSP based on Kleene‟s and Floyd-Warshall

algorithm are explained in section 4 also an OpenCL parallel

algorithms and tiled approach using Matrix-Multiply kernel

is also explained. Experimental results are demonstrated in

section 5. Section 6 presents conclusion and future work.

2. RELATED WORK
Parallel approaches for solving APSP using single source

shortest path algorithm is discussed in [1][14] or by using

parallel versions of APSP algorithms [4][18] or Johnson‟s

Algorithm[21] The algorithms presented in these papers are

in-place and are also capable of providing high level of

parallelism but these algorithms cannot fully exploit

Algorithm Problem Time Complexity

Dijkstra SSSP О n2

Floyd–Warshall APSP О n3

Johnson APSP О n2logn + ne

International Journal of Computer Applications (0975 – 8887)

Volume 111 – No 15, February 2015

9

architectural capabilities of GPU due to absence of high data

reuse. Many algorithms have been proposed for solving

APSP problem using Floyd-Warshall (FW) yet there is large

scope in enhancing its performance. A divide and conquer

approach using R-Kleene‟s algorithm have been proposed for

dense graphs for APSP in [12]. This approach is in-place and

recursive in nature. Challanges in parallel graph processing is

discussed in[3]

Our computations involve matrices and therefore some fast

matrix multiplication algorithms such as [19][6] are also our

area of concern. As CPU implementations have several

limitations of performance so some cache optimization

techniques and cache friendly implementations are given in

[2]and [5] using recursion for dense graphs. In [10] to reduce

TLB misses blocked data layout and mortan layout are given

for FW. In [2] block size is adjusted according to the cache

parameters and matrix size to improve performance and to

reduce cache misses. Our work is similar to the work by

Venkataraman et. al [17] but unlike their work we have

proposed OpenCL based implementation involving high

level of parallelism, data reuse that fully exploits

architectural benefits of GPU as a low cost computational

resource.

GPU implementation of FW for smaller graphs is given in

[8] and for larger graphs shared memory and cache efficient

GPU implementations for APSP using FW are given in

[16][9].To further enhance the performance some

optimization techniques like tiling, loop unrolling and SIMD

vectorization can be used.

3. OPENCL FRAMEWORK
OpenCL is an open standard framework for parallel

programming composed of several computational resources

(CPU, GPU and other processors). Thus one can achieve

considerable acceleration in parallel processing as it utilizes

all the computational resources. The main advantage with

OpenCL is its portability as it provides cross vendor software

portability [25].

OpenCL framework [15][23][24] comprises of following

models:

3.1 OpenCL Platform Model
High level representation of heterogeneous system is

demonstrated by Platform model as shown in Fig. 1. It

consists of a host and OpenCL device. A host is any

computer with a CPU and standard operating system.

OpenCL device can be GPU, DSP or a multi-core CPU [25].

OpenCL device is collection of compute units which is

further composed of one or more processing elements.

Fig.1 OpenCL Platform Model [23]

Processing elements within a compute unit will execute same

instruction sequence while compute units can execute

independently. Different GPU vendors follow different

architectures but all follow a similar design pattern which is

illustrated in Fig. 2.

Fig.2 AMD GPU Compute Device [23]

3.2 OpenCL Execution Model
OpenCL execution model define how the kernel execution

takes place and how kernel interact with host and with other

kernels and it comprises of two components: kernels and host

program. Kernels are further categorized into two types:

OpenCL kernels and Native Kernels. Kernels execute on

OpenCL devices and host execute on CPU (host system)

Workgroups evenly divide the index space of NDRange in

each dimension. And the index space within a workgroup is

referred as local index space which is defined for each work

item. Size of index space in each dimension is indicated with

uppercase and ID is indicated using lowercase. See figure 3

A work-item can be uniquely identified by its global

ID gx , gy or by the combination of its local ID lx , ly and

work group ID wx , wy as shown in relation below:

gx = wx ∗ Lx + lx (1)

gy = wy ∗ Ly + ly (2)

 Fig.3 Relation between global ID and local ID, work-

group ID in 2-D index space [23]

In fig.3, NDRange index space of size Gx by Gy 12 ∗ 12 is

divided into 9 work-groups, each having size 3 ∗ 3 . The

shaded block has a global ID of gx , gy = 6,5 and a work-

group plus local ID of wx , wy = 1,1 and lx , ly =

 2,1 .

3.3 OpenCL Memory Model
OpenCL memory model defines different regions of memory

and how they are related to platform and different execution

model. This is shown in Fig. 4. There are generally five

different regions of memory:

International Journal of Computer Applications (0975 – 8887)

Volume 111 – No 15, February 2015

10

Host memory: This memory is limited to host only and

OpenCL only defines the interaction of host memory with

OpenCL objects.

Global memory: All work items in all work groups have

read/write access to this region of memory and can be

allocated only by the host during the runtime.

Constant memory: Region of memory which stays constant

throughout the execution of kernel. Work-items have read

only access to this region.

Local memory: Region of memory is local to work group. It

can be implemented dedicatedly on OpenCL device or may

be mapped on to regions of Global memory.

Private memory: Region that is private for work-item.

