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ABSTRACT
The synthesis of an anti-windup compensator for systems with
time-varying delays is solved in this paper. More precisely, LMI
conditions are proposed that guarantee the stability of the closed-
loop system, with a enlarged domain of attraction. An ellipsoid
and a polyhedral set are used to bound this domain of attrac-
tion, making possible to derive a new sector condition. In addi-
tion, an algorithm is provided to optimize the anti-windup gain,
reducing the conservatism. Numerical examples illustrate the ef-
fectiveness of our methodology, which improves previous works.
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1. INTRODUCTION
Time delays are a common phenomena in many physical systems
(for example, in mechanical, communication and chemical pro-
cess). The simultaneous presence of delays and control saturations
are the cause of performance degradation and eventual instability.
Many methods have been proposed to address the stability of lin-
ear time-delay systems [4, 8, 7, 15], including the stabilization with
saturating actuators [10, 1, 5, 12].
This paper concentrates on anti-windup methodologies to stabilize
time-delay systems in the presence of control constraints: in this
context we can just cite [2, 14, 13]. The anti-windup compensation
is known to be a efficient technique to cope with undesirable effects
(on performance and stability) produced by actuator saturation in
control loops. The basic idea underlining anti-windup designs is
that when the control saturates, it is temporarily modified using an
anti-windup compensator in order to recover, as much as possible,
the performance expected on the basis of the unsaturated system.
Motivated by this, we consider L2-gain analysis and anti-windup
compensation gains design for linear systems subject to time-
varying delay and saturating actuators. The method is based on the
Lyapunov-Krasovskii (L-K) approach, which allows to obtain the
conditions directly in an LMI form.
The plan of the paper is as follows: Section 2 presents the prob-

lem statement, and some preliminary results. In section 3 we derive
a result for stabilization anti-windup gain computation using the
Lyapunov-Krasovskii functional. Section 4 presents some convex
optimization problems, based on the statements of Section 5. Some
examples are solved in section 6 to illustrate the proposed solution.
In last section 6 we will give some conclusions.
Notation: Throughout the paper the superscript ′T ′ stands for ma-
trix transposition, <n denotes the n dimensional Euclidean space
with vector norm ‖.‖, <n×m is the set of all n ×m real matrices,
and the notation P > 0, for P ∈ <n×n means that P is symmetric
and positive definite. The space of the continuously differentiable
vector functions φ over [−h, 0] is denoted by C1[−h, 0]. A(i) de-
notes the ith row of matrix. For two symmetric matrices, A and
B, A ≥ B (respectively A > B) means that A − B is positive
semi−definite (respectively positive definite). λ(P ) and λ(P ) de-
note, respectively, the maximal and minimal eigenvalues of a ma-
trix P . I denotes the identity matrix of appropriate dimensions. ∗
denotes symmetric block elements in a matrix.

2. PROBLEM FORMULATION AND
PRELIMINARIES

In this paper we are interested in the following linear time-delay
system:

ẋ(t) = Ax(t) +Ahx(t− h(t)) +Bu(t) +Bww(t)

y(t) = Cyx(t)

z(t) = Czx(t) +Dzu(t) (1)

where x(t) ∈ <n, u(t) ∈ <m, w(t) ∈ <q , y(t) ∈ <p and
z(t) ∈ <p are the plant state, input, disturbance, measured out-
put and regulated output, respectively, with A,Ah, B,Bw, Cy , Cz
and Dz known constant real matrices. The delay h(t) is assumed
to be an unknown but bounded function of time, continuously dif-
ferentiable, with their rate of change bounded as follows:

0 ≤ h(t) ≤ hm , ḣ(t) ≤ d (2)

where hm > 0, d < 1 are given positive constants (these bound
are strictly smaller than one to ensure causality: see [4]).
The initial condition of system (1) is given by:

x(θ) = φ(θ) , θ ∈ [−hm, 0] (3)

where φ(.) is a vector of differentiable functions of initial values
(i.e., φ ∈ C1[−hm, 0]).
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The control input is supposed to be bounded as follows:

