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ABSTRACT 

The presence of noise in digital images degrades the visual 

quality by corrupting the information associated with the 

image. The aim of denoising is to restore an image from its 

noisy version by preserving signal information. In this paper, 

we are considering an image corrupted by additive Gaussian 

noise. The image is modeled as Markov random field (MRF) 

and an estimation of maximum-a-posteriori (MAP) is 

obtained using graduated non-convexity. The results are 

compared with other spatial domain filtering methods. The 

discontinuity adaptive prior helps in preserving edge 

information. The results suggest that proposed method has an 

improved performance.    

Keywords 

Image denoising, Markov random field, Discontinuity 

adaptive, Graduated non-convexity. 

1. INTRODUCTION 
Analysis of an image in the presence of noise will be difficult. 

The noise may be due to non-linearity of capturing device, 

poor lighting and/or other atmospheric conditions. Restoring 

such images is a challenging issue. The main aim of any 

denoising algorithm is to suppress the noise while retaining 

details in the image. It is difficult to attain this objective. 

Many denoising methods have been developed over past 

decades which can be grouped into two basic categories: 

transform domain [1-5] and spatial domain [6-9][11]. While, 

spatial domain methods use direct pixel values for denoising, 

transform domain methods project image onto a set of bases 

and process the coefficients. Research depicts that both 

approaches are being used extensively in denoising. This 

paper aims at developing edge preserving spatial domain 

method of denoising.  

The degradation function in spatial domain is represented as, 

𝑦 = 𝑥 ∗  + 𝜂                                          (1) 

where 𝑦 is degraded image,  is degradation function, 𝑥 is 

original image, 𝜂 is additive noise and * is the convolution 

operator [12]. In this paper degradation due to noise is 

considered. Hence Equation (1) takes the form, 

𝑦 = 𝑥 + 𝜂                                             (2) 

where, 𝜂 is considered as Gaussian noise.  

2. SPATIAL DOMAIN DENOISING 
Methods where the pixel intensities are used directly in the 

denoising process are said to be spatial domain filters. Almost 

all spatial domain methods perform denoising locally 

considering neighboring pixels into account. Local mean and 

variance are used as the basis for making changes that depend 

on image characteristics in a predefined region about each 

pixel in the image. Local mean and variance is given by [7] 

𝑚𝑖 ,𝑗 =
1

(2𝑚 + 1)(2𝑛 + 1)
  𝑦𝑘 ,𝑙

𝑗+𝑚

𝑙=𝑗−𝑚

𝑛+𝑖

𝑘=𝑖−𝑛

             (3) 

𝑣𝑖 ,𝑗 =
1

(2𝑚 + 1)(2𝑛 + 1)
   𝑦𝑘 ,𝑙 −𝑚𝑖 ,𝑗  

2

𝑗+𝑚

𝑙=𝑗−𝑚

𝑛+𝑖

𝑘=𝑖−𝑛

     (4) 

where 𝑚𝑖 ,𝑗  and 𝑣𝑖 ,𝑗  are mean and variance w.r.t (𝑖, 𝑗). 

Lee [8] extended the idea of [7] by defining a priori mean and 

variance. A priori mean 𝑚 𝑖 ,𝑗  is same as Equation (3) and 

variance is given by; 

𝑣 𝑖 ,𝑗 =
1

(2𝑚 + 1)(2𝑛 + 1)
  (𝑦𝑘 ,𝑙 −𝑚 𝑖 ,𝑗 )2

𝑗+𝑚

𝑙=𝑗−𝑚

𝑛+𝑖

𝑘=𝑖−𝑛

− 𝜎𝑛
2 (5) 

Now, final estimated image 𝑥 𝑖 ,𝑗  is computed by 

𝑥 𝑖 ,𝑗 = 𝑚 𝑖 ,𝑗 + 𝑘𝑖 ,𝑗  𝑦𝑖 ,𝑗 −𝑚 𝑖,𝑗                        (6) 

where 𝑘𝑖 ,𝑗  is gain and is given by; 

𝑘𝑖 ,𝑗 =
𝑣 𝑖 ,𝑗

𝑣 𝑖 ,𝑗 + 𝜎1
2                                   (7) 

𝜎1
2 is a constant. 

