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ABSTRACT 

The effects of temperature dependent viscosity and thermal 

conductivity on magneto-hydrodynamic unsteady free 

convective heat and mass transfer flow of an incompressible 

micropolar fluid through a porous medium along an infinite 

vertical plate is studied. A magnetic field of uniform strength 

is assumed to be applied which makes an angle α with the 

plane transverse to the direction of the main flow. A similarity 

parameter σ has been introduced and the suction velocity is 

considered to be inversely proportional to this time dependent 

parameter. The partial differential equations governing the 

flow, heat and mass transfer of the problem are transformed 

into dimensionless form of ordinary differential equations by 

using similarity substitutions. The governing boundary value 

problems are then solved numerically using Runge-Kutta 

shooting method. The effects of various parameters, viz. 

viscosity parameter, thermal conductivity parameter, mass 

transfer parameter, coupling constant parameter, Grashoff 

number, Prandtl number, Schmidt number and magnetic 

parameter on velocity, secondary velocity, micro-rotation, 

temperature and concentration field are obtained and 

presented graphically. The Skin-friction, Nusselt number and 

Sherwood number are also computed and presented in table. 
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1. INTRODUCTION 
The micropolar fluid, a subclass of micro-fluid, developed by 

Eringen [1], derives from the need to model the flow of fluids 

that contain rotating micro-constituents. The micro polar 

fluids can support couple stress and body couple only in 

which each particle has a finite size and constitutes a micro 

structure that can rotate about the centre of the volume 

element described by the micro-rotation vector. If a conductor 

or a semi conductor has current flowing in it because of an 

applied electric field and a transverse magnetic field is 

applied, there develops a component of electric field in the 

direction orthogonal to both the applied electric field and 

magnetic field, resulting in a voltage difference between the 

sides of the conductor. Due to the gyration and drift of 

charged particles, the conductivity parallel to the electric field 

is reduced and the current is induced in the direction normal 

to both electric and magnetic fields. This phenomenon is 

known as the Hall Effect. When the strength of applied 

magnetic field is very strong, one cannot neglect the effect of 

Hall currents. This effect can be taken into account within the 

range of magneto-hydro dynamical approximation. Several 

investigations have made theoretical and experimental studies 

of micropolar flow in the presence of a transverse magnetic 

field during the last decades. Gorla et al. [2] investigated the 

magneto hydrodynamic free convection boundary layer flow 

of a thermo micropolar fluid over a vertical plate. The effect 

of hall currents on the magneto hydrodynamic boundary layer 

flow past a semi-infinite flat plate was studied by Katagiri [4].  

Hossain [5] investigated the effect of hall current on unsteady 

hydro magnetic free-convection flow near an infinite vertical 

porous plate. Sattar and Hossain [6] studied the unsteady 

hydromegnetic free convection flow with hall current and 

mass transfer along an accelerated porous plate with time 

dependent temperature and concentration. Sarma and 

Hazarika [8] studied effects of variable viscosity and thermal 

conductivity on combined free-forced convection and mass 

transfer flow passed a vertical porous plate. Following the 

works of Sattar et al. [7] Sarma and Hazarika [9] investigated 

the effects of variable viscosity and thermal conductivity on 

free convective heat and mass transfer flow with constant heat 

flux through a porous medium.  

   The main objective of our present work is to extend the 

work of Sarma and Hazarika [9] for the study of effects of 

variable viscosity and thermal conductivity on unsteady free 

convective heat and mass transfer MHD flow of micropolar 

fluid with constant heat flux through a porous medium. 

Viscosity and thermal conductivity are assumed to be inverse 

linear functions of temperature. The governing partial 

differential equations are reduced in to ordinary differential 

equations by similarity transformations. The problem is then 

solved numerically using Runge-kutta shooting algorithm with 

iteration process. 

2. MATHEMATICAL FORMULATION 

OF THE PROBLEM: 
We consider an unsteady free convective flow of an 

incompressible micropolar electrically conducting fluid 

through a porous medium along a semi-infinite porous 

vertical plate in presence of magnetic field. The plate is 

at constant temperature   𝑇𝑤 . The temperature of the 

fluid far from the plate is 𝑇∞ . The 𝑥 −axis is taken 

along the plate in upward direction and the 𝑦 −axis is 

taken normal to it. The plate is parallel to the direction 

which is also the direction of gravity but directed 

vertically upward. 𝑁 is the component of micro-rotation 

perpendicular to the 𝑥𝑦 −plane. The level of species 

concentration is assumed to be very low and hence 

species thermal diffusion and diffusion thermal energy 

effects can be neglected.  A strong magnetic field of 

intensity 𝐵 is imposed in a direction that makes an angle 

α with the plane transverse to the vertical plate which is 
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assumed to be non-conducting, such that 𝐵 =