−u0(i) ≤ u(i)(t) ≤ u0(i), u0(i) > 0, i = 1, ...,m (4)

The disturbance vector w(t) is assumed to be limited in energy,
that is, w(t) ∈ L2. Hence, for some scalar δ, 0 ≤ 1

δ
≤ ∞, the

disturbance w(t) is bounded as follows

‖w(t)‖22 =

∫ ∞
0

wT (t)w(t)dt ≤ 1

δ
(5)

Considering system (1), we assume that the dynamic output stabi-
lizing compensator is written in the form:

ẋc(t) = Acxc(t) +Bcy(t)

yc(t) = Ccxc(t) +Dcy(t) (6)

Where xc(t) ∈ <nc is the controller state, uc(t) = y(t) ∈ <p is
the controller input, and yc(t) ∈ <m is the controller output. This
compensator is designed to guarantee the requirements of perfor-
mance and stability of the closed-loop system in the absence of the
control saturation.
Ac, Bc, Cc andDc are known constant real matrices of appropriate
dimensions.
In the presence of actuator saturation, the control signal of the sys-
tem can be described as

u(t) = sat(yc(t)) (7)

where sat(yc(i)(t)) = sign(yc(i)(t))min{|yc(i)(t)|, u0(i)}, i =
1, ...,m
The anti-windup compensator Ecψ(yc(t)), Ec ∈ <nc×m is pro-
posed to mitigate the undesirable effects of windup, caused by the
control saturation. This anti-windup generates a signal that is added
to the control signal. Thus, the modified compensator has the form

ẋc(t) = Acxc(t) +Bcy(t)−Ecψ(yc(t))

yc(t) = Ccxc(t) +Dcy(t) (8)

The compensator input is given by the vector valued dead zone
nonlinearity ψ(yc(t)), which is obtained as the difference between
the applied control signal and the controller output signal; that is,

ψ(yc) = yc(t)− sat(yc)(t) (9)

If we use a dead zone for the compensated dynamic linear con-
troller, we get the following augmented system:

ξ̇(t) = Aξ(t) + Ahξ(t− h(t))− (B + REc)ψ(Kξ(t))
+Bww(t)

z(t) = Czξ(t)− Dzψ(Kξ(t)) (10)

Where ξ(t) =

[
x(t)
xc(t)

]
, K =

[
DcCy Cc

]
, A =[

A+BDcCy BCc
BcCy Ac

]
, Ah =

[
Ah 0
0 0

]
, B =

[
B
0

]
,

R =

[
0
Inc

]
, Bw =

[
Bw
0

]
,

Cz =
[
Cz +DzDcCy DzCc

]
and Dz = Dz .

With initial conditions φξ defined on [−hm, 0], i.e., φξ = ξ(θ),
θ = [−hm, 0].

Consider a matrix G ∈ <m×(n+nc) and define the following

polyhedral set

S = {ξ ∈ <n+nc ; |(K(i) −G(i))ξ(t)| ≤ u0(i), i = 1, ...,m}
(11)

LEMMA 1. [13]. Consider now the dead-zone nonlinearity
ψ(Kξ(t)): If ξ(t) ∈ S, then the relation

ψ(Kξ(t))TT0[ψ(Kξ(t))−Gξ(t)] ≤ 0 (12)

The first problem solved in this paper is then stated as follows:

PROBLEM 1. Given hm, synthesize an the anti-windup com-
pensator that simultaneously ensures the L2 input-to-state stability
and the internal stability of the closed-loop system.

More explictely, to solve Problem 1 the aim is to find a stabiliz-
ing Ec that maximizes the size of the domain of attraction for the
closed-loop system (10).