Fig.4 OpenCL Memory Model [23]

3.4 OpenCL Programming Model
A programmer can freely combine any of the programming

models available in OpenCL. OpenCL is basically defined

with two programming models: data parallel and task

parallel model. However hybrid model can also be used.

4. OPENCL IMPLEMENTATION FOR

SOLVING APSP PROBLEM
In the following sub-sections we owe to present an OpenCL

blocked approach based on Kleene‟s algorithm [11], that was

originally used for finding transitive closure and can be

extended to shortest path problems also. The work embodied

in the following sections is compared with OpenCL

implementation of Floyd Warshall and Recursive Kleene‟s

algorithms [26] and therefore OpenCL Floyd Warshall is our

starting point

4.1 APSP Problem
APSP is the most fundamental problem in graph theory and

our solution will follow a well-known algorithm called

Floyd-Warshall (FW)[21]. FW sequential implementation

uses three nested loops (fig.5).

Consider a weighted graph G (V, E) stored using adjacency

matrix representation by a weight matrix W where wij ϵ W

for all < 𝑖 , 𝑗 > ϵ E.

wij =

0 if i = j

weight of edge i, j if i ≠ j and i, j ϵ E

infinity if i ≠ j and i, j ϵ E

ALGORITHM FLOYD-WARSHALL(W)

1 n← rows (W)

2 𝐷(0)← W

3 for k = 1 to n do

4 for i = 1 to n do

5 for j = 1 to n do

6 𝑑𝑖𝑗
(𝑘)

← 𝑚𝑖𝑛(𝑑𝑖𝑗
 𝑘−1

, 𝑑𝑖𝑘
 𝑘−1

+ 𝑑𝑘𝑗
(𝑘−1)

)

7 end for

8 end for

9 end for

Fig.5 FW Algorithm pseudo code

4.2 OpenCL Parallel Implementation of

Floyd-Warshall
Parallel implementation of FW algorithm requires N2 work

items to be created, where N is the total number of nodes. So,

each work item (i, j) finds the shortest path between nodes i

and j. In parallel implementation a 2-D kernel FW_KERNEL

(A, k) is designed as shown in Fig. 7

Pseudo code for OpenCL parallel FW OpenCL_Parallel_FW

(A, n) is shown in Fig.6, which calls kernel FW_KERNEL

(A, k)

ALGORITHM OPENCL_PARALLEL_FW(A, N)

1 for k = 1 to n do

2 for all elements in matrix A, where 1≤ i , j ≤ n in

parallel do

3 call FW_KERNEL (A, k)

4 end for

5 end for

 Fig.6 Pseudo code for OpenCL parallel FW algorithm

KERNEL FW_KERNEL(A, K)

1 (i, j) ← getThreadID

2 A[i, j] ← min(A[i, j], A[i, k] + A[k, j])

Fig.7 Pseudo code for FW kernel in OpenCL

In each kth iteration of outermost for loop, n2 work-items

(threads) invokes kernel that computes shortest path between

every possible pair of vertices i, j going through no vertex

higher than vertex k , each using its thread_id i, j , in

parallel, where 1 ≤ i , j ≤ n. In final iteration when k = n is

completed, output matrix A will hold shortest path between
every possible pair of vertices i, j going through no more

vertex higher than vertex n that is the shortest distance

between all-pairs of nodes.

4.3 Blocked approach to APSP problem

using kleene’s algorithm
The blocked approach for solving APSP is inspired by

Kleene‟s algorithm [11] that was originally used for finding

transitive closure for computing the existence of path

between every possible pair of vertices i, j and is also

applicable for shortest path problem in a closed semi ring.

Algorithm is as shown in Fig.8

Kleene‟s algorithm divides the nodes of the graph into n √s

zones as shown in Fig. 9. Nodes 1 to √s will be in zone 1,

nodes √s +1 through 2√s will be in zone 2, and so on. Thus

International Journal of Computer Applications (0975 – 8887)

Volume 111 – No 15, February 2015

11

adjacency matrix corresponding to the graph is divided into

n2 s sub matrices each having size √s × √s. A sub matrix

Mij refers all the edge from nodes in zone i to nodes in zone

j. For √s = 4, nodes 1to 4 will be in zone 1, nodes 5 to 6 will

be in zone 2 and so on nodes n - √s + 1 to n will be in zone

n √s (Fig. 9)

ALGORITHM KLEENE’S_APSP (M, N, S)

1 /* Divide the graph ‟M‟ into 𝑛 √𝑠 zones */

2 for k = 1 to 𝑛 √𝑠 do

3 /* 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑀𝑘,𝑘
∗ , APSP solution using FW for 𝑀𝑘 ,𝑘*/

4 𝑀𝑘 ,𝑘= 𝑀𝑘 ,𝑘
∗

5 for i = 1 to 𝑛 √𝑠 do

6 for j = 1 to 𝑛 √𝑠 do

7 𝑀𝑖,𝑗=𝑀𝑖 ,𝑗 + 𝑀𝑖,𝑘 × 𝑀𝑘 ,𝑘 ×

𝑀𝑘 ,𝑗

8 end for

9 end for

10 end for

 Fig.8 Kleene’s Algorithm

Fig.9 A n×n matrix having 𝐧 √𝐬 Zones, where each

zone is size √s × √s

Each entry eij ∈ Mij refers to the shortest path from every

possible pair of vertex from zone „i‟ to zone „j‟ possibly

going through some vertex in zone „k‟ and is computed using

 eij += eik
n
k=1 ∗ ekj . Here operator „+‟ refers to „min‟ and

operator „*‟ refers to „+‟

Fig.10 Shortest path from vertex ‘x’ to vertex ‘y’ through

vertex ‘z’ such that x ∈ Zone I, vertex y ∈ Zone j, z ∈

Zone k

For n = 16 and √s = 4 Kleene‟s algorithms in fig.8 unrolls to

following steps in the first iteration of outermost loop for k =

1.