(0, δ1B0  ,  1 − δ1
2  B0  ) where δ1 = cosα, 

 B0  = applied magnetic field. If δ1 = 1 the imposed 

magnetic field is parallel to the 𝑦 −direction and if 

δ1 = 0 the magnetic field is parallel to the plate. The 

magnetic Reynolds number of the flow is taken to be 

small enough so that the induced magnetic field is 

negligible compared to the applied magnetic field and the 

magnetic lines of force are fixed relative to the fluid, 

Shercliff [11]. The plate is assumed to be non-conducting 

hence J𝑦   = 0 at the plate and hence zero everywhere. 

Neglecting electron pressure and ion slip we have from 

Ohm’s law    

J𝑥   =
𝑝δ1  𝜇𝑐𝐵0

ρ 1+𝑚2δ1
2
 
 𝑚δ1𝑢 − 𝑤 , J𝑦   =

𝑝δ1  𝜇𝑐𝐵0

ρ 1+𝑚2δ1
2
 

(𝑢 + 𝑚δ1𝑤)  , where  𝑚 = 𝜔𝑒𝜏𝑒   is 

the hall parameter. 

2.1. Basic Equations: 
Equation of continuity: 

               
𝜕𝑣

𝜕𝑦
= 0                                                   … (1)    

 

 

Momentum equations:   
𝜕𝑢

𝜕𝑡
+ 𝑣 

𝜕𝑢

𝜕𝑦
= 𝑔0𝛽 𝑇 − 𝑇∞ + 𝑔0𝛽

∗ 𝐶 − 𝐶∞                                     

+
𝜕

𝜕𝑦
 𝜈

𝜕𝑢

𝜕𝑦
 +

𝜅

ρ
 
𝜕𝑁

𝜕𝑦
+

𝜕2𝑢

𝜕𝑦2 −
𝜈𝑢

𝐾′
     

−
𝑝δ1  𝜇𝑐

2𝐵0
2

ρ(1+𝑚2δ1
2)

(𝑢 + 𝑚δ1𝑤)                            ….  (2)      

𝜕𝑤

𝜕𝑡
+ 𝑣 

𝜕𝑤

𝜕𝑦
=

𝜕

𝜕𝑦
 𝜈

𝜕𝑤

𝜕𝑦
 +

𝜅

ρ
 
𝜕𝑁

𝜕𝑦
+

𝜕2𝑤

𝜕𝑦2  

+
𝑝δ1  𝜇𝑐

2𝐵0
2

ρ(1+𝑚2δ1
2)

(𝑚δ1𝑢 − 𝑤)                            … (3)   

           Angular momentum equation: 

     
𝜕𝑁

𝜕𝑡
+ 𝑣 

𝜕𝑁

𝜕𝑦
=

𝛾

ρj

𝜕2𝑁

𝜕𝑦2 −
𝜅

ρj
(2𝑁 +

𝜕𝑢

𝜕𝑦
)     … (4)        

  Energy equation: 

 
𝜕𝑇

𝜕𝑡
+ 𝑣 

𝜕𝑇

𝜕𝑦
=

1

ρcp

𝜕

𝜕𝑦
 𝜆

𝜕𝑇

𝜕𝑦
 +    

𝜅+𝜇

ρcp
   

𝜕𝑢

𝜕𝑦
 

2
+

 
𝜕𝑤

𝜕𝑦
 

2
                                                                … (5)        

Equation of mass transfer: 

    
𝜕𝐶

𝜕𝑡
+ 𝑣 

𝜕𝐶

𝜕𝑦
=

1

Sc

𝜕

𝜕𝑦
 𝜈

𝜕𝐶

𝜕𝑦
                      … (6) 

        Following Gorla [2] we have supposed that 𝛾 =

 𝜇∞ +
𝜅

2
 𝑗 = 𝜇∞  1 +

𝐾1

2
 𝑗 , where  𝐾1 =

𝜅

𝜈∞ ρ
, 

coupling constant parameter. 

