
International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 9, January 2015

9

A New Task Scheduling Algorithm for Maximizing the

Distributed Systems Efficiency

Amal El-Nattat
Computer Science & Eng. Dept.,

Faculty of Electronic Eng.
Menouf 32952, Egypt.

Nirmeen A. El-Bahnasawy
Computer Science & Eng. Dept.,

Faculty of Electronic Eng.
Menouf 32952, Egypt.

Ayman El-Sayed

Computer Science & Eng. Dept.,
Faculty of Electronic Eng.

Menouf 32952, Egypt.

ABSTRACT

Efficient task scheduling is essential to obtain high

performance in distributed computing environment. Achieving

a better makespan is a key issue in designing and development

of task scheduling algorithms. Several algorithms have been

proposed for homogeneous and heterogeneous distributed

computing systems. In this paper, we proposed a new static

scheduling algorithm called Leveled DAG Prioritized Task

(LDPT) to efficiently schedule tasks on homogeneous

distributed computing systems. LDPT aims to improve the

efficiency of the system by minimizing the schedule length.

Keywords

Task scheduling; Homogeneous distributed computing

systems; Precedence constrained parallel applications; Directed

Acyclic Graph.

1. INTRODUCTION
Distributed systems have emerged as powerful platforms for

executing parallel applications. They are efficient systems that

are known to solve tasks and problems in a feasible and fast

way. A distributed system can be defined as a computing

system in which services are provided by a pool of loosely

coupled computers collaborating over a network working for a

common goal [1]. It can be homogeneous (in which processors

are identical in capabilities and functionality) or heterogeneous

(in which processors are different).

In distributed computing environment, an application is usually

decomposed into several independent and/or interdependent

sets of cooperating tasks. These tasks are represented by a

Directed Acyclic Graph (DAG). DAG is a graph consists of a

set of vertices or nodes and a set of edges G(V, E) in which

each node represents a task and each edge represents a

communication between two tasks (the two tasks are dependent

on each other). The weight associated with each node

represents the computation cost of the task and the weight

associated with each edge represents the communication cost

between two tasks. If two dependent tasks are executed on the

same processor, then the communication cost between them is

considered to equal zero. Figure 1 shows an example of a

simple task graph (DAG). In the figure, t1 is called predecessor

(or parent) of t2 and t2 is called successor (or child) of t1. The

edge between t1 and t2 means that t2 can start execution only

after t1 finishes its execution.

The efficient scheduling of application tasks is critical to

achieve high performance in parallel and distributed systems.

The objective function of scheduling is to map the tasks onto

the processors and order their execution so that task precedence

requirements are satisfied and minimum schedule length (or

makespan) is obtained [2].Task-scheduling algorithms are

broadly classified into two classes: static and dynamic. When

the characteristics of an application, such as execution time of

tasks and data dependencies between tasks are known in

advance, the scheduling algorithm is known as static model.

Static task scheduling takes place during compile time before

running the distributed application. Whereas in the dynamic

scheduling decisions are made at run time [3].

Fig 1: Example of a DAG

Over the past few decades, research efforts are mainly focused

on the problem of task scheduling on algorithms running on

homogenous and heterogeneous systems mainly with the

objective of reducing the overall execution time of the tasks.

Topcuoglu et al. [4] have presented HEFT and CPOP

scheduling algorithms for heterogonous processors. Luiz et al.

[5] have developed lookahead-HEFT algorithm, which look

ahead in the schedule to make scheduling decisions. Eswari, R.

and Nickolas, S. [6] have proposed PHTS algorithm to

efficiently schedule tasks on the heterogeneous distributed

computing systems. Rajak and Ranjit [7] have presented a

queue based scheduling algorithm called TSB to schedule tasks

on homogeneous parallel multiprocessor system. Ahmed, S.G.;

Munir, E.U.; and Nisar, W. [8] have developed genetic

algorithm called PEGA that provide low time complexity than

standard genetic algorithm (SGA). Xiaoyong Tang; Kenli Li;

Renfa Li; and Guiping Liao [9] have presented a list-

scheduling algorithm called HEFD for heterogeneous

computing systems. Nasri, W. and Nafti, W. [10] have

developed a new DAG scheduling algorithm for heterogeneous

systems that provide better performance than some well-known

existing scheduling algorithms.