Step 1 M11 = M11
∗

Step 2 M11 += M11 ∗ M11 ∗ M11

Step 3 M12 += M11 ∗ M11 ∗ M12

Step 4 M13 += M11 ∗ M11 ∗ M13

Step 5 M14 += M11 ∗ M11 ∗ M14

Step 6 M21 += M21 ∗ M11 ∗ M11

Step 7 M22 += M21 ∗ M11 ∗ M12

Step 8 M23 += M21 ∗ M11 ∗ M13

Step 9 M24 += M21 ∗ M11 ∗ M14

Step 10 M31 += M31 ∗ M11 ∗ M11

Step 11 M32 += M31 ∗ M11 ∗ M12

Step 12 M33 += M31 ∗ M11 ∗ M13

Step 13 M34 += M31 ∗ M11 ∗ M14

Step 14 M41 += M41 ∗ M11 ∗ M11

Step 15 M42 += M41 ∗ M11 ∗ M12

Step 16 M43 += M41 ∗ M11 ∗ M13

Step 17 M44 += M41 ∗ M11 ∗ M14

Fig.11 Loop unrolling for k = 1, n = 16 and √s = 4 in

Kleene’s Algorithm

Following simplifications can be performed on Kleene‟s

Algorithm of fig. 8

I. For iterations when i == j == k , the Line 7 of

Kleene‟s algorithm (fig.8) is equivalent to Mk,k= Mk,k + Mk,k

× Mk,k × Mk,k (eq. Step 2 in fig.11). This step calculates the

shortest path from every possible vertex from zone „k‟ to

zone „k‟ (itself) going through zone „k‟ (fig.10). Because

shortest path between every possible pair of vertex in zone

„k‟ going through no zone higher than zone „k‟ has already

been computed in previous step using Mk,k= Mk,k
∗ (eq. Step 1

in fig. 11), this statement is redundant and therefore can be

eliminated.

 Zone

1

Zone

2

Zone

3

Zone
𝒏
√𝒔

1 2 3 4 5 6 7 8 9

.

.

.

n

Z
o

n
e

1

1

𝑴𝟏,𝟏 𝑴𝟏,𝟐 𝑴𝟏,𝟑 𝑴𝟏,𝒏 √𝒔
2

3

4

Z
o

n
e

2

5

𝑴𝟐,𝟏 𝑴𝟐𝟐 𝑴𝟐,𝟑 𝑴𝟐 , 𝒏 √𝒔
6

7

8

Z
o

n
e

3

9

𝑴𝟑,𝟏 𝑴𝟑,𝟐 𝑴𝟑,𝟑 𝑴𝟑 , 𝒏 √𝒔
.

.

.

Z
o

n
e

𝒏
√
𝒔

𝑴𝒏 √𝒔 ,𝟏 𝑴𝒏 √𝒔 ,𝟐 𝑴𝒏 √𝒔 ,𝟑 𝑴𝒏 √𝒔 ,𝒏 √𝒔

.

n

International Journal of Computer Applications (0975 – 8887)

Volume 111 – No 15, February 2015

12

II. For iterations when i == k , Line 7 of Kleene‟s

algorithm is equivalent to Mi,j=Mi,j + Mk,k × Mk,k × Mk,j.

This step can be simplified to Mi,j=Mi,j + Mk,k × Mk,j using

 Mk,k × Mk,k = Mk,k (eq. Step 3 to 5 in Fig. 11)

III. For iterations when j == k , Line 7 of Kleene‟s

algorithm is equivalent to Mi,j=Mi,j + Mi,k × Mk,k × Mk,k .

This step can be simplified to Mi,j=Mi,j + Mi,k × Mk,k using

 Mk,k × Mk,k = Mk,k (eq. Step 6, 10 and 14 in Fig. 11)

IV For iterations when i ≠ j ≠ k , the Line 7 of Kleene‟s

algorithm (fig.8) is equivalent to Mi,j=Mi,j + Mi,k × Mk,j (eq.

