
International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 16, January 2015

 23

Task Scheduling Algorithm for High Performance

Heterogeneous Distributed Computing Systems

Aida A. Nasr

Computer Science & Eng. Dept.,
Faculty of Electronic Eng.

Menouf 32952, Egypt

Nirmeen A. El-Bahnasawy
Computer Science & Eng. Dept.,

Faculty of Electronic Eng.
Menouf 32952, Egypt

Ayman El-Sayed

Computer Science & Eng.
Dept.,Faculty of Electronic Eng.

Menouf 32952, Egypt

ABSTRACT

The main objective of task scheduling is to assign tasks onto

available processors with the aim of producing minimum

schedule length and without violating the precedence

constraints. Several algorithms have been proposed for solving

task-scheduling problem. The most of them doesn't take into

account the average communication of parents and data ready

time. In this paper, a new static scheduling algorithm is

proposed called Communication Leveled DAG with

Duplication (CLDD) algorithm to efficiently schedule tasks on

the heterogeneous distributed computing systems. It solves

most limitations of existing algorithms. The algorithm not only

focuses on reducing the makespan, but also provides better

performance than the other algorithms in terms of speedup,

efficiency and time complexity. It consists of three phases,

level sorting phase, task-prioritizing phase and processor

selection phase. We evaluate the performance of our algorithm

by applying it on random DAGs. According to the evolved

results, it has been found that our algorithm outperform the

others.

Keywords

Static task scheduling, heterogeneous distributed computing

systems, heuristic algorithm.

1. INTRODUCTION
Divers portions of an application task often require different

types of computation. In general, it is impossible for a single

machine architecture with its associated compiler, operating

systems and programming tools to satisfy all the computational

requirements in such an application equally well. Recent

developments in high-speed digital communication have made

it possible to connect a distributed suite of different high

performance machines in order provide a powerful computing

platform called Heterogeneous Distributed Computing System

(HeDCS). This platform is utilized to execute computationally

intensive applications that have diverse computing

requirements. However, the performance of parallel

applications on such systems is highly dependent on the

scheduling of the application tasks onto these machines [1, 2].

Task scheduling [3, 4] is of vital importance in HeDCS since a

poor task-scheduling algorithm can undo any potential gains

from the parallelism presented in the application. In general,

the objective of task scheduling is to minimize the completion

time of a parallel application by properly mapping the tasks to

the processors. There are typically two categories of scheduling

models: static and dynamic scheduling. In the static scheduling

case, all the information regarding the application and

computing resources such as execution time, communication

cost, data dependency, and synchronization requirement is

assumed available a priori. Scheduling is performed before the

actual execution of the application [5, 6, 7]. On the other hand,

in the dynamic mapping a more realistic assumption is used.

Very little a priori knowledge is available about the application

and computing resources. Scheduling is done at run-time [8].

In this paper, we focus on static scheduling. Static scheduling

is classified into list-based, clustering and duplication based.

List scheduling consists of two phases: a task prioritization

phase, where a certain priority is computed and is assigned to

each node of the DAG, and a machine assignment phase, where

each task (in order of its priority) is assigned to machine that

minimizes a suitable cost function. List-scheduling is generally

accepted as an attractive approach since it pairs low complexity

with good results [9, 10]. Examples of list-based algorithms

are: Heterogeneous Earliest Finish Time (HEFT) and Critical

Path On Processor (CPOP) [11].

Another static scheduling category is task duplication based

algorithms [12, 13], in which tasks have been duplicated on

more than one processor to reduce the waiting time of the

dependent tasks. The main idea behind duplication based

scheduling is to utilize processor idling time to duplicate

predecessor tasks. This may avoid transfer of results from a

predecessor, through a communication channel, and may

eliminate waiting slots on other processors. Examples of

duplication algorithms are Scalable Task Duplication Based

Scheduling (STDS) [14] and Heterogeneous Critical Node First

(HCNF) [15].

In this paper, a new algorithm called Communication Leveled

DAG with Duplication (CLDD) is developed for static task

scheduling for the HeDCS with limited number of processors.