The               Appropriate boundary conditions are 

 𝑦 = 0 ∶     𝑢 = 𝑤 = 0,𝑁 = 0,
𝜕𝑇

𝜕𝑦
= −

𝑞

𝜆∞
  ,       𝐶 = 𝐶𝑤   

  𝑦 → ∞:    𝑢 → 0,𝑤 → 0, 𝑁 → 0, 𝑇 → 𝑇∞  ,     𝐶 → 𝐶∞    
 (7)           

   A similarity parameter σ = σ (t) is introduced in order 

to make equations (1) — (6) similar where σ is in fact a 

time dependent length scale so that the governing 

equations could be transformed into a similar form in 

time. Using this length scale the solution of the equation 

(1) is considered to be 

                         𝑣 = −𝑣0
𝜈∞

σ
                        … (8)         

where 𝑣 = velocity vector , 𝑣0 = suction parameter and 

𝑣0 > 0.The negative sign indicates that the suction is 

towards the plate. It is to be mentioned that the basic flow 

in the medium is entirely due to buoyancy force caused 

by temperature difference between the wall and the 

medium. 

       We introduce the following non-dimensional 

quantities: 

 
𝜂 =

𝑦

σ
, 𝑓 𝜂 =

𝑢

𝑈0
,𝜑 𝜂 =

𝑤

𝑈0
,𝜃 𝜂 =

𝜆∞ 𝑇−𝑇∞ 

q σ
,

𝑔 𝜂 =
𝐶−𝐶∞

𝐶𝑤−𝐶∞
,  𝜂 =

σN

𝑈0
       

  ... (9) 

             Following Lai and Kulacki [3] we assume that the 

viscosity and thermal conductivity are inverse linear 

functions of temperature, i.e.  

 

      
1

𝜇
=

1

𝜇∞
 1 + 𝛿 𝑇 − 𝑇∞   , or 

1

𝜇
= 𝑎 𝑇 − 𝑇𝑐   

where 𝑎 =
𝛿

𝜇∞
 and 𝑇𝑐 = 𝑇∞ −

1

𝛿

 
1

𝜆
=

1

𝜆∞
 1 + 𝜉 𝑇 − 𝑇∞   , or 

1

𝜆
= 𝑏 𝑇 − 𝑇𝑟 

  where 𝑏 =
𝜉

𝜆∞
 and 𝑇𝑟 = 𝑇∞ −

1

𝜉
   

  
 

  
 

 ... (10) 

where 𝑎,𝑏,𝑇𝑟  and 𝑇𝑐  are constants and their values 

depend on the reference state and thermal properties of 

the fluid i.e.  𝜈 and 𝜆.  

 
Then we get      𝜈 = −𝜈∞

𝜃𝑐

𝜃−𝜃𝑐
 ,    𝜆 = −𝜆∞

𝜃𝑟

𝜃−𝜃𝑟
,

  𝜃𝑐 =
𝑇𝑐−𝑇∞

𝑇𝑤−𝑇∞
,   𝜃𝑟 =

𝑇𝑟−𝑇∞

𝑇𝑤−𝑇∞
    

 ... (11) 

         Introducing the above transformations in equations (2) — (6), 

we have the following non dimensional equations                    

 1 + 𝐾1
𝜃𝑐−𝜃

𝜃𝑐
  𝑓′′ =  𝐺𝑟  𝜃 +  𝐺𝑐  𝑔 +  

𝜂σ

𝜈∞

𝑑σ

𝑑𝑡
+  𝑣0 𝑓

′ + 𝐾1
′ −

𝑀δ1  
𝑓

1+𝑚2δ1
2 +

𝑚δ1𝜑

1+𝑚2δ1
2  

𝜃−𝜃𝑐

𝜃𝑐
  − 𝐾𝑓 +

𝜃 ′ 𝑓 ′

𝜃−𝜃𝑐
                   … (12) 

 1 + 𝐾1
𝜃𝑐−𝜃

𝜃𝑐
  𝜑′′ =   

𝜂σ

𝜈∞

𝑑σ

𝑑𝑡
+  𝑣0 𝜑

′ + 𝐾1
′ +

𝑀δ1  
𝑚δ1𝑓

1+𝑚2δ1
2 −

𝜑

1+𝑚2δ1
2  

𝜃−𝜃𝑐

𝜃𝑐
+

𝜃 ′𝜑 ′

𝜃−𝜃𝑐
                      ...    (13)     

 2 + 𝐾1  
′′ = 𝐾2  4 + 2𝑓′ − 2   

𝜂σ

𝜈∞

𝑑σ

𝑑𝑡
+  𝑣0 ′        ...  (14) 