Steps 7, 8, 9, 11, 12 and 13) using either Mi,k = Mi,k × Mk,k

or Mk,j = Mk,k × Mk,j that are already computed (eq. Step 6

or Step 3)

Performing above simplifications we yield the following

modified Kleene‟s algorithm as shown in fig. 12

ALGORITHM MODIFIED_KLEENE’S_APSP_VER1(M,

N, S)

1 /* Divide the graph ‟M‟ into 𝑛 √𝑠 zones */

2 for k = 1 to 𝑛 √𝑠 do

3 /* 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑀𝑘,𝑘
∗ , APSP solution using FW for 𝑀𝑘 ,𝑘*/

4 𝑀𝑘 ,𝑘= 𝑀𝑘 ,𝑘
∗

5 for i = 1 to 𝑛 √𝑠 do

6 for j = 1 to 𝑛 √𝑠 do

7 if((i == j) &&(j ≠ k))

8 𝑀𝑖,𝑗=𝑀𝑖 ,𝑗 + 𝑀𝑘 ,𝑘 × 𝑀𝑘 ,𝑗

9 else

10 if((i ≠ j) &&(j== k))

11 𝑀𝑖,𝑗=𝑀𝑖 ,𝑗 + 𝑀𝑖,𝑘 × 𝑀𝑘 ,𝑘

12 else

13 𝑀𝑖,𝑗=𝑀𝑖 ,𝑗 + 𝑀𝑖,𝑘 × 𝑀𝑘 ,𝑗

14 end for

15 end for

16 end for

Fig.12 Modified Kleene’s Algorithm

For n = 16 and √s = 4 modified Kleene‟s algorithms in fig.12

unrolls to following steps (fig. 13) in the first iteration of

outermost loop for k = 1.

Step 1 𝑀11 = 𝑀11
∗

Step 2 𝑀12 += 𝑀11 ∗ 𝑀12

Step 3 𝑀13 += 𝑀11 ∗ 𝑀13

Step 4 𝑀14 += 𝑀11 ∗ 𝑀14

Step 5 𝑀21 += 𝑀21 ∗ 𝑀11

Step 6 𝑀22 += 𝑀21 ∗ 𝑀12

Step 7 𝑀23 += 𝑀21 ∗ 𝑀13

Step 8 𝑀24 += 𝑀21 ∗ 𝑀14

Step 9 𝑀31 += 𝑀31 ∗ 𝑀11

Step 10 𝑀32 += 𝑀31 ∗ 𝑀12

Step 11 𝑀33 += 𝑀31 ∗ 𝑀13

Step 12 𝑀34 += 𝑀31 ∗ 𝑀14

Step 13 𝑀41 += 𝑀41 ∗ 𝑀11

Step 14 M42 += M41 ∗ M12

Step 15 M43 += M41 ∗ M13

Step 16 M44 += M41 ∗ M14

Fig.13 Loop unrolling for k = 1, n = 16 and √s = 4 in

modified Kleene’s Algorithm of Fig.12

Following is the precedence graph for the steps in Fig 13

illustrating potential parallelism in modified Kleene‟s

Algorithm of fig.12

Fig.14 Precedence graph showing parallelism in the steps

of modified kleene’s algorithm for k = 1, n = 16, √s=4

Each iteration of the outermost for loop consists of three

phases that has to be executed sequentially but the set of

steps within each phase are independent and therefore can be

executed in parallel. Following is the algorithm that

incorporates above phases.

ALGORITHM MODIFIED_KLEENE’S_APSP_VER2(M,

N, S)

1 /* Divide the graph ‟M‟ into 𝑛 √𝑠 zones */

2 for k = 1 to 𝑛 √𝑠 do

3 /* 𝑃ℎ𝑎𝑠𝑒 𝐼*/

4 𝑀𝑘 ,𝑘= 𝑀𝑘 ,𝑘
∗

5 /* Phase II */

6 for i = 1 to 𝑛 √𝑠 such that (i ≠ k) do

7 𝑀𝑘 ,𝑖=𝑀𝑘 ,𝑖 + 𝑀𝑘 ,𝑘 × 𝑀𝑘,𝑖

8 𝑀𝑖,𝑘=𝑀𝑖,𝑘 + 𝑀𝑖,𝑘 × 𝑀𝑘 ,𝑘

9 end for

10 /*Phase III */

11 for i = 1 to 𝑛 √𝑠 such that (i ≠ k) do

International Journal of Computer Applications (0975 – 8887)

Volume 111 – No 15, February 2015

13

12 for j = 1 to 𝑛 √𝑠 such that (j ≠ k) do

13 𝑀𝑖,𝑗=𝑀𝑖 ,𝑗 + 𝑀𝑖 ,𝑘 × 𝑀𝑘 ,𝑗

14 end for

15 end for

16 end for

Fig.15 Three Phase Modified Kleene’s Algorithm

4.4 OpenCL Parallel Implementation of

three phase blocked algorithm
OpenCL implementation of blocked algorithm requires a host

program to be designed that will execute over CPU and

OpenCL kernels that will execute over OpenCL devices such
as CPU and or GPU and other compute devices as specified

in the host program. Each instance of the kernel can be

executed concurrently by all the work-item that belongs to

the same work group over single compute unit. All such

work groups can be executed concurrently over compute

units.

The algorithm outlined in fig. 15 requires n √s sequential

iterations of the outermost for loop. The outermost for loop

contains three phases that are required to be executed

sequentially, within each iteration. The set of matrix

operations within each phase can be executed concurrently.

Thus for solving a two dimensional N × N graph problem a

2-dimensional NDRange is required to be created .Block size

in a graph is chosen as √s × √s , where ′s ′ is the size of

shared local memory of GPU. Thus if and when required the

blocks in heavy reuse can be brought from global memory to

local shared memory of the GPU to reduce memory latency.

