
International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 7, January 2015

6

Parallelization of Annotated Java code in a Distributed

Network

Pratibha S. Yalagi
Assistant Professor

Department of Information Technology
Walchand Institute of Technology

Solapur, India.

Sulabha S. Apte
Professor & Head

Department of Computer Science & Engg.
Walchand Institute of Technology

Solapur, India.

ABSTRACT

Parallelism has been employed for many years, mainly in

high-performance computing. The work focuses towards a

new parallel execution technique in a distributed network in

which the java code is parallelized and independent code is

executed on different system in accordance with the

availability of the system resource in a distributed network. It

speeds up the execution of a particular application to a great

extent. Dependencies among the code are detected. The

proposed system can be used for parallel computation of the

java program, which can be used in industry for executing

large java codes. For execution of large java codes, time

required will be large. The proposed system can harness the

power of nearby all Java enabled machines. The aim is to turn

a normal computer into a Super-Computer without extra

hardware or space. It is designed for Parallel Computing using

both wired & wireless network connections for achieving

good speed of execution with the help of distributed network.

The annotations are used in the code as indicators for parallel

execution. Based on the annotations provided in the code it is

parallelized by rebuilding the code for further execution in the

network.

Keywords

Parallelism in Java, Annotations, High performance

computing, load balancing, distributed networks.

1. INTRODUCTION
Increasing the speed of the program execution is always the

research area in the era of high performance computing.

Scientific computing, interactive, virtual reality & data mining

applications are totally based on increasing performance for

the development of advanced computing approaches.

Parallelism is used in the execution of the program for

providing better performance and to increase the computing

speed. Many calculations are carried out simultaneously in

parallel computing which is operating on the principle that

large problems can often be divided into smaller ones, which

are then solved concurrently.[12] The use of distributed

networks and resources can be used to achieve parallelism in

great extent. Java is the language which provides many

features to facilitate parallelism and it is suitable for

distributed computing [5, 6]. It is suitable for distributed

applications in which many components are running on

different computers cooperatively using distributed networks.

It provides APIs for socket communications[7], RMI[8],

threads & synchronization for distributed application

development. Annotations can be used in the program to

provide the functionality of parallel execution through the

program. One of the approach called Parallel Abstraction

Layer (PAL) which is working as a bridge between a

programming model and the parallel computer architectures,

such as clusters of computer resources. [9] The work focuses

on the technique of providing annotations in the program for

parallel execution in a distributed environment. Use of the

annotations in a program for parallelizing the execution of a

sequential code is already done by many methods. In the

proposed system annotations are used for Java program

execution. A server reads the program & rebuilds the

annotated program so that it can execute in parallel on

different client machines in a network. It can be used for

parallel computation of the java program for executing large

java codes in the application domain of scientific

computation, interactive environments, virtual reality or data

mining. For execution of large java codes, time required will

be large.

2. LITERATURE REVIEW
Sequential applications are easier to develop than developing

parallel applications. Java supports parallelism through many

APIs supporting socket programming, RMI, threads &

synchronization for distributed applications [7, 8]. Usually

programmers write applications directly interacting with the

middleware. Several efforts have been spent to face the

problem of synchronization and inter thread communication.

One of the technique provided is the use of Parallel

Abstraction Layer (PAL) [9]. In this the programmer is

responsible to choose which parts of code have to be

computed in parallel through the use of annotations. Using the

information provided by programmers PAL transforms the

program code into a parallel one [1]. Method level parallelism

can be achieved by method speculation for data-parallel

applications with less compiler & programmer efforts [2]. The

zJava project aims at automatic parallelization technology for

Java programs that use pointer-based dynamic data structures.

It exploits parallelism among methods by creating an

asynchronous thread of execution for each method invocation

in a program. Methods are analyzed at compile-time to

determine the data they access. It executes sequential Java

programs, automatically extracting, packaging and

synchronizing parallelism among methods[13]. Main method

in the program is it starts executing sequentially and for each

method invocation, an independent thread is created to

asynchronously execute the body of the method for concurrent

execution.[3] AdJava [4] uses the underutilized computers in

a distributed network by automatically distributing the user

application using load balancing & migration of objects[11].

This system designs parallel distributed objects using software

agents for handling collaboration of objects for interaction

among hosts. The ADAJ (Adaptive Distributed Application in

Java) project provides a platform for irregular applications.