3. MAIN RESULTS
In this section we derive a result for solving Problem 1. We first
give some sufficient conditions for the system (10) to be asymptot-
ically stable:

LEMMA 2. The system (10) is asymptotically stable if there ex-
ist P = PT > 0, Q = QT > 0 and R = RT > 0, a positive
definite diagonal matrix T0 ∈ <m×m and appropriately dimen-
sioned matrices N1, N2, T1, and T2 such that the following condi-
tion holds:

Π11 Π12 Π13 Π14 T1Bw hmN1 CTz
∗ Π22 Π23 Π24 T2Bw 0 0
∗ ∗ Π33 0 0 hmN2 0
∗ ∗ ∗ Π44 0 0 −DTz
∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ −hmR 0
∗ ∗ ∗ ∗ ∗ ∗ −γI


< 0, (13)

where

Π11 = T1A + ATTT1 +Q+N1 +NT
1

Π12 = P − T1 + ATTT2
Π22 = −T2 − TT2 + hmR

Π13 = −N1 +NT
2 + T1Ah

Π23 = T2Ah
Π33 = −N2 −NT

2 − (1− d)Q

Π14 = −T1(B + REc) +GTT0

Π24 = −T2(B + REc)
Π44 = −2T0

PROOF. Considering the Lyapunov-Krasovskii functional can-
didate

V (t) = ξT (t)Pξ(t) +

∫ t

t−h(t)
ξT (s)Qξ(s)ds

+

∫ 0

−hm

∫ t

t+θ

ξ̇T (s)Rξ̇(s)dsdθ (14)

where P = PT > 0, Q = QT > 0 and R = RT > 0.
Calculating the time derivative of the proposed Lyapunov function

2



International Journal of Computer Applications (0975 8887)
Volume 111 - No. 1, February 2015

along the trajectory of the system (10) and using (2) yields:

V̇ (t) ≤ 2ξT (t)P ξ̇(t) + ξT (t)Qξ(t)

−(1− d)ξT (t− h(t))Qξ(t− h(t))

+hmξ̇
T (t)Rξ̇(t)−

∫ t

t−hm
ξ̇T (s)Rξ̇(s)ds (15)

From (2), it is clear that the following is true:

−
∫ t

t−hm
ξ̇T (s)Rξ̇(s)ds ≤ −

∫ t

t−h(t)
ξ̇T (s)Rξ̇(s)ds (16)

For any N1 , N2, applying the Lemma in [8] gives the following
integral inequality:

−
∫ t

t−h(t)
ξ̇T (s)Rξ̇(s)ds ≤ 2

[
ξ(t)T ξ(t− h(t))T

]
×
[
N1 −N1

N2 −N2

] [
ξ(t)

ξ(t− h(t))

]
+hm

[
ξ(t)T ξ(t− h(t))T

] [ N1

N2

]
×R−1

[
NT

1 NT
2

] [ ξ(t)
ξ(t− h(t))

]
(17)

Using the free weighting matrix approach introduced in [9], for
appropriately matrices T1 and T2 we have that:

2[ξT (t)T1 + ξ̇T (t)T2]×
[
− ξ̇(t) + Aξ(t) + Ahξ(t− h(t))

−(B + REc)ψ(Kξ(t)) + Bww(t)
]

= 0 (18)

For a prescribed scalar γ, we define the auxiliary function

J(t) = V̇ (t)− wT (t)w(t) +
1

γ
zT z(t). (19)

It follows that:

J(t) ≤ 2ξT (t)P ξ̇(t) + ξT (t)Qξ(t)

−(1− d)ξT (t− h(t))Qξ(t− h(t)) + hmξ̇
T (t)Rξ̇(t)

+2
[
ξT (t) ξT (t− h(t)

] [ N1 −N1

N2 −N2

]
×
[

ξ(t)
ξ(t− h(t))