𝜃′′ = 𝑃𝑟   𝜂𝜃
′ − 𝜃 

σ

𝜈∞

𝑑σ

𝑑𝑡
+  𝑣0𝜃

′  
𝜃 − 𝜃𝑟
𝜃𝑟

+
𝜃′

2

𝜃 − 𝜃𝑟
 

                   +𝑃𝑟𝐸𝑐
𝜃−𝜃𝑟

𝜃𝑟
 

𝜃𝑐

𝜃𝑐−𝜃
+ 𝐾1                                    … (15) 

          𝑔′′ = 𝑆𝑐   
𝜂σ

𝜈∞

𝑑σ

𝑑𝑡
+  𝑣0 𝑔

′ 
𝜃−𝜃𝑐

𝜃𝑐
+

𝑔 ′ 𝜃 ′

𝜃−𝜃𝑐
                ... (16)     

       The dimensionless numbers are as follows: 



International Journal of Computer Applications (0975 – 8887)  

Volume 110 – No. 8, January 2015 

22 

 

𝐾1 =
𝜅

ρ𝜈∞
 , 𝐺𝑟 =

𝑔0𝛽𝑞σ
3

𝜈∞ 𝜆∞𝑈0
, 𝐺𝑐 =

𝑔0𝛽
∗ 𝐶𝑤−𝐶∞ σ

2

𝜈∞𝑈0
,

𝑀 =
𝑝𝜇𝑐

2σ2𝐵0
2

ρ𝜈∞
,𝐾 =

σ2

𝐾 ′

𝑆𝑐 =
𝜈∞

𝐷
,  𝑃𝑟 =

ρ𝑐𝑝𝜈∞

𝜆∞
 ,   𝐸𝑐 =

𝜆∞𝑈0
2

σ𝑞𝑐𝑝
      𝐾2 =

σ2𝜅

 𝑗ρ𝜈∞ 
 
 

 
 

    ... (17) 

       Following the works of Sattar and Hussain [6] the 

 similarity condition requires that 

                   
σ

𝜈∞

𝑑σ

𝑑𝑡
= 2                                                 … (18)                                                                                                                     

                   Integrating (18) we get, σ = 2 𝜈∞𝑡, which corresponds 

with the usual scaling factor for unsteady boundary layer 

flows, Schlichiting [10]. Using (18) in (12) — (16) and 

writing 2𝜁 = 2𝜂 +  𝑣0, finally we get 

             

                         1 + 𝐾1
𝜃𝑐−𝜃

𝜃𝑐
  𝑓′′ =  

𝐺𝑟  𝜃 +  𝐺𝑐  𝑔 + 2𝜁𝑓′ + 𝐾1
′

−𝑀δ1  
𝑓

1+𝑚2δ1
2 +

𝑚δ1𝜑

1+𝑚2δ1
2 
 
𝜃−𝜃𝑐

𝜃𝑐
 

                                        −𝐾𝑓 +
𝜃 ′ 𝑓 ′

𝜃−𝜃𝑐
                               ... (19) 

               

 1 + 𝐾1
𝜃𝑐−𝜃

𝜃𝑐
  𝜑′ ′ =  2𝜁𝜑′ + 𝐾1

′ + 𝑀δ1  
𝑚δ1𝑓

1+𝑚2δ1
2 −

                                  
𝜑

     1+𝑚2δ1
2  

𝜃−𝜃𝑐

𝜃𝑐
+

𝜃 ′𝜑 ′

𝜃−𝜃𝑐
                 … (20) 

        2 + 𝐾1  
′′ = 𝐾2  4 + 2𝑓′ − 4𝜁′           ... (21)           

𝜃′′ = 𝑃𝑟 2𝜁𝜃
′ − 2𝜃 

𝜃−𝜃𝑟

𝜃𝑟
+

𝜃 ′
2

𝜃−𝜃𝑟
+ 𝑃𝑟𝐸𝑐

𝜃−𝜃𝑟

𝜃𝑟
 

𝜃𝑐

𝜃𝑐−𝜃
+ 𝐾1  𝑓′

2 +

𝜑′2                                                                                         …(22)                                                           

𝑔′′ = 2𝑆𝑐𝜁𝑔
′ 𝜃−𝜃𝑐

𝜃𝑐
+

𝑔 ′ 𝜃 ′

𝜃−𝜃𝑐
                                             … (23)        