The developed algorithm is based on assigning a priority for

each node by using Rank value, and it apply task duplication to

minimize communication overhead. The new algorithm could

overcome limitations of list scheduling and task duplication

algorithms.

The remainder of this paper organized as follows. Section 2

discusses problem definition. Section 3 gives an overview of

the related work. Section 4 presents our developed CLDD

algorithm with examples. Section 5 discusses the results and in

section 6, conclusions are given.

2. PROBLEM DEFINITION
In this section, we define the models of HeDCS, a target

computing system, the model of the application, and the

scheduling objective [16].

A HeDCS is a set P of p processors connected in a fully

connected topology. It is assumed that:

 Any p can execute a task and communicate with other

at the same time because of overlapping computation

and communication time.

International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 16, January 2015

 24

 Once a p has started a task, it continues without

interruption. Then, after completing the execution, it

immediately sends the corresponding output data to all

of its children in parallel.

An application is represented by a weighted Directed Acyclic

Graph DAG G(V,E,W), where: V is the set of v nodes; and each

node vi ϵ V represents an application task, which is an

indivisible code segment that must be executed sequentially on

the same P.

W is a v x p computation cost matrix in which each wi,j gives

the estimated time to execute task vi on pj.

E is the set of communication edges. The directed edge ei,k

connects nodes vi and vk, where node vi is called the parent

node and node vk is called the child node. This implies that vk

cannot start until vi finishes and sends its data to vk. The task

with no parents is called root and the task with no children is

called leaf.

Fig.1 shows an application with ten tasks. The application is

represented as a DAG and the execution costs estimated for the

ten tasks on the HeDCS are shown as a computation cost

matrix. Communication costs are written on edges of the DAG.

EST(ti,pj) and EFT(ti,pj) are important functions to assign a task

into properly processor. EST(ti,pj) and EFT(ti,pj) are the

Earliest Start Time and Earliest Finish Time , as shown in

Equations (1) and (2) respectively.

EST =max{ TAvailable(),max{AFT()+ }---- (1)

Where TAvailable () is the earliest time at which processor is

ready. AFT () is the Actual Finish Time of a task (where tk

is the parent of task ti and k=1, 2,…, n) on the processor .

is the communication cost from task to task , equal

zero if the predecessor task is assigned to processor . For

the entry task, EST(,)= 0.

EFT = EST + -----------------------------(2)

Where wi,j is the computational cost of on a processor .

Performance ratio=1- Improvement ratio.

Fig. 1: Sample DAG and Computation Cost Matrix

3. EXPECTED COMPLETION TIME

BASED SCHEDULING ALGORITHM
ECTS algorithm consists of two phases namely, task

prioritization phase and processor selection phase [17]. The

task-prioritizing phase consists of two stages such as level wise

task priority stage and task selection stage. In the first stage,

the algorithm computes the priority for every task at each level

by using Expected Completion Time (ECT) value. Average

Computation Cost (ACC) and Maximum Data Arrival Cost

(MDAC) compute the ECT value. Next Equations (3, 4, and 5)

explains ACC, MDAC and ECT respectively.

ACC(ti)=

 --(3)

Where Wi,j is the estimated execution time of task ti on

processor pj and m is the number of processors.

MDCA(ti)= (Ck,i) ---------------------------(4)

Where tk is the set of predecessors of task ti.

ECT(ti)=ACC(ti)+ MDCA(ti) ---------------------------------(5)

The second stage related to the task selection in which the tasks

are selected from all levels based on their priority. Moreover,

in the second phase, the selected tasks are assigned to the

proper processor, which minimizes its EFT by using the

insertion-based scheduling policy [11].

4. NEW SCHEDULING ALGORITHM
The developed Communication Leveled DAG with Duplication

(CLDD) algorithm consists of three phases, level sorting, task

prioritization, and processor selection. The detailed explanation

of each phase of the algorithm is given below:

Level sorting phase: Like[16], the given DAG is traversed in a

top-down fashion to sort tasks at each level in order to group

the tasks that are independent of each other. As a result, tasks

in the same level can be executed at the same time.