The object location is achieved by an intelligent adaptive

redistribution strategy exploiting dynamically information

about the platform states. ADAJ is designed as a

programming and execution environment for distributed and

parallel object oriented applications [6].

International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 7, January 2015

7

3. SYSTEM DESIGN
The proposed system parallelizes the java code in a

distributed environment using the annotations in a program

provided by the programmer. The programmer needs to

specify the dependencies between the codes. This can be done

using the concept of annotation. Here, the developer or the

programmer can annotate the method that is independent of

the other. And on the basis of these annotations, the system

rebuilds the program and adds remote methods to the original

program. Along with this, it preserves the original copy of the

program. In the proposed system one of the computer resource

in a distributed network acts as a server & others as client by

finding the CPU usage of the clients. Only, if the CPU usage

of clients is less than threshold then and then it sends the

independent code at client side for execution. Thus, the java

code is executed at client side & the result will be send back

to server. The time required for the execution of the Java

program in the proposed system is less than that on an

individual computer system. The wired and wireless computer

resources (if required) can be used for parallelization.

Basically the work focuses on the deep study of multi-

threading in Java, program compilation, dependencies in the

program, inter process communication, synchronization, and

socket programming.

3.1 System Architecture
The system consists of the following modules as shown in

Fig. 1.

Fig. 1. System architecture.

Here the source program which is written in Java is first

compiled at server side for recording the methods and

checking the dependency. At the same time, it calculates load

on the server and as per the need it divides the code/program

into modules. Concurrently it checks for devices in the

network having JVM's and lists them as wired and wireless.

Then these divided small modules are sent to client for

execution. And if the load on client machine reaches threshold

then another client is selected for execution and the process

continues. After execution, the individual results are sent back

to server wherein server records all the readings. These

readings are sent back to server.

3.2 Server Architecture
Here the server searches for the devices within the network

and waits for the device response. As shown in Fig.2.

Depending on the response, it prioritizes the devices as:

1: Wired

2: Wireless

Also it checks for the load at server side.

Fig. 2. Server architecture.

4. IMPLEMENTATION

4.1 Algorithm for Server Side

Implementation
1. Read the annotated java program

2. Check the program; if the program is small execute it on

its host computer.

3. If it is large then the annotations are considered for

parallelism.

4. Check for dependencies between the various parts of

program.

5. Resolve the dependencies or connect few smaller code

parts.

6. Check the number of LAN (wired) connections &

number of Wi-Fi (non-wired) connections.

7. Decide whether or not to use the wireless connections. If

the number of LAN connections is equal or more than

number of pieces of programs then we do not use the

wireless connections.

4.2 Sender & Receiver Phase
1. Sender sends the small data to all machines that are

under-utilized using sockets.

2. The need for high speed LAN networks arises now as we

have to send data very quickly.

3. The receiver receives the data & sends it to its processer

for computing.

4.3 Synchronization& Error Handling

Phase
1. The synchronizer handles all the messages that are

passed between the main server & all its clients.

2. It keeps a record of all messages (codes) & is the

deciding agent who determines which result is of which

part of the program.

3. The error handler handles all the errors that may arise

viz. PC Shutdown, Heavy Load, etc.

4.4 Working Model
The system has mainly the components called ObjectManager

and ObjectRegistry as shown in Fig. 3.

International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 7, January 2015

8

Fig. 3. Working Model.

4.4.1 Object Registry:
It stores the table of containing object ID and ID holder. It

listens the thread which listens all the requests regarding

objects from Object Manager and then pass the control to

service thread where it registers all the commands and check

them against the various commands listed in command.java

file and accordingly provides services to them.

4.4.2 Object Manager:
The working of Object Manager starts with establishing

connection with object Registry and it then starts Receiver

Thread(). Here it reads the command and check it against the

commands of command.java and accordingly provide service,

where the different functionality for Read-only objects as well

as Sharable Objects are provided. For Read Only Objects, the

system does not wait for accessing objects if it is already in

use i.e. Read-only objects can be accessed simultaneously by

all the clients e.g. account no.: objects of this kind can be

accessed simultaneously as account no. of a person is always

the same. For sharable objects, the system provides lock and

unlock functionality i.e. when an object is requested and if it

is available in Object Registry then access is permitted to the

client to hold that object and then it locks the object and after

accessing that object it unlocks it so that other clients that are

waiting for the object can get a chance to hold it. The need of

lock and unlock mechanism of operating system is to ensure

data consistency so that updated data exists in Object

Registry.