In homogeneous environment, the researchers have explored

many heuristic task-scheduling algorithms such as ISH [11],

MCP [12], ETF [13], DLS [14], MH [15], and B-level [16].

Among these algorithms, B-level provides the best

performance in terms of schedule length, speedup, and

efficiency. As a result, B-level is used for scheduling tasks in

EASy (Energy Aware Scheduling) algorithm [17]. LDPT

provides better performance than B-level algorithm. We expect

when applying LDPT instead of B-level in EASy algorithm, it

will provide better results and leads to lower power consuming.

In this paper, the problem of scheduling precedence

constrained parallel tasks on homogeneous physical machines

(PMs) is addressed. We proposed a new static scheduling

algorithm (LDPT). The goal of LDPT is to improve the

performance of the system than B-level algorithm [16].

International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 9, January 2015

10

The remainder of this paper is organized as follows. Section 2

provides an overview of the related work algorithm. The

proposed algorithm is discussed in section 3. Section 4 presents

performance evaluation results of the proposed algorithm.

Section 5 introduces a discussion of energy awareness. Finally,

conclusion is reviewed in section 6.

2. RELATED WORK ALGORITHM
B-level algorithm is a list based scheduling algorithm. It

depends on sorting all tasks in the graph into a list and then

schedules them one by one. Before the scheduling begins, the

b-level values of all tasks in a task graph are computed and

sorted into a scheduling list in decreasing order of their b-level

values. Then, tasks are picked from the sorted list and assigned

to PMs one by one. Each task is assigned to the processor

which minimize the earliest start time of that task. If LPathi=

{ni, ni+1, …,nexit} is the longest path from node ni to exit node

so the b-level value for the task ni is defined as:

b-leveli = Σ nj∈ node(LPathi) wj+Σej∈ edge(LPathi) cj ---- (1)

3. OUR PROPOSED SCHEDULING

ALGORITHM (LDPT)
LDPT is a list based scheduling algorithm. It depends on

dividing the DAG into levels with considering the dependency

conditions among tasks in the DAG. The algorithm has two

phases: (1) Task prioritization phase, (2) Processor selection

phase.

3.1 Task Prioritization Phase:
In this phase, the DAG is divided into levels then, the tasks in

each level will be sorted into a list based on their computation

cost in decreasing order. The ties are broken by the

communication cost between the task and all of its childs in the

next level.

The priority for each task is Wj(ni) for tasks that have non

equal computation cost values or Cj[(ni)j , 𝑛𝑥
𝑁
𝑥=1 j+1] for

tasks having equal computation cost values, Where Wj(ni) is

the computation cost of the specified task (ni) in the j level

where 1 ≤ j ≤ T, T is the total number of levels and 1 ≤ i ≤ N, N

is the total number of tasks. Cj[(ni)j , 𝑛𝑥
𝑁
𝑥=1 j+1] determines

the sum of communication costs between task (ni) in j level and

all of its children in j+1 level. A child task is denoted by (nx)

where 1≤ x ≤ N.

3.2 Processor Selection Phase:
In this phase, the tasks are picked from the list one by one and

assigned to the processor that will minimize the earliest start

time of the task, with taking into consideration the insertion-

based policy. The insertion policy means that if there is an idle

time slot on the processor between two already scheduled tasks

and it was enough for executing the task, then the task is

assigned on that processor in this idle slot without violating

precedence constraints. In other words, a task can be scheduled

earlier if there is a period of time between two tasks already

scheduled on processor (P), where P runs idle. If two

processors provide the same start time for the task then, the

task is assigned to the processor on which most of its parents

are scheduled. The Earliest Start Time of a task 𝑛𝑖on a

processor 𝑃𝑗 is defined as:

EST(𝒏𝒙, 𝑷𝒎)=max[TAvailable(𝑷𝒎),max{AFT(𝒏𝒊)+𝒄𝒙,𝒊}]-- (2)

Where TAvailable (𝑃𝑚) is the earliest time at which processor

𝑃𝑚 is ready. AFT(𝑛𝑖) is the Actual Finish Time of a task 𝑛𝑖 (the

parent of task nx) on the processor𝑃𝑚 . 𝑐𝑛,𝑖 is the

communication cost from task 𝑛𝑖 to task 𝑛𝑥 ,𝑐𝑘,𝑖 equal zero if

the predecessor task 𝑡𝑘 is assigned to processor 𝑃𝑚 . For the

entry task, EST(𝑛𝑒𝑛𝑡𝑟𝑦 , 𝑃𝑚)= 0. Figure (2) shows the pseudo

code of LDPT algorithm.