Task prioritizing phase: In this phase, the CLDD algorithm

selects a level and gives a priority to its tasks. It computes the

priority for each task according to new attribute called Rank

using Equation 6.

Rank(ti)=wmin(ti)+MCC(ti)+Max(Ckϵpred,ti) -------------(6)

Where wmin(ti) is the minimum weight of ti, MCC(ti) refers to

Mean Communication of Children (Equation 7)

MCC(ti)=(

)/n --(7)

Where n is the number of children, is the communication

cost between ti and its child task tm. Ckϵpred,ti refers to

communication between task tk (parent of ti) and ti. Fig. 3

shows CLDD algorithm steps. After the algorithm assigns a

priority for each task in selected level, it creates a new Tasks

List TL (in which the CLDD algorithm sorts all level tasks in

decreasing order to execute the next phase)

Processor Selection Phase: This phase consists of two stages,

processor selection stage, and duplication stage. Schedule_Task

Function in Fig. 2 is used to execute this phase.

Processor Selection Stage: the CLDD algorithm calculates

EFT of task ti by Equation (2) for each processor, and selects

the processor that has a minimum EFT to assign the task.

Duplication Stage: Schedule_Task function also executes

stage of duplication test. Attests’, if Data Ready Time (DRT) of

task ti is more than the EFT of maximum parent of task ti on the

same processor pj, the algorithm duplicates the maximum

International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 16, January 2015

 25

parent on pj and updates EFT of task ti without violating

precedence constraints. Data Ready Time DRT is the idle time

waited by ti on pj.. Maximum parent is the task parent with

maximum earliest finish time on different processor and

communication weight between this task and the maximum

parent. A case study is taken into account as following.

Schedule_Task(ti)

{

 For each(processor in the processor set (є Q))

 {

 Compute EFT(,) value

 }

 Assign task to the processor pj that minimizes EFT

 If (Data Ready Time(DRT)of task ti on processor pj>EFT

of maximum parent on processor pj)

 {

 Duplicate maximum parent on processor

 Update EFT of task ti on processor pj

 }

}
Fig. 2: Schedule_Task Function.

Generate the DAG

Sort the DAG levels according to dependency ordering

For each level Lj

{

 For each task ti in Lj

 {

 Compute Rank(ti)=wmin(ti)+MCC(ti)+Max(Ckϵpred,ti)

 }
 Create new Tasks List TL

 Sort all tasks in decreasing order of Rank value in TL

 For each task ti in TL

 {

 Call Schedule_Task(ti) function

 }

}

Fig. 3: The Steps of the CLDD Algorithm.

Case Study:

Let us consider the application DAG shown in Fig.1 and the

computation matrix. Table 1 shows stepwise trace of

calculating task priority according to Equation 6. The

generated schedule along with stepwise trace of the CLDD

algorithm and ECTS algorithm are shown in Fig. 4.

Table 1. Stepwise Trace of Calculating Task Priority

Lj T Wmin Max(Ckϵpred,ti) MCC Rank Priority

1 T1 21 0 21.4 42.4 1

2

T2 18 17 16.5 51.5 3

T3 27 31 16 74 2

T4 4 29 9 42 4

T5 27 13 57 97 1

T6 17 17 5 39 5

3

T7 14 16 9 39 3

T8 23 11 42 76 1

T9 8 57 7 72 2

5 T10 13 42 0 55 1

The algorithm starts from Tentry to compute the Rank value

Rank(t1)=21 + (17+31+29+13+17)/5+0=42.4, Rank(t2) =18+

(30+3)/2+17=51.5, and so on. The schedule generated by

CLDD algorithm has length of 125, while the schedule length

generated by ECTS algorithm is 134. Therefore, the CLDD

algorithm has shorter execution length than that the ECTS

algorithm. The CLDD algorithm applies task duplication to

decrease the communication overhead using idle time. When

the algorithm duplicates a task, it decreases DRT of its children

and decreases EFT. This leads to good utilization of processors

in the system.