Thus for solving a N × N graph problem a two dimensional

NDRange is formed where there are √s × √s work-items

per work-group. The number of work-groups in each

dimension depends on the number of sub-matrices involved

in a particular phase. Fig.16 outlines the algorithm for host

program. Fig.17, Fig.18 and Fig.19 outlines the algorithm for

Phase-1, Phase-2 and Phase-3 kernels respectively.

ALGORITHM FOR HOST PROGRAM IMPLEMENTING

PARALLEL BLOCKED APPROACH

1 /* Divide the graph ‟M‟ into 𝑁 √𝑠 zones having

size √𝑠 × √𝑠

2 BLOCKSIZE = √𝑠;

3 for k = 1 to 𝑛 √𝑠 do

4 // Phase1

5 //Set a two Dimensional Global Work group size √𝑠 ×

√𝑠

6 globalWorkSize_p1[2] = {BLOCKSIZE ,

BLOCKSIZE};

7 //Set a two Dimensional Local Work group size √𝑠 ×

√𝑠

8 localWorkSize_p1[2] = {BLOCKSIZE,

BLOCKSIZE};

9 /* Invoke Phase1 kernel “Kernel_PH1”with given

global and 10 local work group sizes and argument

value „k‟ that decides the 11 portion of the matrix in

global/shared local memory where

12 instance of this kernel is executed by work items

concurrently*

13 Phase1_Kernel (kernel_PH1,globalWorkSize_p1,

14 localWorkSize_p1, &k);

 //Phase2

15 /* Set a two Dimensional Global Work group

16 size 2√𝑠 × (𝑁 √𝑠) − 1 √𝑠 */

17 globalWorkSize_p2[2];

18 globalWorkSize_p2[0] = 𝑁 − 𝐵𝐿𝑂𝐶𝐾𝑆𝐼𝑍𝐸

19 globalWorkSize_p2[1] = 2*BLOCKSIZE;

20 //Set a two Dimensional Local Work group size √𝑠 ×

√𝑠

21 localWorkSize_p2[2] = {BLOCKSIZE,

BLOCKSIZE};

22 Phase2_Kernel (kernel_PH2, globalWorkSize_p2,

23 localWorkSize_p2, &k);

//Phase3

24 /* Set a two Dimensional Global Work group

25 size × (𝑁 √𝑠) − 1 √𝑠 × (𝑁 √𝑠) − 1 √𝑠 */

26 globalWorkSize_p3[2];

27 globalWorkSize_p3[0] = 𝑛 − 𝐵𝐿𝑂𝐶𝐾𝑆𝐼𝑍𝐸 ;

28 globalWorkSize_p3[1] = 𝑛 − 𝐵𝐿𝑂𝐶𝐾𝑆𝐼𝑍𝐸 ;

29 //Set a two Dimensional Local Work group size √𝑠 ×

√𝑠

30 localWorkSize_p3[2] = {BLOCKSIZE,

BLOCKSIZE};

31 Phase3_Kernel (kernel_PH3, globalWorkSize_p2,

32 localWorkSize_p2, &k);

33 end for

Fig.16 Pseudocode for host program implementing

OpenCL Blocked Parallel Approach.

 Phase1_Kernel (globalWorkSize_p1,
localWorkSize_p1, pblock)

1 /* kernel function for phase1, uses FW to solve APSP

2 “adjMbuff ”stores adjacency matrix in device global

memory*/

3 kernel_PH1(adjMbuff, pblock)

4 {

5 //local thread id

6 int lxid = get_local_id(0);

International Journal of Computer Applications (0975 – 8887)

Volume 111 – No 15, February 2015

14

7 int lyid = get_local_id(1);

8 // Calculates the offset of elements in Global memory

9 int offset =pblock*BLOCKSIZE*N + pblock

*BLOCKSIZE;

10 // Reserve √𝑠 × √𝑠 space in local shared memory

11 __local float Ms[BLOCKSIZE][BLOCKSIZE];

12 // Transfer submatrix into local shared memory

13 Ms[lyid][lxid] = adjMbuff[offset + lyid*N + lxid];

14 barrier();

15 for(int k=0; k<BLOCKSIZE; k++)

16 {

17 float tempweight = combine(Ms[lyid][k],

Ms[k][lxid]);

18 if(tempweight < Ms[lyid][lxid])

19 {

20 Ms[lyid][lxid] = tempweight;

21 }

22 barrier();

23 }

24 /* Transferring sub-matrix from local shared memory

back to

25 global memory*/

26 adjMbuff[offset + lyid*N + lxid] = Ms[lyid][lxid];

27 barrier();

28 }

 Fig.17 Kernel for Phase 1

Phase2_Kernel (globalWorkSize_p1,
localWorkSize_p1, pblock)

1 //kerenl function for phase2, “adjMbuff ”stores

adjacency matrix 2 in device global memory*/

3 Kernel_PH2(adjMbuff, pblock)

4 {

5 // global thread_ID

6 int bxid = get_group_id(0);

7 int byid = get_group_id(1);

8 //local thraed id

9 int lxid = get_local_id(0);