Generate the DAG

Divide the DAG into levels according to their

communicated dependency

Sort the constructed levels according to dependency

ordering

Sort tasks according to [their computation costs then their

direct communication of its next level] in descending order

While there are unscheduled levels do

 While there are unscheduled tasks do

 For each level do

 Find the task with the highest computation cost

 If there are tasks have equal computation cost

 Then

Choose the task with the highest communication cost with

its childs in next level

 End if

 Find the processor that minimizes the Earliest

Start Time of the selected task

 Assign the task to the selected processor

 Remove the selected task from the list

 Repeat

 Until all tasks are scheduled

End for each

End while

Fig 2: .Leveled DAG Prioritized Task (LDPT) algorithm.

3.3 Case Study
Consider the DAG shown in figure (3), assume the system has

two processors (P0, P1). Table 1 shows the computation cost

for each task; table 2 shows the b-level value for each task.

Both b-level, LDPT algorithms generate a list of tasks that

shows the execution order of them. For b-level algorithm, the

tasks are sorted in the list in decreasing order according to their

b-level value that is computed by using equation 1. For LDPT

algorithm, the DAG is divided into levels and the tasks are

sorted in each level in descending order according to their

computation cost. Table 3 shows the lists generated by b-level

and LDPT algorithms. Figure (4.a, 4.b) shows the gantchart

generated by B-level and LDPT algorithms respectively. Both

algorithms assign the selected task to the processor that

minimizes the start time (EST) of it. For example, in figure 4.a,

the EST for task t6 on p0 is 2 and the EST for t6 on p1 is 1, so

the task t6 is scheduled on p1. The data ready time (DRT) for

task t5 on p0 is 4 and the DRT for t5 on p1 is 6, so the task is

scheduled on p0. In figure 4.b, the same manner if followed but

with taking into consideration the insertion based policy. For

example, in figure 4.b, the EST for task t7 on p0 is 15 and the

EST for t7 on p1 is 18 while the DRT for t7 on p0 is 13 and the

DRT for t7 on p1 is 9. It is shown that p1 is idle from 9 to 14

and this period is enough for executing t7, so t7 is inserted in

this idle time period (between t2 and t8) on p1. In addition, task

t10 is inserted by the same manner. From figure 4, it is shown

International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 9, January 2015

11

that the schedule length (the finish time of the last task

scheduled from the DAG) resulted from B-level and LDPT

algorithms is 26, 24 unit of time respectively.

Fig 3: Sample DAG

Table1. Computation cost

Task Computation Cost

t0 2

t1 1

t2 1

t3 4

t4 2

t5 3

t6 5

t7 3

t8 4

t9 6

t10 2

t11 2

t12 5

t13 1

t14 3

Table 2.The computed b-level values for tasks in sample

DAG

Task b-leve

t0 28

t1 27

t2 16

t3 20

t4 19

t5 22

t6 25

t7 11

t8 14

t9 17

t10 14

t11 7

t12 9

t13 7

t14 3

Figure 4 depicts the gantchart generated by B-level and LDPT

algorithms. From the figure, it is shown that the schedule

length generated from B-level algorithm is 26 unit time while

the schedule length generated from LDPT algorithm is 24 unit

time. In case of B-level, we observe that there is some periods

in which processors are idle, while in case of LDPT, there is no

idle periods on the processors. According to this result, the

overall running time of the application will be decreased and

the efficiency of the system will be improved.

Table 3.Task lists for b-level and LDPT algorithms

Execution b-level LDPT

1 t0 t0

2 t1 t1

3 t6 t6

4 t5 t3

5 t3 t5

6 t4 t4

7 t9 t2

8 t2 t9

9 t8 t8

10 t10 t7

11 t7 t10

12 t12 t12

13 t13 t11

14 t11 t13

15 t14 t14

Fig 4: The schedules generated by (a) B-level algorithm

(b)LDPT algorithm for sample DAG

International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 9, January 2015

12

4. RESULTS AND PERFORMANCE

EVALUATION

4.1 Simulation Environment
To evaluate the performance of our developed LDPT

algorithm, a simulator had been built using visual C# .NET 4.0

on machine with: Intel(R) Core(TM) i3 CPU M 350

@2.27GHz, RAM of 4.00 GB, and the operating system is

window 7, 64-bit.