(a) CLDD (b) ECTS

Fig. 4: The Schedules Generated By (a) CLDD Algorithm

and (b) ECTS Algorithm.

5. RESULTS AND DISCUSSIONS

5.1 Simulation Environment
To evaluate the performance of our developed CLDD

algorithm, a simulator had been built using visual C# .NET 4.0

on machine with configuration: Intel(R) Core(TM) i3 CPU M

350 @2.27GHz, RAM of 4.00 GB, and the operating system is

window 7, 64-bit.

To test the performance of CLDD algorithm with the other

algorithms a set of Standard Task Graphs STG (as a

benchmark) are generated varying a set of parameters that

determines the characteristics of the generated DAGs [18].

These parameters are described as follows:

 DAG size: n (i.e. the number of tasks in the DAG).

 Density:

We use "sameprob" and "layrprob" methods to generate

the DAG [19, 20].

 Sameprob: Let A denote a task connection matrix with

elements a(i,j), where 0≤ i ≤ n, and 0≤ j ≤ n, represent the

task number (t0 is the entry dummy node and tn is the exit

dummy node). When a(i,j)=1, ti precedes task tj, when

a(i,j)=0, ti and tj are independent of each other. In the "

sameprob " edge connection method, a(i,j) is determined

by independent random values defined as follows:

P[a(i,j)=1]=p for 1≤i<j≤n and P[a(i,j)=0]=1-p for

1≤i<j≤n, P[a(i,j)=0]=1 if i ≥ j, where p indicates the

probability that there exists an edge (precedence constraint)

between ti and tj .

 Layerprob: In this method, firstly the number of levels L

in the task graph is generated. Next, the number of

independent tasks in each level is randomly decided.

Finally, edges between levels are connected with the same

probability p, as is "sameprob''.

International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 16, January 2015

 26

 With six different numbers of processors varying from 2,

4, 8, 16, 32 and 64 processors. For each number of

processors, six different DAG sizes have been generated

varying from 10, 20, 40, 60, 80 and 100 tasks. In each

experiment, the probability p and number of levels are

assigned from the corresponding sets given below:

 SETp={0.5, 0.6, 0.7, 0.8, 0.9}

 L={No. Tasks/3, No. Tasks/4, No. Tasks/5, No. Tasks/6,

No. Tasks/8} according to number of tasks.

5.2 Comparison Metrics and Results
The comparison metrics are schedule length, speedup,

efficiency and time complexity.

5.2.1 Schedule Length
Schedule length is the maximum finish time of the exit task in

the scheduled DAG. From Fig. 5, 6, 7, 8, 9, it is noted that the

schedule length decreases after applying CLDD algorithm.

Because the CLDD algorithm uses the duplication algorithm to

minimize the communication overhead, the time required for

finishing application execution by CLDD algorithm is better

than the other algorithms. The performance ratio in schedule

length is 17.6%,

Fig. 5: Schedule Length with 4 Processors.

Fig. 6: Schedule Length with 8 Processors.

Fig. 7: Schedule Length with 16 Processors.

Fig. 8: Schedule Length with 32 Processors.

Fig. 9: Schedule Length with 64 Processors.

5.2.2 Speedup
Speedup of a schedule is defined as the ratio of the schedule

length obtained by assigning all tasks to the fastest processor,

to the schedule length of application.

Speedup =

 ---------------------------------(8)

Where means the weight of task ti on processor pj and

SL means the schedule length. Speedup is a good measure for

the execution of an application program on a parallel system.

The results of the comparative study according to the speedup

parameter have been presented in Fig. 10, 11, 12, 13, 14, and

15. According to the results, it is clear that speedup of CLDD

algorithm is better than speedup of the other algorithms,

because all processors have finished tasks execution earlier

than other algorithm so, our proposed algorithm outperforms

the the other algorithms in speedup parameter. The

performance ratio in speedup is 16.9% .