For low signal to noise ratio, 𝑣 𝑖 ,𝑗  is small compared to 𝜎1
2, 

𝑘𝑖 ,𝑗 ≅ 0 and the estimated  𝑥 𝑖 ,𝑗  is 𝑚 𝑖 ,𝑗 . For a high signal to 

noise ratio, 𝑣 𝑖 ,𝑗  is much larger than 𝜎1
2, 𝑘𝑖 ,𝑗 ≅ 1 and  𝑥 𝑖 ,𝑗 ≅

𝑦𝑖 ,𝑗 . 

Lee filter considers that all pixel values with in a local 

window are almost same [9]. A weighted form of Equation (5) 

given as [10]; 

𝑣𝑖 ,𝑗 =   𝑤 𝑖, 𝑗, 𝑘, 𝑙 [𝑦𝑘 ,𝑙 −𝑚𝑖,𝑗 ]2

𝑗+𝑚

𝑙=𝑗−𝑚

𝑖+𝑛

𝑘=𝑖−𝑛

           (8) 

Jin et al., [9] proposed an adaptive approach to select 𝑤(∙). 

𝑤 𝑖, 𝑗, 𝑘, 𝑙 =
𝐾(𝑖, 𝑗)

1 + 𝑎 max[𝜖2,  𝑦 𝑖, 𝑗 − 𝑦 𝑘, 𝑙 )2  
       (9) 

where 𝐾 𝑖, 𝑗  is gain and is given by, 

𝐾 𝑖, 𝑗 =   
1

1 + 𝑎  max  𝜀2,  𝑦 𝑖, 𝑗 − 𝑦 𝑝, 𝑞  
2
  𝑝 ,𝑞

 

−1

(10) 

where 𝑎 (𝑎 > 0) and 𝜀 are the parameters of weight function. 

Using the weight function in Equation (9), [9] realizes local 

mean and variance adaptively as, 
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𝑚 𝑖,𝑗 =   𝑤 𝑖, 𝑗, 𝑘, 𝑙 𝑦(𝑘, 𝑙)

𝑗+𝑚

𝑙=𝑗−𝑚

𝑖+𝑛

𝑘=𝑖−𝑛

               (11) 

𝑣 𝑖 ,𝑗 =   𝑤 𝑖, 𝑗, 𝑘, 𝑙 [𝑦 𝑘, 𝑙 − 𝑚 (𝑖, 𝑗)]2

𝑗+𝑚

𝑙=𝑗−𝑚

𝑖+𝑛

𝑘=𝑖−𝑛

     (12) 

Bilateral filtering is a non-linear filter proposed by Tomasi 

and Manduchi [11]. It is non-iterative and local approach to 

edge preserving smoothing. The gray level value at each pixel 

is calculated by considering the geometric and photometric 

similarities between neighboring pixels with in spatial 

window. In discrete form, bilateral filtering is given as; 

𝐼∗ 𝑥  =
1

𝑘(𝑥 )
 𝐼(𝜉 )

𝜉  𝜖𝑁𝑠

∙ 𝑐 𝜉 , 𝑥  ∙ 𝑠  𝐼 𝜉  , 𝐼 𝑥          (13) 

where 𝑥  and 𝜉  are spatial coordinates. I is noisy image, 𝐼∗ is 

filtered image, 𝑁𝑠 is spatial window, 𝑘(𝑥 ) is the normalization 

constant which assures the weights 𝑐(∙) ∙ 𝑠(∙) are added up to 

1 with in 𝑁𝑠. 𝑐 and 𝑠 are measures of geometric and 

photometric similarities between neighborhoods respectively. 