To test the performance of B-level and LDPT algorithms, a set

of randomly generated graphs is created by varying a set of

parameters that determines the characteristics of the generated

DAGs. These parameters are described as follows:

DAG size (n: the number of tasks in DAG). Density (d: the

probability of existence edge between ni in levelj and nx in the

next level levelj+1 for DAG. Where, i, x=1,2,…, N, and N is the

number of tasks, j=1, 2,…, T, and T is the number of levels in

DAG). With six different numbers of processors varying from

2, 4, 8, 16, 32 and 64 processors. For each number of

processors, six different DAG sizes have been used varying

from 10, 20,40,60,80 and 100 nodes.

4.2 Evaluation Metrics
Schedule length, speed up, and efficiency are the most

important metrics used for evaluating performance of

scheduling algorithms. In addition, energy consumption is

defined as a metric since we are focused on minimizing of the

energy consumed by the PMs and NDs. Schedule length is the

maximum finish time of the last task (exit task) scheduled from

the DAG.

Schedule length= Max(AFT(nexit)) ----------------------------(3)

Where AFT(nexit) is the actual finish time of the exit

task.Speed up is defined as the ratio of the schedule length

generated from executing the application on one processor to

the schedule length generated from executing the application

on multiple parallel processors.

Speed up=
[𝒘(𝒊,𝒋)𝒏𝒊𝝐𝑽]𝒑𝒋𝝐𝑷

𝑴𝒊𝒏

𝑺𝑳
 --(4)

Where 𝑤 𝑖, 𝑗 means the weight of task ni on processor pj and

SL means the schedule length. Efficiency is the inverse of

speed up.

𝑬𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚 =
𝟏

𝒔𝒑𝒆𝒆𝒅𝒖𝒑
 ---(5)

4.3 Experimental Results
The schedule length generated by b-level and LDPT algorithms

is shown in figure 5, 6, 7, 8, 9, 10 for 10, 20, 40, 60, 80, 100

tasks respectively and the results are recorded in table 4.

According to the results, the schedule length is decreased that

will minimize the running time of the application. The

improvement ratio in schedule length is (1%). Figure 11, 12,

13, 14, 15, 16 show a comparative study of the speed up of b-

level and LDPT algorithms in case of 2, 4, 8, 16, 32, 64

processors respectively. Table 5 shows the speedup results of

B-level and LDPT algorithms. From the results, we can see that

the improving ratio in speed up is (1.58%). From figure 17, 18,

19, 20, 21, 22 we can see that LDPT is more efficient than b-

level. The improvement ratio in efficiency is (1.38%). Table 6

shows the efficiency results of B-level and LDPT algorithms.

Fig 5: Schedule length for 10 tasks

Fig 6: Schedule length for 20 tasks

Fig 7: Schedule length for 40 task

Fig 8: Schedule length for 60 task

International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 9, January 2015

13

Figure 5, 6, 7, 8, 9, 10 depict the schedule length versus

number of tasks with varying number of processors 2, 4, 8, 16,

and 32 processors. It is shown that the schedule length in case

of applying LDPT algorithm is less than B-level algorithm.

This is because B-level algorithm depends on paths idea and

this will increase the communication overhead during

assigning tasks on processors. On the other side, LDPT

algorithm depends on levels idea that will minimize the

communication overhead during assigning tasks on processors.

Another reason is that B-level algorithm must calculate the b-

level value for each task before scheduling so that, the

arithmetic calculation in LDPT is less than B-level algorithm

which leads to minimize the complexity factor.