]
+ hm

[
ξ(t)T ξ(t− h(t))T

]
×
[
N1

N2

]
R−1

[
NT

1 NT
2

] [ ξ(t)
ξ(t− h(t))

]
+2[ξT (t)T1 + ξ̇T (t)T2]×

[
− ξ̇(t) + Aξ(t)

+Ahξ(t− h(t))− (B + REc)ψ(Kξ(t)) + Bww(t)
]

−2ψ(Kξ(t))TT0[ψ(Kξ(t))−Gξ(t)]

−wT (t)w(t) +
1

γ
zT (t)z(t) (20)

Thus, by simple manipulation the inequality (20) can be rewritten
as follows:

J(t) ≤ ηT (t)Πη(t) + hm
[
ξT (t) ξT (t− h(t))

]
×
[
N1

N2

]
R−1

[
NT

1 NT
2

] [ ξ(t)
ξ(t− h(t))

]
+
[
ξT (t) ψT (Kξ(t))

] [ CTz
−DTz

]
1

γ

[
Cz −Dz

] [ ξ(t)
ψ(Kξ(t))

]
(21)

with

ηT (t) =
[
ξT (t) ξ̇T (t) ξT (t− h(t)) ψT (Kξ(t) wT (t))

]
,

Π =


Π11 Π12 Π13 Π14 T1Bw
∗ Π22 Π23 Π24 T2Bw
∗ ∗ Π33 0 0
∗ ∗ ∗ Π44 0
∗ ∗ ∗ ∗ −I


and Πi,j , (i, j) = (1, 1), (1, 2), . . . , (4, 4) are defined previously.
Since (13) holds, then, by Schur complement, J(t) is negative defi-
nite, which ensures the asymptotic stability of the system (10).

Now, we provide the conditions that satisfy the objective of the
Problem 1 defined in Section 2.

THEOREM 3. If there exist symmetric positive-definite matri-
ces P ,Q,R ∈ <(n+nc)×(n+nc), a diagonal positive-definite ma-
trix S ∈ <m×m, matrices X1, N1, N2 ∈ <(n+nc)×(n+nc), W ∈
<m×(n+nc), Yc ∈ <m×nc , and positive scalars γ, µ and α satisfy-
ing the following conditions:

Σ11 Σ12 Σ13 Σ14 Bw hmN1 X1CTz
∗ Σ22 Σ23 Σ24 αBw 0 0
∗ ∗ Σ33 0 0 hmN2 0
∗ ∗ ∗ −2S 0 0 −SDTz
∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ −hmR 0
∗ ∗ ∗ ∗ ∗ ∗ −γI


< 0 (22)

[
P X1KT(i) −WT

(i)

∗ µu2
0(i)

]
≥ 0, i = 1, . . . ,m (23)

µ− δ ≤ 0 (24)

where

Σ11 = AXT
1 +X1AT +Q+N1 +N

T

1

Σ12 = P −XT
1 + αX1AT

Σ22 = −αXT
1 − αX1 + hmR

Σ13 = −N1 +N
T

2 + AhXT
1

Σ23 = αAhXT
1

Σ33 = −N2 −N
T

2 − (1− d)Q

Σ14 = −(BS + RYc) +WT

Σ24 = −α(BS + RYc)

then the anti-windup gain Ec = YcS
−1 ensures that:
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(1) the trajectories of system (10) are bounded for every initial
condition satisfying

β = [λ(X−11 PX−T1 ) + hmλ(X−11 QX−T1 )]‖φξ‖2c

+
h2
m

2
λ(X−11 RX−T1 )‖φ̇ξ‖2c ≤ µ−1 − δ−1 (25)

(2)

‖z‖22 ≤ γ‖w‖22 + γV (0) (26)

(3) when w(t) = 0, for all initial conditions satisfying β ≤ µ−1,
the corresponding trajectories converge asymptotically to the
origin.