10 int lyid = get_local_id(1);

11 /* Reserve local shared memory for primary and

current

12 blocks*/

13 __local float Ps[BLOCKSIZE][BLOCKSIZE];

14 __local float Cs[BLOCK_SIZE][BLOCK_SIZE];

15 // variable to skip primary block

16 skip = (bxid < pblock) ? 0 : 1;

17 if(byid == 0)

18 {

19 // Transferring blocks to local shared memory

20 Ps[lyid][lxid] = adjMbuff [pblock*BLOCKSIZE*N

+ 21 pblock*BLOCKSIZE + lyid*N + lxid];

22 Cs[lyid][lxid] = adjMbuff[pblock*BLOCKSIZE*N

+ 23 (bxid+skip)*BLOCKSIZE + lyid*N +

lxid];

24 barrier();

25 for(int k=0; k<BLOCKSIZE; k++)

26 {

27 float tempweight = combine(Ps[lyid][k],

Cs[k][lxid]);

28 if(tempweight < Cs[lyid][lxid])

29 Cs[lyid][lxid] = tempweight;

30 barrier();

31 }

32 /* Transferring current matrix back from local

shared 33 memory to global memory*/

34 adjMbuff [pblock*BLOCK_SIZE*N +

35 (bxid+skip)*BLOCK_SIZE + lyid*N + lxid] =

36 Cs[lyid][lxid];

37 barrier();

38 }

39 else

40 {

41 // Transferring blocks to local shared memory

42 Ps[lyid][lxid] = adjMbuff [pblock*BLOCKSIZE*N

+

43 pblock*BLOCK_SIZE + lyid*N + lxid];

44 Cs[lyid][lxid] =

adjMbuff[(bxid+skip)*BLOCKSIZE*N + 45

 pblock*BLOCK_SIZE + lyid*N + lxid];

46 barrier();

47 for(int k=0; k<BLOCKSIZE; k++)

48 {

49 float tempweight = combine(Cs[lyid][k],

Ps[k][lxid]);

50 if(tempweight < Cs[lyid][lxid])

51 Cs[lyid][lxid] = tempweight;

52 barrier(CLK_LOCAL_MEM_FENCE);

53 }

54 /* Transferring current matrix back from local

shared

55 memory to global memory*/

56 adjMbuff[(bxid+skip)*BLOCK_SIZE*N +

International Journal of Computer Applications (0975 – 8887)

Volume 111 – No 15, February 2015

15

57 pblock*BLOCK_SIZE + lyid*N + lxid] =

Cs[lyid][lxid];

58 barrier();

59 }

60 }

 Fig.18 Kernel for Phase 2

Phase3_Kernel (globalWorkSize_p1,
localWorkSize_p1, pblock)

1 //kerenl function for phase2, “adjMbuff ”stores

adjacency

2 matrix in device global memory*/

3 Kernel_PH3(adjMbuff, pblock)

4 {

5 //block id

6 int bxid = get_group_id(0);

7 int byid = get_group_id(1);

8 //local thraed id

9 int lxid = get_local_id(0);

10 int lyid = get_local_id(1);

11 // Reserve space in local shared memory

12 //current block

13 __local float Cs[BLOCKSIZE][BLOCKSIZE];

14 //row block

15 __local float ROWs[BLOCKSIZE][BLOCKSIZE];

16 //column block

17 __local float COLs[BLOCKSIZE][BLOCKSIZE];

18 // variable to skip primary block in x dimension

19 skipx = (bxid < pblock) ? 0 : 1;

20 // variable to skip primary block in y dimension

21 skipy = (byid < pblock) ? 0 : 1;

22 Cs[lyid][lxid] =

adjMbuff[(byid+skipy)*BLOCKSIZE*N 23 +

(bxid+skipx)*BLOCK_SIZE + lyid*N + lxid];

24 COLs[lyid][lxid] =

adjMbuff[pblock*BLOCK_SIZE*N + 25

 (bxid+skipx)*BLOCK_SIZE + lyid*N + lxid];

26

 ROWs[lyid][lxid]=adjMbuff[(byid+skipy)*BLOCK

SIZE*N 27 + pblock*BLOCK_SIZE + lyid*N +

lxid];

28 barrier();

29 for(int k=0; k<BLOCK_SIZE; k++)

30 {

31 float tempweight = combine(ROWs[lyid][k],

32 COLs[k][lxid]);

33 if(tempweight < Cs[lyid][lxid])

34 Cs[lyid][lxid] = tempweight;

35 barrier();

36 }

37 adjMbuff[(byid+skipy)*BLOCK_SIZE*N +

38 (bxid+skipx)*BLOCK_SIZE + lyid*N + lxid] =

39 Cs[lyid][lxid];

40 barrier();

41 }

Fig.19 Kernel for Phase 3

5. EXPERIMENTAL RESULTS
We have tested OpenCL parallel blocked implementation on

various GPUs and Intel CPU. Details of devices on which

tests are performed, are given as follows:

 AMD Radeon HD 6450(GPU): 2 Compute units,

625 MHz clock, 2048MB Global Mem., 32KB

Local Mem., 256 work group size on a system

having Intel Core i5 CPU 650 @ 3.2 GHz and

2048MB RAM with AMD APP SDK v2.8.