Bilateral filtering is a non-iterative method only if a wide 

spatial window is used. A wide spatial window may over 

smooth sharp edges. Therefore, it is necessary to make a 

balance between the size of spatial window and the number of 

iterations [13] to be performed in bilateral filtering. Trilateral 

filter [14] considers not only the geometric and photometric 

similarities, but also the local structural similarity to smooth 

the images with a narrow spatial window while preserving 

edges. It applies lowpass filter for homogeneous regions. 

Smoothing along edges is achieved by considering geometric, 

photometric and local structural similarities between 

neighboring pixels. 

Rudin and Osher [15] introduced Total Variation (TV) 

minimization for continuous signals. Later its discrete version 

was developed by Chen et al., [16]. Graphs and edge 

derivatives are used to find edges. Digital TV filter contains 

two parameters; 

 a small positive parameter 𝑎 called the regularization 

parameter. 

 a positive number 𝜆 called fitting parameter. 

TV filtering at location 𝛼 has following steps; 

(i) Compute local variation  |∇𝑢|𝛼  at 𝛼 and all its 

neighbourhoods𝛽. 

(ii) Compute the weights 𝑤𝛼 ,𝛽  using 

𝑤𝛼 ,𝛽 𝑢 =
1

|∇𝛼𝑢|𝛼
+

1

|∇𝛽𝑢|𝛼
                       (14) 

(iii) Compute the filter coefficients 𝛼𝛼  and 𝛼𝛽 ; 

𝛼𝛽 =
𝑤𝛼𝛽 (𝑢)

𝜆 +  𝑤𝛼𝛾 (𝑢)𝛾~𝛼
                          (15) 

𝛼𝛼 =
𝜆

𝜆 +  𝑤𝛼𝛾  𝑢 𝛾~𝛼
                      (16) 

(iv) Filtering 𝐹𝛼 𝑢 =  𝛼𝛽 𝑢𝛽 + 𝛼𝛼𝑢𝛼
0

𝛾~𝛼  

TV is an iterative process. The parameter 𝜆 controls the 

regularity and fidelity terms. As 𝜆 gets smaller, the weight of 

the regularity term increases. Also, details and texture will get 

oversmoothed [17]. 

Non-local means (NLM) is one of the state-of-the-art 

denoising methods proposed by Buades et al., [6], [17 – 19]. 

The basic idea is that, an image consists of repeated structures 

and averaging them will reduce the noise. At location 𝑖, the 

estimated value NL[y](i) is computed as a weighted average 

of all pixels in the image; 

𝑁𝐿 𝑦  𝑖 =  𝑤 𝑖, 𝑗 𝑦 𝑗 

𝑗𝜖𝐼

                    (17) 

where the family of weights {𝑤 𝑖, 𝑗 }𝑗  depends on the 

similarity between the pixels 𝑖 and 𝑗, and satisfy the 

conditions 0 ≤ 𝑤(𝑖, 𝑗) ≤ 1 and  𝑤 𝑖, 𝑗 = 1.𝑗  

Similarity between two pixels 𝑖 and 𝑗 depends on the 

similarity of intensity gray level vectors 𝑣(𝑁𝑖) and 𝑣(𝑁𝑗 ), 

where 𝑁𝑘  denotes a square neighbourhood centered at 𝑘. The 

weight function is defined as, 

𝑤 𝑖, 𝑗 =
1

𝑧 𝑖 
𝑒
− 

| 𝑣 𝑁𝑖 −𝑣 𝑁𝑗   |2,𝑎
2

2                (18) 

where 𝑧(𝑖) is the normalizing constant defined as, 

𝑧 𝑖 =  𝑒
− 

| 𝑣 𝑁𝑖 −𝑣 𝑁𝑗   |2,𝑎
2

2

𝑗

                 (19) 

and the parameter  acts as the degree of filtering. 

For an image with 𝑀 pixels, 𝑀 weights have to be computed 

at each pixel. Hence a total of 𝑀2 weights make the algorithm 

computationally intensive [20]. Also, this approach is suitable 

for denoising images with periodic texture patterns, but fails 

for severely degraded image due to the corruption of image 

structures. In most of the denoising algorithms there is always 

a trade-off between denoising methods and edge preservation. 