The corresponding boundary conditions are   

 
As 𝜂 = 0:   𝑓 = 0,𝜑 = 0, 𝜃′ = −1,𝑔 = 1,  = 0  

  
As 𝜂 → ∞:   𝑓 → 0, 𝜑 → 0, 𝑔 → 0,   𝜃 → 0,  → 0

      ... (24) 

   The physical quantities of interest in this problem are the 

skin –friction coefficient 𝑐𝑓 , Nusselt number 𝑁𝑢 and 

Sherwood number 𝑆  which indicate physically wall shear 

stress, rate of heat transfer and rate of mass transfer 

respectively. For micropolar boundary layer flow, the wall 

shear stress  𝜏𝑤  is given by 

 𝜏𝑤 =   𝜇 + 𝑘 
𝜕𝑢

𝜕𝑦
+ 𝑘𝑁 

𝑦=0
= ρ𝜈∞(

𝜃𝑐

𝜃𝑐−𝜃 0 
+ 𝐾1)𝑓′(0)                                                                                                                            

                                                                                         … (25) 

The skin –friction coefficient 𝑐𝑓  can be defined as  

 𝑐𝑓 =
2 𝜏𝑤

ρ𝑈0
2 = 2(

𝜃𝑐

𝜃𝑐−𝜃 0 
+ 𝐾1)𝑅𝑒−1/2𝑓′(0)                    ... (26) 

The Nusselt number is given by                                                                                                                                                                               

      𝑁𝑢 =
𝑥  𝑞

𝜆∞  𝑇𝑤−𝑇∞  
=

1

2
𝑅𝑒1/2  

𝜃𝑟

𝜃𝑟−𝜃 0 
 

1

𝜃 0 
                 ... (27) 

The mass flux at the wall is given by  

           𝑀𝑤 = −𝐷  
𝜕𝐶

𝜕𝑦
 
𝑦=0

 

            𝑆 =
 𝑆𝑐  𝑀𝑤  𝑥

𝜈∞  𝐶𝑤−𝐶∞  
= −

1

2
𝑅𝑒1/2  

𝜃𝑐

𝜃𝑐−𝜃 0 
 𝑔′(0)        … (28)        

                                                                      

 

3. RESULTS AND DISCUSSIONS  
The equations (19) — (23) together with the boundary 

conditions (24) are solved for various combination of the 

parameters involved in the equations using an algorithm based 

on the shooting method and presented results for the 

dimensionless primary velocity distribution, secondary 

velocity distribution , micro-rotation distribution, species 

concentration distribution, temperature distribution with the 

variation of different parameters. 

Initially solution was taken for constant values of Sc = 2,
Ec = 0.10, Pr = 0.70, δ1 = 0.10, m = 1, Gr = 0.50, K1 =
0.50, K2 = 0.25,  𝑣0 = 0.25, K = 0.50, Re = 0.50  with the 

viscosity parameter 𝜃𝑐  ranging from -15 to -1 at certain value 

of 𝜃𝑟 = −10. Similarly solutions have been found with 

varying the thermal conductivity parameter 𝜽𝒓 ranging from -

15 to -1 at certain value of 𝜃𝑐 = −10 keeping the other values 

remaining same. Solutions have also been found for different 

values of Magnetic parameter (M), dimensionless reference 

temperature corresponding to thermal conductivity 

parameter  𝜃𝑟  , dimensionless reference temperature 

corresponding to viscosity parameter (𝜃𝑐) , Prandtl 

number (𝑃𝑟), Eckert Number (Ec), the coupling constant 

parameter (𝐾1) Suction parameter( 𝑣0),  permeability 

parameter (K) and Schmidt number (Sc). 

The variations in primary velocity distribution, secondary 

velocity distribution, temperature distribution, species 

concentration distribution and micro-rotation distribution are 

illustrated in figures (1) — (15) with the variation of different 

parameters.  

The figures (1) — (9) represent the variations in 

dimensionless primary velocity distribution and secondary 

velocity distribution with Magnetic parameter, dimensionless 

reference temperature corresponding to viscosity parameter 

and thermal conductivity parameter due to heating (Gr<0) and 

cooling of the plate (Gr>0), coupling constant parameter, 

permeability parameter and suction parameter. Figures (1) and 

(2) represent the variations of primary velocity and secondary 

velocity distribution with the variation of Magnetic parameter. 

