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ABSTRACT 
Kernel-based clustering provides a better analysis tool for 

pattern classification, which implicitly maps input samples to 

a highdimensional space for improving pattern separability. 

For this implicit space map, the kernel trick is believed to 

elegantly tackle the problem of “curse of dimensionality”, 

which has actually been more challenging for kernel-based 

clustering in terms of computational complexity and 

classification accuracy, which traditional kernelized 

algorithms cannot effectively deal with. In this paper, we have 

analyzed the merits and deficiencies of KFCM-I/KFCM-II, 

and  KFMC-III and pointed out the connections of these three 

algorithms. 
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1. INTRODUCTION 
Among the MRI analyses, precise measurement of tissue 

distributions is critical for further treatment. But the precise 

measurement by means of MRI image segmentation is still 

challenging because of the task itself and a variety of noise 

corruptions. Though it is not quite a problem to qualitative 

clinic diagnosis, the multiplicative field could severely tamper 

with accurate machine-based image processing and analysis. 

So, the quantitative MRI image analysis needs to rely on bias 

field. 

The prospective methods are basically to reduce the effect of 

bias fields before imaging process. The prospective methods 

use image processing techniques, such as filtering, surface 

interpolation, segmentation, histogram, etc., for intensity 

inhomogeneity correction after imaging process. 

In this paper, we discuss the retrospective correction using 

segmentation results. Due to the assistance of intensity 

correction to image segmentation accuracy, the two parts 

could be considered as the reciprocal ones in one process. For 

segmentation purposes, a rich variety of algorithms could be 

used. Here we are interested in segmentation based on fuzzy 

kernel-clustering due to the adequacy of fuzziness and kernel 

trick. Using the kernel trick computing the inner product of 

two mapped data points in original space, kernel-based pattern 

analysis is assumed to elegantly tackle the problem of “curse 

of dimensionality” and could therefore be used for effectively 

segmenting MRI medical images. In this paper, we introduce 

several kernel-clustering based image segmentation 

approaches and discuss their merits and drawbacks. 

 

2. FRAMEWORK OF CLUSTERING-

BASED IMAGE SEGMENTATION 
Conventionally, fuzzy C-means (FCM) clustering is used for 

image segmentation. To overcome its effectiveness, kernel 

trick and spatial constraints could be used. For example, the 

directly kernelized version of FCM, known as KFCM-I could 

be used to improve the segmentation accuracy by implicitly 

mapping data to a higher dimensional kernel space and 

performing FCM clustering in kernel space, transforming the 

linear method to a nonlinear one. Using a variety of schemes, 

KFCM-I could be improved. For example, a kernel-induced 

distance and spatial penalty term are introduced in the 

objective function of the algorithm called KFCM-II, which 

aims to preserve the efficacy of kernel tricks and 

incorporating the spatial continuity in clustering process. 

Theoretically, both KFCM-I, KFCM-II and KFMC-III could 

be used for image segmentation. Before the discussion of their 

applications, it is necessary to briefly introduce some of 

important backgrounds. 

2.1 FMC 
KFCM-I and KFCM-II are all based on FCM algorithm. FCM 

aims to extract C clusters from D dimensional data set 

containing N data points 
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where i  is the ith cluster center, represented as a linear sum 

of input data points. ki ,  (satisfying ]1,0[, ki  & 

1
1 ,  

C

i ki )denotes the membership of kx  belonging to 

the ith cluster. And m is the clustering constant and usually set 

as 2 for some convenience. 

After the initialization, FCM alternately iterates until the 

termination condition is reached and then uses the obtained 
NCi

k R   to transform the fuzzy clusters to hard ones. 

2.2 KFMC-I 
The direct kernelized version of FCM, known as KFCM-I, is 

actually quite straightforward. In KFCM-I, )(  denotes 

the implicit Mercer map from original data space to higher 

dimensional kernel space (where the mapped data points are 

believed more separable), and equation of FCM could be 

rewritten as follows: 
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where 


i is the ith cluster obtained in kernel space.  

Due to the implicitness of Φ(・), The iterative formulae of  

this equation could not be directly computed. This dilemma 

could be avoided by simplification of the formula and more 

specifically, equation is rewritten as: 
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Now this equation could be iteratively computed. Although 

the clustering becomes feasible, the computational complexity 

has been significantly increased. Even without considering the 

calculation and storage of kernel matrix, this equation 

expands the original one multiplication to at least N2 

multiplications, so the complexity increases from O(1) to 

O(N2), which is not favourable. 

2.3 KFMC-II 
The KFCM-II, is designed to solve the complexity problem. 

In KFMC-II, the 


i  has a pre-image i existing in the 

original space. Compared with KFCM-I, the computational 

complexity has been significantly reduced. 