PROOF. From the functional (14), it follows that

V (0) = ξT (0)Pξ(0) +

∫ 0

−hm

ξT (s)Qx(s)ds

+

∫ 0

−hm

∫ 0

θ

ξ̇T (s)Rξ̇(s)dsdθ

≤ [λ(P ) + hmλ(Q)]‖φξ‖2c +
h2
m

2
λ(R)‖φ̇ξ‖2c (27)

From (19), if J(t) < 0, it follows that

∫ T

0

J(t)dt = V (T )− V (0)−
∫ T

0

wT (t)w(t)dt

+
1

γ

∫ T

0

zT (t)z(t)dt < 0 (28)

which implies that

V (T ) ≤ V (0) + ‖w(t)‖22 ≤ β + δ−1 ≤ µ−1. (29)

∀w(t) satisfying (5) and ∀φξ such that β + δ−1 ≤ µ−1.
Hence, one gets ξT (T )Pξ(T ) ≤ V (T ) ≤ µ−1; that is, for
all T > 0 the trajectories of the system do not leave the set
ε(P, µ−1) = {ξ(t) ∈ <n+nc ; ξT (t)Pξ(t) ≤ µ−1}.Moreover, for
T →∞, (28) yields ‖z‖22 ≤ γ‖w‖22 + γV (0).
In the sequel, we show that the fulfillment of (22)-(24) implies that
J < 0, provided that φξ is such that β + δ−1 ≤ µ−1 and w(t)
satisfies (5).

Take T2 = αT1, where α is a scalar tuning parame-
ter. Then multiplying the both sides of (13) by ∆ and
∆T , on the left and on the right, respectively, with
∆ = diag{T−11 , T−11 , T−11 , T−10 , I, T−11 , I}, and introducing
some changes of variables such that:

X1 = T−11 , P = X1PX
T
1 , N1 = X1N1X

T
1 ,

N2 = X1N2X
T
1 , Q = X1QX

T
1 , R = X1RX

T
1 ,

Yc = EcT
−1
0 , S = T−10 , W = GXT

1 . (30)

Thus, we obtain the inequalities (22) of Theorem 1.
On the other hand, if[

P KT(i) −GT(i)
∗ µu2

0(i)

]
≥ 0, i = 1, . . . ,m (31)

It follows that ε(P, µ−1) ⊂ S(u0). As in [2], by multiplying on the
left by ∆ = diag[X1, I] and on the right by ∆T = diag[XT

1 , I],
we obtain the LMI (23). Hence, LMI (23) ensures that ε(P, µ−1) ⊂
S(u0). This fact enforces the validity of the sector condition (12).

The simultaneous verification of (22)-(24) ensures that J(t) < 0
∀w(t) such that ‖w(t)‖22 ≤ 1

δ
, and for all initial condition φξ. This

concludes the proof of the first and second items of Theorem 1.
Consider now w(t) = 0. Then, J(t) < 0 implies that V̇ (t) <
− 1
γ
zT (t)z(t) < 0, provided that ξ(t) ∈ S. Hence, from (27) if φξ

is such that β < µ−1, we have

ξT (t)Pξ(t) ≤ V (t) ≤ V (0) ≤ β ≤ µ−1

which means that we get ξ(t) ∈ ε(P, µ−1), for all t ≥ 0. Because
the LMI (23) is satisfied, it follows that ξ(t) ∈ S, for all t ≥ 0.
Thus, for any initial condition β ≤ µ−1 it follows that V (t) < 0,
which concludes the proof of the third item of Theorem 1.

REMARK 1. In the proof of Theorem 1, the use of free matrices
N1, N2, T1 and a scalar tuning parameter α provides more free-
dom for search the compensation gain Ec, to ensure that the initial
conditions of the closed-loop system and the disturbances belong
to certain admissible sets.