Fig 9: Schedule length for 80 task

Fig 10: Schedule length for 100 task

Fig 11: Speedup on 2 processors

Fig 12: Speedup on 4 processors

Table 4. Schedule length resulted from B-level and LDPT algorithms

Number

of tasks

2 processor 4 processor 8 processor 16 processor 32 processor 64 processor

B-

level
LDPT

B-

level
LDPT

B-

level
LDPT

B-

level
LDPT

B-

level
LDPT

B-

level
LDPT

10 52 49 54 52 38 36 52 49 50 46 41 39

20 101 98 68 65 72 69 62 58 92 85 68 64

40 210 194 127 121 163 158 131 122 149 141 218 212

60 300 293 197 192 177 167 181 175 254 245 246 239

80 399 389 295 286 322 315 313 306 261 255 278 273

100 582 572 395 385 273 268 338 330 331 322 340 330

International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 9, January 2015

14

Table 5. Speedup resulted from B-level and LDPT algorithms

Number of

processors

10 tasks 20 tasks 40 tasks 60 tasks 80 tasks 100 tasks

B-

level
LDPT

B-

level
LDPT

B-

level
LDPT

B-

level
LDPT

B-

level
LDPT

B-

level
LDPT

2 1.34 1.48 1.67 1.72 1.68 1.82 1.82 1.87 1.63 1.68 1.63 1.66

4 2.02 2.18 2.37 2.48 2.56 2.69 2.69 2.76 2.31 2.38 2.08 2.14

8 2.51 2.64 2.15 2.25 2.01 2.08 2.77 2.93 2.17 2.22 3.19 3.25

16 1.86 1.98 2.65 2.83 2.53 2.72 2.83 2.93 2.16 2.21 2.55 2.61

32 1.65 1.8 2 2.16 2.31 2.44 2.12 2.2 2.6 2.66 2.52 2.59

64 1.39 1.52 2.26 2.41 1.59 1.64 2.11 2.18 2.53 2.57 2.34 2.42

Figure 11, 12, 13, 14, 15, 16 depict speedup versus number of

processors with varying number of tasks (20, 40, 60, 80, 100).

It is shown that LDPT algorithm provide better speed up than

B-level algorithm. This is because in case of LDPT algorithm,

all processors have finished the execution of tasks earlier than

B-level algorithm.

Fig 13: Speedup on 8 processors

Fig 14: Speedup on 16 processors

Fig 15: Speedup on 32 processors

Fig 16: Speedup on 64 processors

International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 9, January 2015

15

Fig 17: Efficiency on 2 processors

 Fig 18: Efficiency on 4 processors

Fig 19: Efficiency on 8 processors

Fig 20: Efficiency on 16 processors

Fig 21: Efficiency on 32 processors

Fig 22: Efficiency on 64 processors

Figure 17, 18, 19, 20, 21, 22 depict efficiency versus number of

processors with varying number of tasks (20, 40, 60, 80, 100).

It is shown that LDPT algorithm is more efficient and provide

better performance than B-level algorithm. Most of processors

elements have been perfect utilized in our algorithm because of

the communications among tasks is not affected in algorithm

breadth procedures.

5. DISCUSSION OF ENERGY AWARENESS
EASy (Energy Aware Scheduling) algorithm is an algorithm

that aims to reduce power consumption. EASy is divided into

two phases. In the first phase B-level algorithm is used for

scheduling. In this paper, we have developed a new static

scheduling algorithm called LDPT (Leveled DAG Prioritized

Task). LDPT outperforms B-level in terms of schedule length,

speedup, and efficiency. The second phase of EASy algorithm

involves applying a technique called DVFS (Dynamic Voltage

Frequency Scaling) [18] for power reduction. We expect good

results when applying LDPT instead of B-level with this

technique (DVFS).

6. CONCLUSION AND FUTURE WORK
In this paper, a new static scheduling algorithm (LDPT) is

developed for homogeneous distributed computing systems.

The performance of LDPT algorithm is compared with the

existing B-level algorithm. LDPT is evaluated for different

DAGs and found to be giving better results than B-level

algorithm in terms of schedule length, speed up, and efficiency

with improving ratio 1%, 1.58%, and 1.38% respectively. The

future scope of the idea can be as follows:

International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 9, January 2015

16

 In this paper LDPT algorithm is applied on Directed

Acyclic Graph (DAG). In the future it can be applied on

Directed Cyclic Graph (DCG).

 LDPT can be applied on Heterogeneous Distributed

Computing Systems (HDCS).

 LDPT can be applied in a dynamic strategy instead of

static strategy.

 Finally, duplication technique can be applied with LDPT

algorithm to minimize the communication overhead.

7. REFERENCES
[1] Journal of Theoretical and Applied Information

Technology. (2011, April 9). [Online]. Available:

http://www.jatit.org/distributed-computing/grid-vs-

distributed.htm.