We observe that primary velocity decreases with the 

increasing values of M. It is because that the application of 

transverse magnetic field will result a resistive force (Lorentz 

force) similar to drag force, which tends to resist the fluid 

flow and thus reducing its velocity. We have seen that 

secondary velocity increases for 𝜂 <  1 and then decreases for 

increasing value of 𝑀 . Figures (3) — (6) represent the 

variations of primary velocity with the variation of 𝜃𝑐  and 𝜃𝑟  

due to heating (Gr<0) and cooling of the plate (Gr>0) 

respectively. We observe that both primary and secondary 

velocity decreases with the increasing values of 𝑚. From 

figure (7) we observe that primary velocity decreases with 

increasing values of 𝑣0 . From figure (8) it is seen that 

primary velocity decreases when 𝜂 <  1.5 and then increases 

with the increasing value of coupling parameter 𝐾1 . From 

figure (9) we have observed that primary velocity increases 

with increasing values of permeability parameter. The figures 

(10) and (11) represent the variations in dimensionless 

temperature profile 𝜽(𝜂) with the variation of Prandtl number 

and Eckert number respectively. From figure (10) we have 

observed that temperature decreases with the increasing 

values of 𝑃𝑟  .It is due to the reason that with the increasing 

values of the Prandtl number the viscosity increases and as a 

result temperature decreases. From figure (11)) we have seen 

that temperature increases when both the values of  𝐸𝑐. Figure 

(12) displays the distribution representing concentration 
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profile within the boundary layer with the variation of 𝑆𝑐, It is 
observed that concentration decreases with the increasing 

values of  𝑆𝑐  The profiles have the common feature that the 

concentration decreases in a monotone fashion from the 

surface to a zero value far away in the free stream. As Sc is 

the connecting link between velocity and concentration 

profiles, therefore with the increasing value of Sc molecular 

mass diffusivity decreases and as a result concentration 

decreases. Figures (13) — (15) display the distribution 

representing micro-rotation within the boundary layer with the 

variation of 𝐾1 ,𝜃𝑐  and 𝜃𝑟 .  

3.1 Figures 

 

Figure 1: Variation of primary velocity distribution with M 

 

 

 

 

 

Figure 2: Variation of secondary velocity distribution with M 

 

Figure 3: Variation of primary velocity distribution with  𝜽𝒄 due to heating of the plate (Gr<0) 
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Figure 4: Variation of primary velocity distribution with 𝜽𝒄 due to cooling of the plate (Gr>0) 

 

 

 

 

Figure 5: Variation of primary velocity distribution with 𝜽𝒓 due to cooling of the plate (Gr>0) 

 

Figure 6: Variation of primary velocity distribution with 𝜽𝒓 due to heating of the plate (Gr<0) 
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Figure 7: Variation of primary velocity distribution with suction parameter  𝒗𝟎  

 

Figure 8: Variation of primary velocity distribution with K1 

 

Figure 9: Variation of primary velocity distribution with K 
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Figure 10: Variation of temperature distribution with Pr 

 

Figure 11: Variation of temperature distribution with Ec 

 

Figure 12: Variation of concentration distribution with Sc 
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Figure 13: Variation of micro-rotation distribution with 𝜽𝒓 

 

 

Figure 14: Variation of micro-rotation distribution with 𝜽𝒄 

 

 

Figure 15: Variation of Micro-rotation distribution with K1 
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3.2 Tables 
Finally the effects of the above mentioned parameters on the values of 𝑓 ′ (0), g'(0), 𝜑′ 0 , h'(0), 𝜃(0),  𝐶𝑓  , 𝑁𝑢 and 𝑺𝒉 are shown in the 

tables (1) — (3). We consider Sc=2, 𝜃𝑐=-10, Ec =0.10, 𝜃𝑟=-10, Pr=0.70, δ1=0.10, m=1.00, 𝐺𝑐 = 0.05 , Gr=0.50, K1=0.50, K2=0.25, 

v0=0.25, K=0.50, Re=0.50 .The behavior of these parameters is self evident from the tables and hence any further discussions about 

them seem to be redundant. 