In this work, an attempt is made to model the image as MRF 

with a discontinuity adaptive prior, which helps in better edge 

preservation. 

2.1 Markov Random Field 
Markov random field models provide a unified framework for 

many computer vision tasks. For problems in low-level vision, 

probabilistic prior models of the spatial structure of images or 

scene properties are often formulated as Markov random 

fields [21 – 25]. Markov random fields have found many 

areas of application including image denoising [26], stereo 

imaging [27], optical flow estimation [28] and texture 

classification [29], to name a few. 

MRF is a two-dimensional (2D) random process defined on a 

discrete lattice. Usually a lattice is a regular grid on the 2D 

plane. They yield flexible stochastic image models describing 

the intensity distribution in images. The main advantage is 

that, one can obtain a global representation of the image by 

means of local conditional probability distributions. This 

makes MRF quite attractive in several image processing 

applications including image restoration [22]. 

A random field 𝐹 =  𝐹𝑖𝑗   designed over lattice 𝒮 is a Markov 

random field considering the neighborhood system 𝒩, iff 

 𝑃 𝐹 = 𝑓 > 0,∀𝑓 ∈ 𝔽 (𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) 

 𝑃 𝐹𝑖𝑗 = 𝑓𝑖𝑗  𝐹𝑘𝑙 = 𝑓𝑘𝑙∀ 𝑘, 𝑙 ≠  𝑖, 𝑗  = 𝑃 𝐹𝑖𝑗 = 𝑓𝑖𝑗 |𝐹𝑘𝑙 =

𝑓𝑘𝑙 , (𝑘, 𝑙) ∈ 𝒩𝑖𝑗   (𝑀𝑎𝑟𝑘𝑜𝑣𝑖𝑎𝑛𝑖𝑡𝑦) 

for all (𝒊, 𝒋) ∈ 𝓢. Here, 𝒇 is realization of random field 𝑭 and 

𝔽 represents the configuration space. 

2.2 Gibbs Random Field 
Gibbs random field 𝐹 =  𝐹𝑖𝑗    over neighbourhood system 𝒩 

is defined by joint distribution function 
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𝑃 𝐹 = 𝑓 =
1

𝑍
exp −𝑈 𝑓                                (20) 

where 𝑈 𝑓 =  𝑉𝑐 𝑓  𝑎𝑛𝑑 𝑍 =  exp{−𝑈 𝑓 }𝑓∈𝔽𝑐∈𝐶  

The distribution given in Equation(20) is called the Gibbs 

distribution (GD). The term 𝑈(𝑓)  (energy function) is 

associated with cliques and 𝑍 is partition function. 𝑉𝑐 𝑓  is 

clique potential and its careful selection decides the power of 

MRF. GRF is characterized by global property, whereas, 

MRF represents local property. A theorem by Hammersly and 

Clifford [30] established an equivalence relation between 

GRF and MRF. This made MRF to be used for image 

representation. 

3. PROBLEM FORMULATION 
To solve for Equation (2), a priori information about 𝑥 is 

important and it can be accomplished by Bayesian MAP 

formulation. The MAP estimate of the denoised image 𝑥 is 

given by, 

𝑥 = 𝑎𝑟𝑔max
𝑥
 𝑃 𝑥 𝑦                                  (21) 

Using Bayes‟ rule, this can be written as, 

𝑥 = 𝑎𝑟𝑔max
𝑥

 
𝑝 𝑦 𝑥 𝑝(𝑥)

𝑝(𝑦)
  

or equivalently, 

𝑥 = 𝑎𝑟𝑔max
𝑥
 𝑝 𝑦 𝑥 𝑝(𝑥)                           (22) 

Taking the logarithm of the posteriori probability, the MAP 

estimate of 𝑥 is given by, 

𝑥 = 𝑎𝑟𝑔max
𝑥
 𝑙𝑜𝑔 𝑃(𝑦|𝑥) + 𝑙𝑜𝑔 𝑃(𝑥)               (23) 