4. OPTIMIZATION PROBLEMS
The proposed conditions in Theorem 1 can be cast into a convex
optimization problem to compute the compensation gain Ec which
ensures that the state trajectory of the closed-loop system (10)
starting from the origin will remain inside a bounded set for any
disturbance satisfying (5) and minimize the upper bound of the
restricted L2−gain.

The idea is to maximize the L2 norm bound on the distur-
bance for which it can be ensured that the system trajectories
remain bounded. Considering that the initial condition is null (i.e.
φ ∈ C1[−h, 0]) this can be formalized as follows:

minµ

subject to (22)− (23) (32)

For a non-null bound on theL2 norm of the admissible disturbances
(given by µ−1 = δ−1), the idea is to minimize the upper bound for
theL2 gain ofw(t) on z(t). Considering that the initial condition is
null, this can be obtained from the solution of the following convex
optimization problems

min γ

subject to (22)− (24) (33)

We consider now the disturbance free case ω(t) = 0. The synthesis
objective regards therefore the determination of a controller which
leads to a set of admissible initial conditions as large as possible,
that verify the condition (25) with β ≤ µ−1.
Consider ‖φξ‖2c = κ1 and ‖φ̇ξ‖2c = κ2. The maximisation of the
region of stability of the closed-loop system can be done by im-
posing the conditions on the maximal eigenvalues of X−11 PX−T1 ,
X−11 QX−T1 and X−11 RX−T1 .
These conditions can be written as follows:[

σ1I X−11

X−T1 P
−1

]
≥ 0,

[
σ2I X−11

X−T1 Q
−1

]
≥ 0,[

σ3I X−11

X−T1 R
−1

]
≥ 0. (34)
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Therefore, one gets[
σ1 + hmσ2

]
κ1 +

h2
m

2
σ3κ2 ≤ µ−1 − δ−1. (35)

Let us introduce the new matrix variables:

X−11 = X̃1, P
−1

= P̃ , Q
−1

= Q̃ and R
−1

= R̃ (36)

The conditions (34) can be replaced by[
σ1I X̃1

X̃T
1 P̃

]
≥ 0,

[
σ2I X̃1

X̃T
1 Q̃

]
≥ 0,

[
σ3I X̃1

X̃T
1 R̃

]
≥ 0. (37)

and construct a feasibility problem, for given hm, γ, κ1 and κ2, as
follows:

Find P ,Q,R, P̃ , Q̃, R̃, X̃1,X1, N1, N2, S,W, Yc,

µ, δ, σi, i = 1, 2, 3

subject to P > 0, Q > 0, R > 0, P̃ > 0, Q̃ > 0, R̃ > 0, δ > 0,

µ > 0, σi > 0, i = 1, 2, 3, (22), (23), (24), (35), (36), (37) .
(38)

Then there exists an anti-windup gain Ec leading to the maximiza-
tion of the region of stability of the closed-loop system. It is noted
that this problem still includes the nonlinear conditions (36). How-
ever, using the idea introduced in [11], the feasibility problem in
(38) can be converted to an iterative procedure involving LMI con-
ditions:

Minimize Trace
(
PP̃ +QQ̃+RR̃+ (X1 +XT

1 )(X̃1 + X̃T
1 )
)

subject to P > 0, Q > 0, R > 0, P̃ > 0, Q̃ > 0, R̃ > 0, µ > 0,

δ > 0, σi > 0, i = 1, 2, 3, (22), (23), (24), (35), (37)[
P ∗
I P̃

]
≥ 0,

[
Q ∗
I Q̃

]
≥ 0,

[
R ∗
I R̃

]
≥ 0,[

X1 +XT
1 ∗

I X̃1 + X̃T
1

]
≥ 0. (39)

This new LMIs problem can be solved by applying the cone
complementarity algorithm [11] in the following manner:

Step 1 Given hm and choose a sufficiently large initial κ1 = κ2.
Find a set of feasible matrices