Table 1: Numerical values with the variation of M and  𝑮𝒄 

M 𝐺𝑐 f'(0) 𝜑(0) 𝜃(0) g(0) h(0)  𝑐𝑓  𝑁𝑢  𝑆  

 

1 0.1 0.099866 0.001317 0.607654 -2.0101 -0.00209 0.423756 -227.226 0.234495 

1 0.279443 0.003346 0.608122 -2.01016 -0.00509 1.185979 -93.0704 0.234477 

2.5 0.578903 0.006732 0.609849 -2.01038 -0.0101 2.457733 -46.8875 0.234414 

4 0.878577 0.010121 0.612761 -2.01075 -0.01512 3.731248 -31.3227 0.234306 

2.5 
0.1 0.098366 0.002128 0.607651 -2.0101 -0.00203 0.417389 -233.551 0.234495 

1 0.275861 0.005324 0.608103 -2.01016 -0.00496 1.170766 -95.4922 0.234478 

2.5 0.571842 0.010654 0.609774 -2.01037 -0.00985 2.427717 -48.0792 0.234416 

4 0.868027 0.015991 0.612593 -2.01073 -0.01475 3.686355 -32.113 0.234312 

4.5 

0.1 0.096494 0.003 0.607647 -2.0101 -0.00196 0.409444 -241.875 0.234495 

1 0.271375 0.007473 0.60808 -2.01015 -0.0048 1.151717 -98.6718 0.234479 

2.5 0.562991 0.014935 0.609683 -2.01036 -0.00954 2.390091 -49.6427 0.23442 

4 0.854798 0.022405 0.612388 -2.0107 -0.01429 3.630061 -33.1496 0.23432 

Table 2: Numerical values with the variation of M and 𝑷𝒓 

M Pr f'(0) 𝜑(0) 𝜃(0) g(0) h(0)  𝑐𝑓  𝑁𝑢  𝑆  

2 
0.7 0.17757 0.003113 0.605664 -2.00986 -0.00335 0.753533 -140.664 0.234567 

2.7 0.119329 0.001834 0.295559 -1.97216 -0.00193 0.506336 -252.139 0.246251 

5.7 0.107829 0.00165 0.193626 -1.95841 -0.00175 0.457532 -280.941 0.25046 

7.2 0.102641 0.001493 0.167307 -1.95475 -0.00152 0.435514 -323.121 0.251578 

4 

0.7 0.174502 0.004635 0.605654 -2.00986 -0.00324 0.74051 -145.5 0.234567 

2.7 0.117626 0.002703 0.295554 -1.97216 -0.00187 0.499108 -260.071 0.246251 

5.7 0.106284 0.00243 0.19362 -1.95841 -0.00169 0.450976 -289.808 0.25046 

7.2 0.101448 0.002184 0.167361 -1.95476 -0.00149 0.43045 -330.438 0.251576 
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Table 3: Numerical values with the variation of M and 𝜽𝒓 

M 𝜃𝑟  f'(0) 𝜑(0) 𝜃(0) g(0) h(0)  𝑐𝑓  𝑁𝑢  𝑆  

1 

-10 0.17926 0.002212 0.60568 -2.00986 -0.00341 0.760707 -138.224 0.234566 

-5 0.175161 0.00215 0.584224 -2.00726 -0.00331 0.74331 -135.266 0.235347 

-1 0.156217 0.001867 0.480793 -1.99455 -0.00285 0.6629 -118.387 0.239183 

4 

-10 0.174555 0.004646 0.605664 -2.00986 -0.00324 0.740732 -145.538 0.234567 

-5 0.170603 0.00451 0.584209 -2.00726 -0.00314 0.72396 -142.395 0.235347 

-1 0.152322 0.003892 0.480783 -1.99455 -0.00271 0.646363 -124.506 0.239183 

4. CONCLUSION: 
In this study the effects of temperature dependent viscosity 

and thermal conductivity on magneto hydrodynamic unsteady 

free convective heat and mass transfer flow of an 

incompressible micropolar fluid through a porous medium 

along an infinite vertical plate is studied. The results 

demonstrate clearly that the viscosity and thermal 

conductivity parameters along with the other parameters viz. 

mass transfer parameter, coupling constant parameter, Prandtl 

number, Schmidt number, Hall parameter and magnetic 

parameter have significant effects on velocity, secondary 

velocity, temperature, concentration and micro-rotation 

distributions within the boundary layer. Thus assumption on 

constant properties may cause a significant error in flow 

problem. 