From MRF-Gibbs equivalence [30],  

𝑃 𝑋 = 𝑥 =
1

𝑍
𝑒𝑥𝑝 −𝑈(𝑥) =  

1

𝑍
𝑒𝑥𝑝  − 𝑉𝑐(𝑥)

𝑐𝜖𝐶

      (24) 

Therefore, 

𝑥 = 𝑎𝑟𝑔max
𝑥

 𝑙𝑜𝑔 𝑃(𝑦|𝑥) + 𝑙𝑜𝑔  
1

𝑍
𝑒𝑥𝑝  − 𝑉𝑐(𝑥)

𝑐𝜖𝐶

    (25) 

Using the observation model; 𝑦 = 𝑥 + 𝜂; and the fact that the 

noise fields are statistically independent of 𝑋 and as well as 

each other, we have, 

𝑃 𝑌 = 𝑦|𝑋 = 𝑥 =
1

(2𝜋𝜎2)
𝑀1𝑀2

2

𝑒𝑥𝑝  −
||𝑦 − 𝑥||2

2𝜎2      (26) 

where 𝜎𝑛
2 is the noise variance. 

Using equation Equation (25) and Equation (26), we get, 

𝑥 = 𝑎𝑟𝑔min
𝑥

 
||𝑦 − 𝑥||2

2𝜎2 +  𝑉𝑐(𝑥)

𝑐𝜖𝐶

               (27) 

We are using discontinuity adaptive (DA) model where the 

discontinuities are preserved by adaptively adjusting the 

interaction between pixels across edges. Using DA prior 

function of [31], considering second order neighborhood for 

MRF, 

 𝑉𝑐 𝑥 

𝑐∈𝐶

=   8𝛾

𝑁2

𝑗=1

− 𝛾𝑒𝑥𝑝

𝑁1

𝑖=1

 −
 𝑥 𝑖, 𝑗 − 𝑥 𝑖, 𝑗 − 1  2

𝛾
 

−  𝛾. 𝑒𝑥𝑝  −
 𝑥 𝑖, 𝑗 − 𝑥 𝑖, 𝑗 + 1  2

𝛾
       

−  𝛾. 𝑒𝑥𝑝  −
 𝑥 𝑖, 𝑗 − 𝑥 𝑖 − 1, 𝑗  2

𝛾
 

− 𝛾. 𝑒𝑥𝑝  −
 𝑥 𝑖, 𝑗 − 𝑥 𝑖 + 1, 𝑗  2

𝛾
 

−  𝛾. 𝑒𝑥𝑝  −
 𝑥 𝑖, 𝑗 − 𝑥 𝑖 − 1, 𝑗 − 1  2

𝛾
  

− 𝛾. 𝑒𝑥𝑝  −
 𝑥 𝑖, 𝑗 − 𝑥 𝑖 − 1, 𝑗 + 1  2

𝛾
  

− 𝛾. 𝑒𝑥𝑝  −
 𝑥 𝑖, 𝑗 − 𝑥 𝑖 + 1, 𝑗 − 1  2

𝛾
 

− 𝛾. 𝑒𝑥𝑝  −
 𝑥 𝑖, 𝑗 − 𝑥 𝑖 + 1, 𝑗 + 1  2

𝛾
   28  

Using Equation (28) in Equation (27) and finding the gradient 

at the 𝑛𝑡  iteration, we get 

𝑔𝑟𝑎𝑑(𝑛) =
1

𝜎𝑛
2   𝑥 − 𝑦𝑟 + 𝜆𝐺(𝑛)               (29) 

𝑚

𝑟=1

 

where, 𝜆 is regularization parameter and 𝐺 is Gradient at 

position (𝑖, 𝑗). 

