
International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 5, January 2015

29

Improved Selection Sort Algorithm

J. B. Hayfron-Acquah, Ph.D.
Department of Computer Science

Kwame Nkrumah University of
Science and Technology

Kumasi, Ghana

Obed Appiah
University of Energy and Natural

Resources
Sunyani, Ghana

K. Riverson, Ph.D.
CSIR

Accra, Ghana

ABSTRACT
One of the basic problems of Computer Science is sorting a

list of items. It refers to the arrangement of numerical or

alphabetical or character data in statistical order. Bubble,

Insertion, Selection, Merge, and Quick sort are most common

ones and they all have different performances based on the

size of the list to be sorted. As the size of a list increases,

some of the sorting algorithm turns to perform better than

others and most cases programmers select algorithms that

perform well even as the size of the input data increases. As

the size of dataset increases, there is always the chance of

duplication or some form of redundancies occurring in the

list. For example, list of ages of students on a university

campus is likely to have majority of them repeating. A new

algorithm is proposed which can perform sorting faster than

most sorting algorithms in such cases. The improved

selection sort algorithm is a modification of the existing

selection sort, but here the number of passes needed to sort

the list is not solely based on the size of the list, but the

number of distinct values in the dataset. This offers a far

better performance as compared with the old selection sort in

the case where there are redundancies in the list.

General Terms
Algorithms, Sorting Algorithms

Keywords
Algorithms, sorting algorithms, selection sort, improved

selection sort, redundancies in dataset

1. INTRODUCTION
One of the basic problems of Computer Science is sorting a

list of items. This is the arrangement of a set of items either

in increasing or decreasing order. The formal definition of

the sorting problem is as follows:

Input: A sequence having n numbers in some random order

(a1, a2, a3, ….. an)

Output: A permutation (a‟1, a‟2, a‟3, ….. a‟n) of the input

sequence such that

a‟1 ≤ a‟2 ≤ a‟3 ≤ ….. a‟n

For instance, if the given input of numbers is 59, 41, 31, 41,

26, 58, then the output sequence returned by a sorting

algorithm will be 26, 31, 41, 41, 58, 59 [1].

Sorting is considered as a fundamental operation in

Computer Science as it is used as an intermediate step in

many programs. For example, the binary search algorithm

(one of the fastest search algorithms) requires that data must

be sorted before the search could be done accurately at all

times. Data is generally sorted to facilitate the process of

searching. As a result of its vital or key role in computing,

several techniques for sorting have been proposed. The

bubble, insertion, selection, merge, heap, and quick sort are

some of the common sorting algorithms. Due to high

number of sorting algorithms available, the best one for a

particular application depends on various factors which were

summarised by Jadoon et al. (2011) as:

 The size of the list (number of elements to be

sorted).

 The extent up to which the given input sequence is

already sorted.

 The probable constraints on the given input values.

 The system architecture on which the sorting

operation will be performed.

 The type of storage devices to be used: main

memory or disks [4].

Almost all the available sorting algorithms can be

categorized into two groups based on their difficulty. The

complexity of an algorithm and its relative effectiveness are

directly correlated [5]. A standardized notation i.e. Big O(n),

is used to describe the complexity of an algorithm. In this

notation, the O represents the complexity of the algorithm

and n represents the size of the input data values. The two

groups of sorting algorithms are O(n2), which includes the

bubble, insertion, selection sort and O(nlogn) which includes

the merge, heap & quick sort.

1.1 Selection Sort Algorithm
The concept of the existing selection sort (SS) algorithm is

simple and can easily be implemented as compared to others

such as the merge or quick sorting. The algorithm does not

need extra memory space in order to perform the sorting.

The SS simply partition the list into two main logical parts,

the sorted part and the unsorted part. Any iteration picks a

value form the unsorted and places it in the sorted list,

making the sort partition grow in size while the unsorted

partition shrinks for each iteration. When adding to the

sorted list, the algorithm makes sure that the value is added at

the right position to ensure an order sequence of the sorted

partition. The process is terminated when the number of

items or the size of the unsorted is one (1). The procedure to

select a value to be moved to the sorted list will return

minimum value or maximum value in the unsorted partition,

which will be swapped to position the item correctly.