5. NOMENCLATURES 
𝛽 = Volumetric coefficient of thermal expansion  

𝛽∗ =Volumetric co-efficient of expansion with concentration 

𝑔0 = Gravitational acceleration  

𝜆 =  Thermal conductivity 

𝜇 = Dynamic viscosity  

𝜇∞ = Dynamic viscosity of the ambient fluid 

𝜈 =Kinematic viscosity 

𝜈∞ = Kinematic  Viscosity of the ambient fluid 

𝜅 =Vortex viscosity 

𝛾 =Spin-gradient or micro rotation viscosity 

cp =Specific heat 

v0 = Suction parameter 

𝜂 = Dimensionless co-ordinates 

𝑢 = Velocity in the 𝑥 −direction 

𝑣 = Velocity in the 𝑦 −direction 

𝑤 = Secondary velocity 

𝑈0 = Reference velocity 

𝑓 =Dimensionless velocity 

𝜑 =Dimensionless Secondary velocity 

 =Dimensionless micro-rotation 

𝑔 = Dimensionless species concentration 

𝜃 = Dimensionless temperature 

𝜃𝑐 =Dimensionless reference temperature     corresponding to 

viscosity parameter 

𝜃𝑟 =Dimensionless reference temperature corresponding to 

thermal conductivity parameter 

𝑇 =Temperature 

𝐶 =Species concentration  

𝑇∞ = Ambient temperature 

𝑇𝑤 = Wall temperature 

𝐶𝑤 =  Species concentration at the wall 

𝐶∞ = Species concentration far from the wall 

𝑗 = Micro-inertia density 

𝜎 = Electrical conductivity 

ρ = Density 

𝐷 = Thermal molecular diffusivity 

𝐺𝑟 = Local Grashoff number for heat transfer 

𝐺𝑐 = Local Grashoff number for mass transfer 

𝑆𝑐 = Schmidt number 

𝑃𝑟 =  Prandtl number 

𝑅𝑒 =  Local Reynolds number 

𝑀 =  Hartmann Number 

𝑚 =  Hall parameter 

𝐵0 =  Constant magnetic field intensity 

𝐾 =  Permeability parameter 

𝐾1 = Coupling constant parameter 

𝑞𝑤 = Heat transfer from the plate 

𝐶f =Skin-friction coefficient 

Nu = Nusselt number 

 𝑆 = Sherwood number 

Subscripts: 
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w, the condition at the wall 

∞, the condition far away from the surface 

Superscripts: 

, Differentiation with respect to η 

6. REFERENCES 
[1] Eringen A.C., Theory of micropolar fluids, J. Math. 

Mech., Vol.16, (1966), pp.1-18. 

[2] Gorla R.S.R., Takhar H.S., Slaouti A., Magneto 

hydrodynamic free convection boundary layer flow of a 

thermo micropolar fluid over a vertical plate, Int. J. Eng. 

Sci., Vol. 36(1998) pp. 315-327. 

[3] Lai F.C. and Kulacki F.A., The effect of variable 

viscosity on convective heat and mass transfer along a 

vertical surface in saturated porous medium, Int. J. Heat 

and Mass Transfer, Vol. 33(1991) pp.1028-1031. 

[4]  Katagiri M., The Effect of Hall Currents on the Magneto 

hydrodynamic Boundary Layer Flow past a Semi-infinite 

Flat Plate, Journal of the Physical Society of Japan, Vol. 

27, No 4(1969), pp. 1051-1059. 

[5] Hossain M A, Effect of Hall Current on Unsteady Hydro 

magnetic Free-convection Flow near an Infinite Vertical 

Porous Plate, Journal of the Physical Society of Japan, 

Vol. 55, No. 7 (1986), pp. 2183-2190. 

[6] Sattar M.A. and Hossain M. M., Unsteady 

Hydromegnetic free convection flow with hall current 

and mass Transfer along an accelerated porous Plate with 

Time Dependent Temperature and Concentration, Can. J. 

Phy., Vol.70,pp 369-374, 1992.  

[7] Sattar  M.A. Rahman, M. M and Alam, M. M., Free 

convection flow heat Transfer through a porous vertical 

Plate immersed in a porous medium with variable 

suction,  J. Energy Heat And Mass Transfer, Vol.22, pp 

17-21, 2000.  

[8] Sarma U., Hazarika G. C. , Effects of variable viscosity 

and thermal conductivity on combined free-forced 

convection and mass transfer flow passed a vertical 

porous plate, Antarctica J. Math., Vol.7, No. 4 (2010), 

pp.461-472. 

[9] Sarma U., Hazarika G. C., Effects of variable viscosity 

and thermal conductivity on free convective heat and 

mass transfer flow with constant heat flux through a 

porous medium, J. Comp. & Math. Sci., Vol.1, No. 2 

(2010), pp.163-170. 

[10] Schlichting H., Boundary layer Theory, 6th Edn., 

McGraw-Hill, New York, 1968. 

[11] Shercliff J. A., A textbook of magneto hydrodynamics, 

pergamon press inc., New York, 1965. 

 

IJCATM : www.ijcaonline.org 