Fig. 10: Speedup with 10 Tasks.

International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 16, January 2015

 27

Fig. 11: Speedup with 20 Tasks.

Fig. 12: Speedup with 40 Tasks.

Fig. 13: Speedup with 60 Tasks.

Fig. 14: Speedup with 80 Tasks

Fig. 15: Speedup with 100 Tasks

5.2.3 Efficiency
Efficiency is the speedup divided by the number of processors

used.

Efficiency =

 --------------------(9)

Using task duplication involves the largest number of parallel

computers and makes balance between them. Efficiency is an

indication to what percentage of a processors time is being

spent in useful computation. Therefore, efficiency of the CLDD

algorithm outperforms efficiency of the other algorithms. Fig.

16, 17, 18, 19, 20, and 21 show the efficiency of the CLDD

algorithm compared with HEFT, CPOP and ECTS algorithms.

The performance ratio in efficiency that has been achieved by

CLDD algorithm is 16.6%.

Fig. 16: Efficiency with 10 Tasks.

Fig. 17: Efficiency with 20 Tasks.

International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 16, January 2015

 28

Fig. 18: Efficiency with 40 Tasks.

Fig. 19: Efficiency with 60 Tasks.

Fig. 20: Efficiency with 80 Tasks.

Fig. 21: Efficiency with 100 Tasks.

5.2.4 Time complexity
Time complexity is the amount of time taken to assign every

task to specific processor according to specific priority. The

CLDD algorithm used depth first search to sort the DAG levels

with time complexity O(n+e) where n is the number of nodes,

and e is the number of edges. And it used the binary heap to

implement the priority, which has a time complexity of O(log

n). So the time complexity of the priority phase is O(n log n).

The time complexity of processor selection is O(np). Finally

total time complexity equal O(np+ n log n+ n+e). Time

complexity of CLDD algorithm may be approximated to O(np).

Insertion based technique increases time complexity, because

the algorithm search in all processors for processor with proper

idle time to assign specific take into it. In CLDD algorithm, we

replace this technique by task duplication with low time

complexity. From Table 2, we observed that, CLDD algorithm

has the lowest time complexity.

Table 2. Time Complexity of Some Algorithms

Algorithm Reference Complexity

HEFT [11] O(n2p)

CPOP [11] O(n2p)

HCNF [15] O(n2 log n)

ECTS [17] O(n2p)

CLDD OURS O(np)

6. CONCLUSIONS
In this paper, a new Communication Leveled DAG with

Duplication CLDD algorithm is presented for heterogeneous

distributed computing systems (HeDCS). This algorithm is

based on rank value to give a priority to each task. The CLDD

algorithm also uses task duplication with low time complexity

to minimize communication overhead. According to the

simulation results, it is noted that the CLDD algorithm is better

than ECTS, HEFT, CPOP algorithms in terms of time

complexity, schedule length, speedup and efficiency.

Performance ratio in schedule length, speedup and efficiency

respectively are 17.6%, 16.9% and 16.6%. The CLDD

algorithm can be tested on real applications and the

development can be made on efficiency. The algorithm can be

applied on cloud and grid systems as a future work.

7. REFERENCES
[1] G. Coulouris, J. Dollimore, T. Kindberg, "Distributed

Systems Concepts and Design", Publishing as Addison-

Wesley Longman Publication CO., Inc. Boston, MA,

USA, Copyright © 2001.

[2] P. Krzyzanowski, "Lectures on Distributed Systems: A

Taxonomy of distributed Systems"(pdf) Rutgers

University –CS 417: Distributed Systems, 2003, URL:

https://www.cs.rutgers.edu/~pxk/rutgers/notes/content/01

-intro.pdf

[3] H. El-Rewini, T. G. Lewis, H. H. Ali, "Task Schedulimg

in Parallel and Distributed Systems", Prentice-Hall

International Editions, 1994.

[4] Yu. Kwok, "High Performance Algorithms for Compile-

time Scheduling of Parallel Processors", Ph.D. Thesis,

Hong Kong University, 1997.