1.2 Algorithm: Selection Sort (a[], n)
Here a is the unsorted input list and n is the size of the list or

number of items in the list. After completion of the algorithm

the array will become sorted. Variable max keeps the

location of the maximum value in each iteration.

k n-1

Repeat steps 3 to 6 until k=1

Set max=0

International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 5, January 2015

30

Repeat for count=1 to k

If (a[count]>a[max])

Set max=count

End if

 Interchange data at location k and max

Set k  k - 1

Table 1.0 shows the time complexity of the algorithm in

three different situation of the input list.

Table 1.0: Time Complexity of Selection Sort Algorithm

Best case Worst case Average case

O(n2) O(n2) O(n2)

Various improved selection sorting algorithms have been

proposed and all works better than the Selection Sort

Algorithm. Optimized Selection Sort Algorithm (OSSA)

starts sorting the array from both ends. In a single iteration,

the smallest and largest elements in the unsorted part of the

array are searched and swapped[2]. The array is logically

partition into three parts; lower-sorted, unsorted, upper-

sorted. The search for the maximum and minimum is done

in the unsorted partition and the minimum is moved to the

lower-sorted and the maximum to the upper-sorted. All

values in the upper-sorted are greater or equal to the values in

the lower-sorted. The process is continued until the whole

list or array is sorted [3]. The algorithm is able to half the

run time of the selection sort, O(n2)/2, which is better but still

exhibit a time complexity of O(n2).

The concept of the Enhance Selection Sort Algorithm

(ESSA) is to memorize the location of the past maximum and

start searching from that point in the subsequent iteration[2].

This enables the algorithm to avoid having to search for the

maximum values form the beginning of the unsorted partition

to the end. This technique limits the number of comparisons

the algorithm performs during each iteration, hence

performing better than the existing selection sort algorithm.

The arrangement of the elements of the list influences the run

time greatly. The same set of data may take different times

to be sorted as a result of their arrangement. The average

case of the algorithm is however O(n2).

Hybrid Select Sort Algorithm (HSSA) uses a technique that

prevent the algorithm from performing unnecessary iterations

by evaluating the content of the unsorted partition for ordered

sequence so as to terminate quickly. When the list is fully

sorted or partially sorted, its run time is better when

compared with the existing selection algorithm. The modified

selection sort algorithm uses a single Boolean variable

„FLAG‟ to signal the termination of execution based on the

order of the list, a[i-1] >= a[i] >=a[i+1] [6]. The best scenario

is when the list is already ordered, here the algorithm

terminate during the first pass, hence will have a run time of

O(n). What this means is that, when data is not ordered, the

algorithm behaves generally like the old selection sort

algorithm.

2. CONCEPT OF IMPROVED

SELECTION SORT ALGORITHM
Generally, large data sample will contain a couple of

repetitions. For example sorting the ages of citizens of a

country of population of about 10 million will contain a lot of

repetitions. If age ranges between 0 to 100 then each age

value could have a frequency of about 100,000

(10,000,000/100). In terms of population, more than half

will be below the ages of fifty (50). The existing selection

sort will execute such list in the order of O(n2) in the worst

case scenario, but the proposed algorithm can do better. The

main concept of the proposed algorithm is to evaluate the

data in the list and keep track of distinct values in the list.

This makes it possible to perform multiple swapping at each

pass unlike the existing selection sort which performs at most

1 at each pass, hence reducing the run time for sorting the

list. The technique used is simple; a queue is maintained to

keep the locations of all the values that are the same as the

value that is held as the Minimum or Maximum. At the end

of the list, all the locations on the queue are swapped into

their respective positions. Where the subsequence search

will begin from can be computed as (i  i+x), where i

points to the start of the unsorted partition and x is the

number of items that were dequeue. The worst case happens

when there are no repetition in the list, but can guarantee best

case run time O(n) when all the values in the list are the same

or the number of distinct values is relatively small.

2.1 Improved Selection Sort Algorithm

1. Initialise i to 1

2. Repeat steps 3-5 until the i equals n.

3. Search from the beginning of the unsorted part of

the list to the end.

4. Enqueue the locations of all values that are the

same as the Maximum value.

5. Use the indices on the queue to perform swapping.

Example of Improved Selection Sort (Ascending Order)

List – A[n]

Queue – Q[n]

Initial List

A 2 2 1 5 2 5 4 4 5 5

Q

1st Pass

A 2 2 1 5 2 5 4 4 5 5

Q 2

Index 2 added to the queue.