(
P ,Q, R,W,X1, S, Yc, P̃ , Q̃,

R̃, X̃1, σi, i = 1, 2, 3
)
0

that satisfies (39).
Step 2 Solve the following LMI minimization problem:

Minimize

Trace
(
PP̃0 +QQ̃0 +RR̃0 + (X1 +XT

1 )(X̃10 + X̃T
10)

+P 0P̃ +Q0Q̃+R0R̃+ (X10 +XT
10)(X̃1 + X̃T

1 )

)
subject to LMIs in (39)

Step 3 Substitute the matrix variables from the previous step
into (39): If the result is feasible, then set Ec = YcS

−1. If it is
not feasible, then set the new matrices to be

(
P ,Q,R,X1, S,

Yc,W, P̃ , Q̃, R̃, X̃1, σi, i = 1, 2, 3
)
0

and return to Step 2.

Remark 2. The tuning scalar parameter α can be selected
by applying a simple numerical optimization: see [6].

5. NUMERICAL EXAMPLES
In this section, we consider some examples to illustrate the feasi-
bility and the effectiveness of the proposed design methodology.
Example 1 The example is borrowed from [3]. Consider system
(1), with w(t) = 0 and the following parameters:

A =

[
1 0
0 0

]
, Ah =

[
1 1.5

0.3 −2

]
, B =

[
10
0

]
,

Cy =
[

5 1
]
, u0 = 15,

The dynamic controller is given as:

Ac =

[
−20.2042 2.5216

2.1415 −4.4821

]
, Bc =

[
1.9516
−0.0649

]
,

Cc =
[
−0.9165 0.1091

]
, Dc = 0

By applying Theorem 1, with the numerical parameters obtained
from the algorithm presented in section 4, with α = 0.8 and
d = 0.1, the stability of the system can be guaranteed with the

static anti-windup gain Ec =

[
19.2296
−67.6834

]
for h ≤ 0.6467 and

√
κ =
√
κ1 =

√
κ2 = 175.6059 ∗ 103.

The upper bound on the time–delay was found to be h = 0.4 in [3]
and [14] for the maximum radius 756.19 and 4.6355 ∗103, respec-
tively. The obtained results are listed in Table 1, with a comparison
of the maximum radius and the upper bound on the acceptable de-
lay. Clearly, our result is less conservative than those of [3] and
[14].

Table 1: Comparison of h and maximum radius
√
κ

h
√
κ

Gomes da Silva et al. [3] 0.4 756.19
Wang et al. [14] 0.4 4635.5

Theorem 1 in this paper 0.6467 175605.9

Example 2 Now, we subject the system in the previous example to
actuator saturation and disturbances of the form (1), with

Bw =

[
1
0

]
, Cz =

[
0 1

]
, Dz = 0.

To apply the result in Theorem 1 we solve the optimization prob-
lem (32) with d = 0.1, α = 0.7 and h = 0.6124 obtaining
the optimal value µ = 0.0002 and the static anti-windup gain

Ec =

[
6.9491
28.3313

]
.

The L2-gain can be determined from (33), obtaining γ = 0.1 with
α = 0.7, h = 0.5833 and d = 0.1 for µ = 1 and the static anti-

windup gain Ec =

[
25.3303
−296.9706

]
.

6. CONCLUSIONS
The problem of anti-windup design for linear systems with time-
varying delays and actuator saturation has been addressed. More
precisely, using Lyapunov-Krasovskii functionals, we provide a
methodology to compute an anti-windup compensator that ensures
both L2 input-to-state stability and internal stability of the closed-
loop system. Provided that the maximal value of the time-varying
delay and its derivative are known, convex optimization problems
were proposed to compute the anti-windup gains aiming at three
different control objectives. Some numerical examples have been
presented to show the potential of the proposed methodology.
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As further work we can mention the derivation of simplification
of the conditions obtain, the reduction of any remaining conser-
vatism and the development of delay-independent conditions, ade-
quate when the delay is not completely known.
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