𝐺 𝑛  𝑖, 𝑗 

= 2 𝑥 𝑖, 𝑗 − 𝑥 𝑖, 𝑗 − 1  𝑒𝑥𝑝  −
 𝑥 𝑖, 𝑗 − 𝑥 𝑖, 𝑗 − 1  2

𝛾
 

+ 2 𝑥 𝑖, 𝑗 − 𝑥 𝑖, 𝑗 − 1  𝑒𝑥𝑝  −
 𝑥 𝑖, 𝑗 − 𝑥 𝑖, 𝑗 + 1  2

𝛾
 

+ 2 𝑥 𝑖, 𝑗 − 𝑥 𝑖, 𝑗 − 1  𝑒𝑥𝑝  −
 𝑥 𝑖, 𝑗 − 𝑥 𝑖 − 1, 𝑗  2

𝛾
 

+ 2 𝑥 𝑖, 𝑗 − 𝑥 𝑖, 𝑗 − 1  𝑒𝑥𝑝  −
 𝑥 𝑖, 𝑗 − 𝑥 𝑖 + 1, 𝑗  2

𝛾
 

+ 2 𝑥 𝑖, 𝑗 − 𝑥 𝑖, 𝑗 − 1  𝑒𝑥𝑝  −
 𝑥 𝑖, 𝑗 − 𝑥 𝑖 − 1, 𝑗 − 1  2

𝛾
 

+ 2 𝑥 𝑖, 𝑗 − 𝑥 𝑖, 𝑗 − 1  𝑒𝑥𝑝  −
 𝑥 𝑖, 𝑗 − 𝑥 𝑖 − 1, 𝑗 + 1  2

𝛾
 

+ 2 𝑥 𝑖, 𝑗 − 𝑥 𝑖, 𝑗 − 1  𝑒𝑥𝑝  −
 𝑥 𝑖, 𝑗 − 𝑥 𝑖 + 1, 𝑗 − 1  2

𝛾
 

+ 2 𝑥 𝑖, 𝑗 − 𝑥 𝑖, 𝑗 − 1  𝑒𝑥𝑝  −
 𝑥 𝑖, 𝑗 − 𝑥 𝑖 + 1, 𝑗 + 1  2

𝛾
  (30) 

More details about DAMRF and deterministic annealing are 

presented in [32-33]. 

4. RESULTS AND DISCUSSION 
In this section, comparison between proposed method and 

other spatial domain techniques is presented. For quantitative 

analysis PSNR is used as benchmark; 

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10  
2552

𝑀𝑆𝐸
                              (31)                                  

where, MSE is the mean square error. 

For simulation three test images were considered; Lena 

(512 × 512), Boat (256 × 256) and Child (256 × 256). 

Noisy versions of the images were obtained by adding 

Gaussian noise of different variance values. Figure 1 shows 

the denoising of Lena image degraded by 𝜎 = 20 (Figure 

1(a)). Denoising is achieved by using various spatial domain 

methods. Figure 1(b) – (g) are the resultant images. First, the 
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image is denosied by arithmetic and geometric mean filters of 

mask size 3×3 and results are presented in Figure 1(b) and (c) 

respectively. Geometric mean reduces noise to a smaller 

extent and creates visual artifacts. Arithmetic mean filter 

smoothens the noise and also edges. Result of 3×3 adaptive 

Wiener filter is shown in Figure 1(d). It provides better 

performance compared to mean filters. Further improvement 

is observed in 5×5 adaptive Wiener filter (Figure 1(e)). 

Bilateral filtering [34] (Figure 1(f)) provides over smoothed 

representation. Figure 1(g) is the resultant of proposed 

DAMRF method. Reconstructed image has better smoothing 

and edges are well preserved. Figure 2 shows the result of 

Child image degraded by 𝜎 = 30. The proposed method 

provides better results with negligible amount of artifacts. 

(Figure 2(g)).  

Table 1 shows the quantitative analysis of various denoising 

methods. All denoising methods provide better results at low 

noise levels. As the noise increases, PSNR value of proposed 

method remains higher. MSE and PSNR estimate perceived 

errors; on the other hand, a quality measure called structural 

similarity (SSIM) index [35] considers image degradation as 

perceived change in structural information. Table 2 provides 

mean SSIM of various denoising methods. In Table 1, even 

though PSNR of additive Wiener filter is better than proposed 

method, MSSIM clearly indicates that the proposed method 

yields better than other methods. 