 NVIDIA GeForce GT 630M (GPU): 2 Compute

units, 950 MHz clock, 1023MB Global Mem., 48

KB Local Mem., 1024 work group size on a system

having Intel Core i5 CPU-3210M @ 2.5GHz and

4096MB RAM with NVIDIA GPU computing

SDK 4.2.

 AMD Radeon HD 6850 (GPU): 12 Compute units,

860 MHz clock, 1024MB Global Mem., 32KB

Local Mem., 256 work group size on a system

having Intel Core i3 CPU 530 @ 2.93 GHz and

4096MB RAM with AMD APP SDK v 2.8.

 Intel Core i3-2310M (CPU): 4 Compute units,

2095 MHz clock, 2048MB Global Mem., 32KB

Local Mem., 1024 work group size with AMD

APP SDK v2.8.

Results of the OpenCL parallel blocked implementation is

compared with sequential Floyd Warshall on Intel Core i3-

2310M (CPU): 2095 MHz clock, 2 GB RAM. We have also

compared the results of OpenCL parallel blocked

implementation with OpenCL parallel Floyd Warshall and

OpenCL parallel R-Kleene [26] on various GPUs.

We have tested our results on various randomly generated

dense graphs having edges of the order of О(n2). Random

weight values between 1 to 10 are assigned to edges of graph.

All results of parallel implementation for APSP problem are

verified with FW sequential implementation on host CPU.

For measuring time, we have considered total kernel

execution time.

5.1 Results for OpenCL Parallel Blocked

APSP Vs FW Iterative Sequential
Figure 20 shows, log plot of execution time in milliseconds

and no. of nodes in a graph for OpenCL parallel blocked

APSP implementation on various devices and also for FW

sequential implementation. Parallel blocked APSP (BAPSP

OCL DEVICE) out performs iterative sequential FW on all

International Journal of Computer Applications (0975 – 8887)

Volume 111 – No 15, February 2015

16

devices.

Fig.20 Execution time of OpenCL Parallel Blocked APSP

and FW Iterative Sequential.

Figure 21 shows speedup for OpenCL parallel blocked APSP

(OCL DEVICE) with respect to OpenCL parallel FW. It is

evident from the figure that parallel blocked approach using

OpenCL is up to 320x faster over AMD 6850 GPU, up to

200x faster over NVIDIA 630 GPU, up to 120x faster over

AMD 6450 GPU and approx 10x faster over Intel CPU.

In figure 22 a comparison between OpenCL parallel blocked

implementation Vs OpenCL parallel RKleene

implementation over NVIDIA 630 GPU is presented. In

figure 23 a comparison between OpenCL parallel blocked

implementation Vs OpenCL parallel RKleene

implementation over AMD 6850 GPU is presented. OpenCL

parallel blocked APSP outperforms OpenCL recursive

approach in both the cases due to explicit data reuse in phase-

2 and phase-3. The sub matrices in heavy use can be

explicitly moved to local shared memory of GPU and thereby

improving memory latency. Also high level of parallelism is

also involved in each phase. We have implemented OpenCL

approach for parallel FW and parallel R-Kleene as outlined

in [26].

Fig.21. Speedup for OpeCL Parallel Blocked APSP w.r.t.

OpenCL Parallel FW Approach[26]

Fig.22. Execution time for OpenCL parallel blocked

approach against OpenCL Parallel RKlene’s approach

on NVIDIA 630 GPU.

Fig.23. Execution time for OpenCL parallel blocked

approach against OpenCL Parallel RKlene’s approach

on AMD 6850 GPU.

6. CONCLUSIONS AND FUTURE

WORK
OpenCL blocked parallel implementation showed a

significant speedup up to 320x on AMD 6850 GPU and up to

200x on NVIDIA 630 GPU, as compared to OpenCL parallel

FW. This speedup is attributed to the fact that although high

level of parallelism is involved in FW yet it is poor in data

reuse. Blocked parallel approach outperforms OpenCL

parallel recursive Kleene‟s approach as evident from fig. 22

and fig.23. In Recursive Kleene‟s approach (RKleene) there

is high level of parallelism and data reuse but this data reuse

is due to intrinsic characteristic of the recursive program. It is

attributed to the program and not explicitly controlled by

programmer. Only until the matrix is divided into sufficient

smallest size (base case), shared memory cannot be used

explicitly at each recursive call, but in case of parallel

blocked approach there is high level of parallelism and high

data reuse during phase-2 and phase-3. Block size is

programmer dependent and can be chosen in a way so that

sub-matrix can be accommodated in local shared memory.

Thus sub matrices in heavy use can be moved to local shared

memory and therefore considerable speedup can be gained.

In all our implementations so far only single OpenCL device

CPU or GPU (but not both) is used for massive parallelism.

OpenCL as a programming language can exploit the

architectural benefits of heterogeneous and vendor

independent computational devices. It would be interesting to

develop an OpenCL approach that utilizes all such

components by offloading an appropriate share of workload

to these computational components.