KFCM-II is effective under following considerations: 

1) ),( kxK is proved a distance defined in the original 

space.  

2) Compared with the cluster center in KFMC-I, KFMC-II is 

a kernel weighted one, but also obtained in the original space. 

So KFCM-II is actually a degenerated one from KFCM-I in 

kernel space to input space. This degeneration disqualifies 

KFCM-II as a kernelized clustering. So, KFCM-II is called 

“fuzzy clustering with kernel-induced distance”. 

Another important issue is that the assumption of the 

existence of pre-image does not actually hold. The linear sum 

containing at least two mapped data points does not have an 

exact pre-image in data space However. Equation of KFMC-II 

is still effective as it is actually the approximate pre-image.  

Although it guarantees the clustering effectiveness, the 

aforementioned approximate pre-image formulation inevitably 

brings the imperfection to KFCM-II, making it less robust and 

of accuracy limitation. 

2.4 KFMC – III 
KFMC-III adopts a reduced-set representation for kernel 

clustering in order to tackle the problems of KFCM-I and 

KFCM-II. KFMC-III does not believe to use unnecessary and 

less accurate all N data points to represent the C cluster 

centers. Instead of this, it uses the data sets which contain 

some typical data points with higher memberships belonging 

to specific cluster, to represent the corresponding cluster 

centers. Here, the collections of these data points are called as 

reduced sets.  

Each clustering iteration is computed only once because this 

term is actually a constant when is  has been determined. 

So, the most complex term is computationally distributed over 

each k. Using this trick, the calculation of equation is 

accelerated after a relatively slow iteration initialization. 

KFMC-III gives the reduced-set representation of kernel 

cluster center. 

So the clustering iterates until the termination condition is 

reached. 

 

In Fig. 1, The illustration of three clusters and their reduced 

sets is given. Because of their high emberships in reduced 

sets, the data points are generally some with the nearest 

distances to their cluster centers while the cluster centers are 

believed appropriately represented by those data points. 

The reduced sets contain typical data points with highest 

memberships belonging to corresponding clusters. Using this 

principle, the reduced sets could be determined. 

3. CONNECTION BETWEEN KFCM-I, 

KFCM-II AND KFCM-III (VIA 

REDUCED-SET REPRESENTATION)  
 KFCM-III (via reduced-set representation) could be regarded 

as a generalized version of KFCM-I and KFCM-II. KFCM-I 

and KFCM-II respectively corresponds to KFCM-III with the 

largest and smallest reduced sets. Apparently, if all reduced 

sets are chosen as the whole input set {x1, x2, ..., xN},  

and the diagonal elements in 

),....,( 2

,

2

2,

2

1, Diii idiag    are identical,  

i.e., ))(,....,( 222

ii
diag 



 , KFCM-III 

therefore becomes KFCM-I. On the other hand,  





i

diag ),...,(( 222  , but setting all reduced sets 

respectively have only one element, so, KFCM-III is reduced 

to KFCM-II. So the idea of KFCM-III is to adjust the sizes of 

each reduced set to well balance the accuracy and efficiency 

of clustering. 
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4. SEGMENTATION PERFORMANCES 

OF KERNEL CLUSTERING 

ALGORITHMS OVER σ 
For studying segmentation , the performances of different 

kernel clustering algorithms over isotropic Gaussian kernel 

parameter   were compared. This setting was mean for the 

KFCM-III with i parameterization, it satisfies Ii 

(where I is an identity matrix). 

By using different  , this experiment gets a series of 

accuracy curves of FCM, KFCM-I, KFCM-II and KFCM-III 

over   for segmenting a coronal slice respectively corrupted 

by 0%, 1% and 3% noise. Here, the clustering accuracy of 

FCM does not depend on  . So, its segmentation curve is 

represented as a horizontal line. Fig.2 shows segmentation 

accuracy curves. The statistics are obtained in the experiments 

using different algorithms over different values of  , 

ranging from 10 to 150 with the step of 5. It is easy to find 

that the segmentation accuracy of all kernel-based clustering 

(KFCM-I, KFCM-II and KFCM-III) are all dependent on   

and there exists relative stable range that the tuned   is 

located in. Outside the range, the accuracy dramatically 

deteriorates. The experimental results show that, the discussed 

KFCM-III outperforms its counterparts when using tuned  . 