International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 16, January 2015

 29

[5] M. I. Daoud, N. Kharma, "A High Performance

Algorithm for Static Task Scheduling in Heterogeneous

Distributed Computing Systems", Journal of Parallel and

Distributed Computing, pp. 399-409, 2007.

[6] N. A. Bahnasawy, F. Omara, and M. Qotb, "A New

Algorithm for Static Task Scheduling for Heterogeneous

Distributed Computing Systems", African Journal of

Mathematics and Computer Science Research Vol. 4(6),

pp. 221-234, June 2011.

[7] Y. Kwok, I. Ahmad, "Static Scheduling Algorithm for

Allocating Directed Task Graphs to Multiprocessors",

ACM Comput. Suv. 31 (1999), 406-471.

[8] D. I. Amalarethinam, G. J. Mary, ”A New DAG Based

Dynamic Task Scheduling Algorithm (DYTAS) for

Multiprocessor Systems”, International Journal of

Computer Applications (0975 – 8887) Volume 19– No.8,

2011.

[9] R. Eswari and S. Nickolas, "Path-based Heuristic Task

Scheduling Algorithm for Heterogeneous Distributed

Computing Systems", International Conference on

Advances in Recent Technologies in Communication and

Computing, 2010.

[10] H. Arabnejad, J. Barbosa, " List Scheduling Algorithm

for Heterogeneous Systems by an Optimistic Cost

Table", IEEE Transactions on Parallel & Distributed

Systems, Vol. 25, PP. 682-694, March 2013.

[11] H.Topcuoglu, S. Hariri, and M.Y.Wu, "Performance-

Effective and Low-Complexity Task Scheduling for

Heterogeneous Computing", IEEE Trans. Parallel and

Distributed Systems,March 2002, Vol. 13, No.3, pp.

260-274.

[12] M. Jing and L. Kenli, "Energy-Aware Scheduling

Algorithm with Duplication on Heterogeneous

Computing Systems," Publish in: Grid Computing

(GRID), ACM/IEEE 13th International Conference,

Page: 122 -129, Sept. 2012.

[13] S. Ranaweera and D. P. Agrawal. "A Task Duplication

Based Scheduling Algorithm for Heterogeneous

Systems". In 14th International Parallel and Distributed

Processing Symposium, pages 445–450, Washington -

Brussels- Tokyo, IEEE, May 2000.

[14] S. Darbha and D. P. Agrawal, "A Task Duplication

Based Scalable Scheduling Algorithm for Distributed

Memory Systems". J. Parallel Distrib. Comput, Vol. 46,

PP. 15-27, 1997.

[15] Baskiyar S. and SaiRanga P. C., "Scheduling Directed

A-cyclic Task Graphs on Heterogeneous Network of

Workstations to Minimize schedule length",

International Conference on Parallel Processing

Workshops, pp. 97-103, Oct. 2003.

[16] E. Illavarasan and P. Thambidurai, "Low Complexity

Performance Effective Task Scheduling Algorithm for

Heterogeneous Computing Environments", Journal of

Computer Sciences, PP. 94-103, 2007

[17] R. Eswari and S. Nickolas, "Expected Completion Time-

based Scheduling Algorithm for Heterogeneous

Processors", in Proc. International Conf. Information

Communication and Management, IPCSIT vol.16 2011,

pp.72-77.

[18] URL:

http://www.kasahara.elec.waseda.ac.jp/schedule/making_

e.html

[19] V. Almeida, I. Vasconcelos, J. Árabe and D. Menascé. "

Using Random Task Graphs to Investigate the Potential

Benefits of Heterogeneity in Parallel Systems", Proc.

Supercomputing '92, pp. 683-691 (1992).

[20] T. Yang and A. Gerasoulis, "DSC: Scheduling Parallel

Tasks on an Unbounded Number of Processors", IEEE

Transactionon Parallel and Distributed Systems, Vol.5,

No.9, pp. 951-967, September 1994.

IJCATM : www.ijcaonline.org