[2] H. Topcuoglu, S. Hariri, and M.Y. Wu, “Performance-

Effective and Low-Complexity Task Scheduling for

Heterogeneous Computing,” IEEE Trans. Parallel and

Distributed Systems, Vol. 13, No.3, pp. 260-274, March

2002.

[3] Y.K. Kwok and I. Ahmad, “Static Scheduling Algorithms

for allocating Directed Task Graphs to Multiprocessors”,

ACM Computing Surveys, Vol.31, No.4, pp. 406-471,

December 1999.

[4] Topcuoglu, H., Hariri, S., Wu, M.Y. "Performance

effective and low complexity task scheduling for

heterogonous computing", IEEE Trans. Parallel

Distributed Syst. 13(3), 2002.

[5] Luiz F. Bittencourt, Rizos Sakellariou. "DAG Scheduling

Using a Look ahead Variant of the Heterogeneous Earliest

Finish Time Algorithm", 18th Euromicro International

Conference on Parallel, Distributed and Network-Based

Processing (PDP), pp. 27-34, 2010.

[6] Eswari, R. and Nickolas, S. "Path-Based Heuristic Task

Scheduling Algorithm for Heterogeneous Distributed

Computing Systems". Advances in Recent Technologies

in Communication and Computing (ARTCom),

International Conference on 2010. P: 30-34.

[7] Rajak and Ranjit. "A Novel Approach for Task

Scheduling in Multiprocessor System". International

Journal of Computer Applications (IJCA), Vol.44, No. 11,

pp. 12-16. April 2012.

[8] Ahmad, S.G.; Munir, E.U. and Nisar, W. PEGA "A

Performance Effective Genetic Algorithm for Task

Scheduling in Heterogeneous Systems". High

Performance Computing and Communication & 2012

IEEE 9th International Conference on Embedded

Software and Systems (HPCC-ICESS), IEEE 14th

International Conference on 2012. Pp. 1082-1087.

[9] Tang, X., et al., "List scheduling with duplication for

heterogeneous computing systems", Journal of Parallel

and Distributed Computing (JPDC), Vol. 70, No.4, pp.

323-329. 2010.

[10] Nasri,W. and Nafti, W. "A new DAG scheduling

algorithm for heterogeneous platforms". Parallel

Distributed and Grid Computing (PDGC), second IEEE

International Conference on 2012. Pp. 114-119.

[11] B. Kruatrachue and T. Lewis, "Grain size determination

for parallel processing," IEEE Software, vol. 5, no. 1, pp.

23-32, May 1988.

[12] M. Y. Wu and D. D. Gajski, "Hypercool: a programming

aid for message passing systems," IEEE Transactions on

Parallel and Distributed Systems, vol. I, no. 3 pp. 330-

343, July 1990.

[13] J. J. Hwang. Y.C. Chow. F. D. Anger and C.-Y. Lee.

"Scheduling precedence graphs In systems with

interprocessor communication times." SLAM Journal of

Computing, vol. 18, no. 2. pp. 244-257. 1989.

[14] G.C. Slh and E. A. Lee. "A compile-time scheduling

heuristic for interconnection-constrained heterogeneous

processor architectures." IEEE Transactions on Parallel

and Distributed Systems, vol. 4. no. 2, pp. 75-87. Feb.

1997.

[15] H. El-Rewini and T.G .Lewis, " Scheduling parallel

programs onto arbitrary target machines." Journal of

Parallel and Distributed Computing, vol. 9. no. 2, pp. 138-

153, June 1990.

[16] Panos M. Pardalos, SanguthevarRajasekaran, José D. P.

Rolim, " Randomization Methods in Algorithm Design:

DIMACS Workshop", vol. 43, December 12-14, 1997.

[17] Ebrahimirad, V.; Rajabi, A.; Goudarzi, M., "Energy-aware

scheduling algorithm for precedence-constrained parallel

tasks of network-intensive applications in a distributed

homogeneous environment". Computer and Knowledge

Engineering (ICCKE) 3th International Conference on

2013. Pp. 368 – 375.

[18] Zhuravlev, S., et al., Survey of energy-cognizant

scheduling techniques. 2012.

IJCATM : www.ijcaonline.org

http://www.jatit.org/distributed-computing/grid-vs-distributed.htm
http://www.jatit.org/distributed-computing/grid-vs-distributed.htm