5. RESULTS AND ANALYSIS
The sample input program Adder.java with the annotations is

shown in Fig. 4. The Adder.java.org: A backup file of original

program is shown in Fig. 5. The annotated program is

converted as a parallelized code which is shown in Fig. 6.

This can be executed in parallel in a distributed network. The

Table I shows the results generated for time in centi seconds

required for the execution and the number of processes.

Fig. 4. Sample Input Program.

Fig. 5. Back up program

Fig 6 Remote method generation in Program using

annotations

Table I & graph comparing time v/s number of processes

International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 7, January 2015

9

6. CONCLUSION
In the proposed system the Java code is structured using

annotations. The annotations are provided by the programmer

for achieving parallelism in the execution using the distributed

networks. The wired & wireless system resources are

recognized and they can be used for the execution of large

codes in a distributed network. The code is rebuilt using the

annotations to execute them in parallel. The advantages of this

system are:

Faster processing: Multiple processors work together for

executing a program.

Easy to use: The system can be used by any programmer for

the development of Java applications

Load Balancing: The network load is balanced by the

distribution of load from highly loaded system to less loaded

systems.

7. FUTURE SCOPE
It has been observed that parallelization and the high

performance computing is the highly studied area. Use of

annotations in a program is a programmer’s task which can be

modeled by the direct use of annotation. The system can be

enhanced by the automatic parallel code generation in which

the programmer need not to write a parallel program with the

annotations rather they can automatically generate through the

dependency finders/

8. REFERENCES
[1] Patrizio Dazzi, “Let’s Annotate to Let Our Code Run in

Parallel,” arXiv:1306.2267v1 [cs.PL] 6 Jun 2013.

[2] Michael K. Chen, Kunle Olukotun, “Exploiting Method-

Level Parallelism in Single-Threaded Java Programs,”

IEEE. Proceedings of PACT'98, 12-18 October 1998 in

Paris, France.

[3] Bryan chan and tarek s. Abdelrahman. (2004) “Run-

Time Support for the Automatic Parallelization of Java

Programs,” Journal of Supercomputing, 28, 91–117,

Kluwer Academic Publishers.

[4] Mohammad M. Fuad and Michael J. Oudshoorn,

“AdJava – Automatic Distribution of Java Applications,”

Twenty-Fifth Australasian Computer Science Conference

(ACSC2002), Melbourne, Australia.Conferences in

Research and Practice in Information Technology,2001,

Vol. 4.

[5] Mark A. Baker, Matthew Grove and Aamir Shafi. (2006)

Parallel and Distributed Computing with Java.

Proceedings of The Fifth International Symposium on

Parallel and Distributed Computing (ISPDC'06) 0-7695-

2638-1/06 IEEE.

[6] Alan Kaminsky. (2007) Parallel Java: A Unified API for

Shared Memory and Cluster Parallel Programming in

100% Java. 1-4244-0910-1/07/, IEEE.

[7] Sun products - jdk1.2. api & language documentation.

http://java.sun.com/products/jdk/1.2/docs/api/overviewsu

mmary.html.

[8] Sun products - jdk1.2. remote method invocation.

http://java.sun.com/products/jdk/1.2/docs/guide/rmi/inde

x.html.

[9] M. Danelutto, P. Dazzi, D. Laforenza, M. Pasin, L.

Presti, and M. Vanneschi.” PAL: Exploiting Java

Annotations for Parallelism,” Achievements in European

Research on Grid Systems, Springer, (November 2007)

[10] Steve J. Chapin, Jon B. Weissman. Distributed and

multiprocessor scheduling. handbook

[11] R. Olejnik, a. Bouchi, b. Toursel,"An Java Object

observation policy for load balancing".

[12] Brayan Chan, Tarek S. Abdelrahman, “Run-Time

Support for the Automatic Parallelization of Java

Programs”, The Journal of Supercomputing, Volume 28 ,

Issue 1 (April 2004), pp 91 - 117

[13] Pratibha S. Yalagi, Sulabha S. Apte, “Exploiting

Parallelism For A Java Code With An Efficient

Parallelization Technique,”International Journal Of

Computer Engineering & Technology (IJCET) Volume

3, Issue 3, October - December (2012), pp. 484-489.

IJCATM : www.ijcaonline.org