 

Fig. 2 Typical segmentation accuracy curves of FCM, KFCM-

I, KFCM-II and KFCM-III (via reduced-set representation) 

over different values of σ on a phantom slice respectively 

corrupted by different noise levels. (a) Results on image slice 

corrupted by 0% noise; (b) results on image slice corrupted by 

1% noise; (c) results on image slice corrupted by 3% noise 

5. SEGMENTATION COMPARISON 
In an experiment on a coronal slice, the visual segmentation 

comparison of FCM,KFCM-I, KFCM-II and KFCM-III is 

given in Fig. 3. The segmentation results are pseudo-coloured, 

with the red region corresponding to GM, blue region 

corresponding to WM and the green region corresponding to 

CSF. In Fig. 3, the optimal segmentations obtained by 

different algorithms using tuned Gaussian kernel parameter 

  are given. It is easy to find that the result obtained by 

KFCM-III is the closest to the ground-truth. 

 

Fig.3 Pseudo-coloured segmentation results of                                                                                    

FCM, KFCM-I, KFCM-II and KFCM-III on a                                                                                   

phantom slice with red region corresponding to                                                                                   

GM, green region corresponding to CSF and blue                                                                                   

region corresponding to WM. (a) Original image;                                                                                   

(b) ground-truth segmentation; (c) result of FCM;                                                                                   

(d) optimal result of KFCMI with tuned parameter                                                                                   

σ=40, segmentation accuracy is 96.28%; (e) optimal                                                                                   

result of KFCM-II with tuned parameter σ=25,                                                                                   

segmentation accuracy is 96.28%; (f) optimal result                                                                                   

of KFCM-III via reduced-set representation,                                                                                  

segmentation accuracy is 96.73% 

Reduced sets and bias field estimation for the segmentation 

experiment corresponding to the results presented in Fig. 3, 

the pseudo-coloured reduced-set representation of KFCM-III 

in Fig. 4. 

 

Fig. 4 Pseudo-coloured reduced sets of   KFCM-                                                                           

KFCM-III on a phantom slice with σ=25. (a)                                                                                        

Reduced set for GM; (b) reduced set for CSF; (c)                                                                                         

reduced set for WM 

Figure 4 shows the pseudo-coloured pixels of reduced sets for 

the three clusters, with red region, green region and blue 

region corresponding to GM, CSF andWM, respectively. 

The elements of reduced set are basically some pixels with the 

highest memberships belonging to specific cluster. It is not 

difficult to find from Fig. 4 that the reduced sets are 

apparently the subsets of corresponding hard clusters. Figure 

5 shows the original target image, corrected image and the 

bias field estimation. It is apparent that the corrected image is 

more piece-wise smooth than uncorrected one. The estimated 

bias field is shown in Fig. 5(c). Besides the low frequencies 

reflecting the true bias field, the obtained bias field also 

contains some high frequencies, spatially occurring on the 

borders of different tissues. High frequencies could further be 

removed for more accurate bias field estimation. There are a 

number of high-frequency filtering methods available. 

                                                                                         

Fig.5 Bias field estimation and image correction (a) 

Uncorrected image, (b) corrected image, (c) bias field 

estimation 
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The discussed image correction and the preclassification 

scheme could benefit each other, making a fast segmenting 

convergence. Using the discussed intensity correction scheme, 

the number of effective (unique) input data points M has been 

an approximate exponentially decreasing function of 

clustering iterations.  

Figure 6 gives the curve of M over the clustering iterations, 

where the legend symbol pnXrfY (e.g., pn1rf40) means the 

experimental slice is corrupted by X% noise and Y % bias 

field. For clarity purpose, only four curves have been given in 

Fig. 6 although the experiments with other image corruption 

combinations had given the similar curves like the four ones 

shown in Fig. 6. Because of the decrease of M in clustering 

iteration, the computational complexity has also iteratively 

reduced. By this way, the introduction of intensity correction 

does not bring additional computational complexity while 

improving the segmentation accuracy if correction process is 

well harnessed.  

 

Fig. 6 Curves of number of effective                                                                                                     

input data points over clustering iterations with image 

intensity correction 

6. CONCLUSION 
In this paper, we have studied the merits and deficiencies of 

FCM, KFCM-I, KFCM-II, and KFMC-III with finding out the 

connections of algorithms. In our study, KFCM-II could be 

regarded as the approximate pre-image version of KFCM-I. 

As it is a direct kernelized version of classic FCM algorithm, 

needs the unnecessary computational complexity. Due to their 

deficiencies, KFMC-III gives better results. KFMC-III a novel 

fast kernel clustering algorithm, via reduced-set representation 

could be considered as a generalized version of KFCM-I and 

KFCM-II, and combines the strength of both when using 

appropriate parameterization. In this work, we have contended 

that the parsimony for representing cluster centers could be 

exploited. Using this idea, the use of some data points with 

highest memberships, included in a subset of input data called 

reduced set for specific cluster, to represent the corresponding 

cluster center is used. KFMC-III could be favourably used for 

dealing with large scale clustering problems. The application 

on MRI image segmentation with a bias field estimation 

formulated by clustering residuals shows its effectiveness and 

superiority to its kernelized counterparts. 
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