2nd Pass

A 1 2 2 5 2 5 4 4 5 5

Q 1 2 4

Indices 1, 2 and 4 added to the queue because they all store

the same value as the minimum value during the second (2nd)

Pass.

International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 5, January 2015

31

3nd Pass

A 1 2 2 2 5 5 4 4 5 5

Q 6 7

Indices 6 and 7 added to the queue because they all store the

same value as the minimum value during the third (3rd) Pass.

4th Pass

A 1 2 2 2 4 4 5 5 5 5

Q 6 7 8 9

Indices 6, 7, 8 and 9 added to the queue because they all

store the same value as the minimum value during the fourth

(4th) Pass.

Sorted List

A 1 2 2 2 4 4 5 5 5 5

The list is sorted at the end of the fourth iteration or pass.

The existing selection sort will take more time to sort the

same list.

Another example with original list as follows

Original List

A=[2, 2, 4, 2, 1, 2, 2, 3, 3, 4, 4, 2, 3, 4, 1, 2, 3, 4, 4, 2]

1 Pass

A [2, 2, 4, 2, 1, 2, 2, 3, 3, 4, 4, 2, 3, 4, 1, 2, 3, 4, 4, 2]

Q [4, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Indices 4,14 are added to the queue

After swapping

A [1, 1, 4, 2, 2, 2, 2, 3, 3, 4, 4, 2, 3, 4, 2, 2, 3, 4, 4, 2]

2 Pass

A [1, 1, 4, 2, 2, 2, 2, 3, 3, 4, 4, 2, 3, 4, 2, 2, 3, 4, 4, 2]

Q [3, 4, 5, 6, 11, 14, 15, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Indices 3, 4, 5, 6, 11, 14, 15, 19 are added to the queue

After swapping

A [1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 3, 4, 3, 3, 3, 4, 4, 4]

3 Pass

A [1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 3, 4, 3, 3, 3, 4, 4, 4]

Q [12, 14, 15, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Indices 12, 14, 15, 16 are added to the queue

After swapping

A [1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4]

4 Pass

A [1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4]

Q [14, 15, 16, 17, 18, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Indices 14, 15, 16, 17, 18, 19 are added to the queue

After swapping

A [1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4]

The Improved Selection Sort Algorithm (ISSA) is content

sensitive, in that the nature of data distribution of the list will

greatly influence the run time of the algorithm. The run time

of the ISSA depends on the number of distinct values that are

found in the list to be sorted. If the number of distinct values

is big or equal to n, then the run time of the algorithm can be

approximated as O(n2). However, if the number is very

small, the algorithm completes the sorting in the order of

O(n).

Pseudocode

A[n]

Queue[n] // Same size as the size of the array

i  0

while i < (n-1)

 Rear  0

 Max  A[i]

 Queue[Rear]  i

 ji+1

 while j<(n)

 if Max < A[j]

 Max  A[j]

 Rear  -1

 If Max = A[j]

 Rear  Rear + 1

 Queue[Rear] = j

 //Perform the swapping of values

 Front  0

 While (Front <= Rear)

 Temp A[Queue[Front]]

 A[Queue[Front]]  A[i]

 A[i]  Temp

 i  i + 1

 Front  Front + 1

3. ANALYSES OF ISSA
The Improved Selection Sort Algorithm is very simple to

analyse, considering the fact that the time complexity or run

time of the algorithm depends on two main factors.

1. Size of list (n)

2. Number of distinct values in the list. dV

Run Time = O(n.dV)

International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 5, January 2015

32

Table 1shows the runtime of a set of n values with different

number of distinct values.

Table 1 Run time of Improved Selection Sort Algorithm

(ISSA)

Number of

Distinct Values

Run Time Big-O

1 T = n O(n)

2 T= 2n O(n)

3 T=3n O(n)

...

n-2 T = (n-2)n O(n2)

n T = n2 O(n2)

Figure 1: illustrates the relationship between distinct

values in the list and the run time of the ISSA.

Fig 1: Run time of list of size n and number of distinct values

using ISSA. The performance of the Improved Selection

could also be enhanced by introducing the FLAG concept in

the HSSA to terminate sorting when the list is already sorted.

Figure 2: Number of distinct values and run time

complexity of ISSA.