7. REFERENCES
[1] P. Mateti, Cleveland, Ohio, N.Deo, “Parallel Algorithms

for Single Source Shortest Path Problems” Computing

29 Springer, pp 31-49

[2] Rothberg, M.L.E., Wolfe, M., “The cache performance

and optimizations of blocked algorithms”. In:

Proceedings of the Fourth International Conference on

Architectural Support for Programming Languages and

Operating System, pp. 63–74, 1991.

[3] Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry,

“Challenges in parallel graph processing,” Parallel

Processing Letters, vol. 17, no. 1, pp. 5–20, 2007

[4] A. Frieze and L. Rudolph, "A parallel algorithm for all

pairs shortest paths in a random graph", Technical

International Journal of Computer Applications (0975 – 8887)

Volume 111 – No 15, February 2015

17

Report, Dept. of Com. Sci., Carnegie-Mellon Univ.

(1982).

[5] Park, J., Penner, M., Prasanna, V., “Optimizing graph

algorithms for improved cache performance”. In: Proc.

of International Parallel and Distributed Processing

Symposium, 2002.

[6] K. Fatahalian, J. Sugerman, P. Hanrahan,

“Understanding the efficiency of GPU algorithms for

matrix–matrix multiplication”, in: HWWS ‟04:

Proceedings of the ACM SIGGRAPH/

EUROGRAPHICS Conference, ACM, New York,

2004, pp. 133–137.

[7] S. Mu, X. Zhang, N. Zhang, J. Lu, Y. S. Deng, and S.

Zhang. “IP routing processing with graphic processors”.

In DATE ‟10, March 2010.

[8] P. Harish, P. J. Narayanan, “Accelerating large graph

algorithms on the GPU using CUDA”, in: Proc. of 14th

Int‟l Conf. High Performance Computing (HiPC‟07),

Dec. 2007.

[9] David A. Badar, K. Madduri, “Designing multithreaded

algorithms for breadth-first search and st-connectivity

on the Cray MTA-2”, in: ICPP, pages 523-530, 2006.

[10] Penner, M., Prasanna, V., “Cache-friendly

implementations of transitive closure”, in: Proceedings

of the International Conference on Parallel Architectures

and Compilation Techniques, 2001.

[11] Ullman, J., Yannakakis, M.: The input/output

complexity of transitive closure. In: Proceedings of

the1990 ACM SIGMOD International Conference on

Management of Data, Volume 19, 1990.

[12] Paolo D‟Alberto, A. Nicolau, “R-Kleene: a high-

performance divide-and-conquer algorithm for the all-

pair shortest path for densely connected networks”,

Algorithmica 47 (2) (2007) pp. 203–213.

[13] NVIDIA OpenCL Resources,

http://developer.nvidia.com/opencl.

[14] Floyd, R.: Algorithm 97: Shortest path.

Communications of the ACM 5 (1962).

[15] OpenCL 1.2 reference pages, KHRONOS, 2012.

http://www.khronos.org/registry/cl/sdk/1.2/docs/

man/xhtml.

[16] Gary J. Katz, Joseph T. KiderJr, “All-Pairs Shortest-

Paths for Large Graphs on the GPU”, in: Proceedings of

the 23rd ACM SIGGRAPH/EUROGRAPHICS

symposium on Graphics hardware, pages 47-55, 2008.

[17] Venkataraman G., Sahni S., Mukhopadhyaya S., “A

blocked all-pairs shortest-paths algorithm”. J. Exp.

Algorithmics 8 (2003), 2.2.

[18] Han S.-C., Franchetti f., Püschel M., “Program

generation for the all-pairs shortest path problem”. In:

Parallel Architectures and Compilation Tech-niques

(PACT) (2006), pp. 222–232.

[19] Larsen E., Mcallister D., “Fast matrix multiplies using

graphics hardware”. In: Supercomputing, ACM/IEEE

2001 Conference (10-16 Nov. 2001), 43–43.

[20] Owens J. D., Luebke D., Govindaraju N., Harris M.,

Krüger J., Lefohn A. E., Purcell T, “A survey of

general-purpose computation on graphics hardware”. In:

Computer Graphics Forum 26, 1 (Mar. 2007), 80–113.

[21] Thomas H.Cormen, Charles E. Leiserson, Ronald L.

Rivest and Clittord Stein, “An Introduction To

Algorithms”, McGraw-Hill Book Publication, First

Edition, 1990.

[22] Owens J.D., Davis, Houston, M., Luebke, D., Green, S.,

“GPU Computing”, in: Proceedings of the IEEE,

Volume: 96 , Issue: 5 , 2008.

[23] AMD Inc., “AMD Acclerated Parallel Processing

OpenCL Programming Guide”, July 2012.

[24] A. Munshi, B. R. Gaster, T.G. Mattson, J. Fung, D.

Ginsburg, “OpenCL Programming Guide”, Addison-

Wesley pub., 2011.

[25] OpenCL Specification, http://www.khronos.org/

registry/cl/specs/opencl-1.2.pdf.

[26] Manish Pandey, Sanjay Sharma, “A Parallel Recursive

Approach for Solving All Pairs Shortest Path Problem

on GPU using OpenCL”, International Journal of

Computer Science and Information

Technologies(IJCSIT), ISSN:0975-9646,vol

5(6),2014,8198-8204

IJCATM : www.ijcaonline.org