Next, experiment is conducted on real “Traffic signal” images 

of size 480×640 captured at different weather conditions.  

Noise estimation is done using absolute median filter of [1]. 

Denoising is achieved using bilateral filter and proposed 

method. Figure 3(a) shows the noisy traffic signal image. 

Figure 3(b) is the image denoised by bilateral filter. Result of 

proposed method is presented in Figure 3(c). For better 

visualization, text region of Figure 3(a)-(c) is zoomed and 

shown in Figure 4(a)-(c) respectively. It can be observed that, 

the quality of text reconstruction is better in proposed method. 

The letter „ɑ‟ is over smoothed in bilateral filter but the 

proposed method yields a good reconstruction. The same is 

repeated for another traffic signal image and results are 

provided in Figure 5. 

5. CONCLUSION 
In this paper, an edge preserving MAP-MRF technique is 

proposed for image denoising. Images corrupted with 

Gaussian noise of different variance values are considered for 

experimentation. Simulations of denoising using mean filters, 

adaptive Wiener filter, bilateral filter and proposed DAMRF 

methods are given for both synthetic and real images. Results 

show that, the proposed method provides a better performance 

compared to other techniques by suppressing the noise and 

preserving edges. 

In this paper, the noise is assumed to be additive Gaussian. 

Image denoising under non-Gaussian type of noise could be 

explored. Further, the work can be extended using a 

combination of spatial and transform domain techniques for 

improved performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       
                             (a)                                               (b)                                     (c)                                              (d)                                    

       
                                                      (e)                                          (f)                                             (g) 

Fig. 1 : Result of various filtering methods in spatial domain. (a) Noisy image (σ=20)   (b) Arithmetic mean filter            

(c) Geometric mean filter  (d)-(e) Adaptive Wiener filter (3x3) and (5x5) respectively (f) Bilateral filtering (g) Proposed 

method. 
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                            (a)                                             (b)                                              (c)                                              (d) 

     
                                                     (e)                                              (f)                                             (g) 

Fig. 2: Result of various Filtering methods in spatial domain.   (a) Noisy image (σ=30)   (b) Arithmetic mean filter             

(c) Geometric mean filter  (d)-(e) Adaptive Wiener filter (3x3) and (5x5) respectively. (f)  Bilateral filter   (g) Proposed 

method. 

       
                                (a)                                                                        (b)                                                                       (c)                                                                                          

Fig. 3: Denoising of traffic signal image using various filtering methods.   (a) Noisy traffic signal image.   (b) Bilateral filtering       

(c) Result of proposed method. (Traffic signal images are the courtesy of Dr. Hasan Fleyeh, Dalarna University, Sweden) 

       
                               (a)                                                               (b)                                                               (c)                                                                                          

Fig. 4: Zoomed text region of Figure 3(a) – (c) respectively. 
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Table 2: Structural similarity based image quality assessment [35] 

𝝈 

MSSIM 

Arithmetic 

mean (3x3) 

Geometric 

mean (3x3) 

Adaptive 

Wiener filter 

(3x3) 

Adaptive 

Wiener filter 

(5x5) 

Bilateral 

filter 

Proposed 

method 
Image 

10 0.9377 0.9363 0.9421 0.9416 0.9311 0.9491 

Lena (512 ×

512) 
20 0.8385 0.8102 0.8263 0.8913 0.8132 0.9095 

30 0.7344 0.6557 0.7057 0.8224 0.6257 0.8651 

10 0.8091 0.7665 0.8929 0.8852 0.8930 0.9291 

Child (256 ×

256) 
20 0.6803 0.6358 0.7344 0.8066 0.5539 0.8548 

30 0.5582 0.5182 0.5706 0.7073 0.3374 0.6858 

10 0.9334 0.9246 0.9450 0.9129 0.9118 0.9459 

Boat (256 ×

256) 
20 0.8542 0.8152 0.8555 0.8710 0.8315 0.8827 

30 0.7640 0.6971 0.7480 0.8143 0.6723 0.8254 
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