Fig 2 illustrates the relationship between the number of

distinct values in a list and the time needed to sort it. The

number is illustrated as a ratio of the size of the list (n). If

the number of distinct value is half the size of the list, then

the algorithm will take about half the time the old selection

sort algorithm takes. From figure 2, as the number of distinct

values decreases, the run time for the sorting also decrease.

Decreasing distinct values:

𝑛

1
,
𝑛

2
,
𝑛

3
,
𝑛

4
, … ,

𝑛

𝑛 − 2
 ,

𝑛

𝑛 − 1
, 1

4. ANALYSIS OF SS, OSSA, ESSA,

HSSA AND ISSA WITH ASAMPLE

DATASET
A given set of data of size 1000 was finally used to analyse

the performances of the various selection sort algorithms

including Improved Selection Sort Algorithm (ISSA). The

number of redundancies in the set was quantified in terms of

percentages and 11 different sets of values were used to test

the algorithms. The data redundancies in set 1 through 11

were 0%, 10%, 20%, 30%, 40%,50%, 60%, 70%, 80%, 90%,

100%. Table 2 illustrates the run times for the various

algorithms on the various categories of the dataset.

Table 2: Estimated run times of various Selection Sort

algorithms when input dataset were not sorted

Red. SS OSSA ESSA HSSA ISSA

'0% 499500 250000 371580 498501 499500

'10% 499500 250000 377050 498501 449550

'20% 499500 250000 375967 498501 399600

'30% 499500 250000 378348 498501 349650

'40% 499500 250000 383873 498501 299700

'50% 499500 250000 398155 498498 249750

'60% 499500 250000 399608 498501 199800

'70% 499500 250000 418296 498500 149850

'80% 499500 250000 433374 498495 99900

'90% 499500 250000 463134 498465 49950

'100% 499500 250000 49950 998 1000

n

n/2

n/4

n/8
n/16n/320

5000

10000

15000

20000

25000

Number of distinct values and
worst case run time of ISSA

International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 5, January 2015

33

Figure 3: Estimated run times of various Selection Sort

algorithms when input dataset were not sorted

The actual comparison of these selection sort algorithms

could be done when the dataset is randomized. Here the

performance of the improved selection sort algorithm (ISSA)

recorded best performance when the percentages of

redundancies exceeds 50%

5. CONCLUSION
This paper proposed a new selection sort algorithm which

performs better than the existing selection sort algorithm and

in most cases may have a run time in order of O(n) which is

ideal for sorting relatively large set of data. The strength of

the algorithm depends on the distinct values in the list and

where there are more of such redundancies or repetitions in

the list, it performs better than the existing selection sort

algorithm and also a couple of the optimized selection sort.

In situation where the number of distinct values is very small,

the algorithm may perform better than even the quick sort

and merge sort algorithm which have run time O(nlogn).

6. REFERENCES
[1] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and

Stein, C. 2001. Introduction to Algorithms. MIT Press.

Cambridge. MA. 2nd edition. 2001

[2] Jadoon, S., Solehria, S. F., Qayum, M., “Optimized

Selection Sort Algorithm is faster than Insertion Sort

Algorithm: a Comparative Study” International Journal

of Electrical & Computer Sciences IJECS-IJENS Vol:

11 No: 02, 2011

[3] Jadoon, S., Faiz S., Rehman S., Jan H., “Design &

Analysis of Optimized Selection Sort Algorithm”, IJEC-

IJENS Volume 11 Issue 01, 2011.

[4] Khairullah, M. “Enhancing Worst Sorting Algorithms”.

International Journal of Advanced Science and

Technology Vol. 56, July, 2013

[5] Kapur, E., Kumar, P. and Gupta, S., “Proposal of a two

way sorting algorithm and performance comparison

with existing algorithms”. International Journal of

Computer Science, Engineering and Applications

(IJCSEA) Vol.2, No.3, June 2012

[6] “Design and Analysis of Hybrid Selection Sort

Algorithm”. International Journal of Applied Research

and Studies (iJARS) ISSN: 2278-9480 Volume 2, Issue

7 (July- 2013) www.ijars.in

0

100000

200000

300000

400000

500000

600000

'0
%

'1
0
%

'2
0
%

'3
0
%

'4
0
%

'5
0
%

'6
0
%

'7
0
%

'8
0
%

'9
0
%

'1
0
0
%

SS OSSA ESSA HSSA ISSA

IJCATM : www.ijcaonline.org

