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ABSTRACT 

The main objective of task scheduling is to assign tasks onto 

available processors with the aim of producing minimum 

schedule length and without violating the precedence 

constraints. Several algorithms have been proposed for solving 

task-scheduling problem. The most of them doesn't take into 

account the average communication of parents and data ready 

time. In this paper, a new static scheduling algorithm is 

proposed called Communication Leveled DAG with 

Duplication (CLDD) algorithm to efficiently schedule tasks on 

the heterogeneous distributed computing systems. It solves 

most limitations of existing algorithms. The algorithm not only 

focuses on reducing the makespan, but also provides better 

performance than the other algorithms in terms of speedup, 

efficiency and time complexity. It consists of three phases, 

level sorting phase, task-prioritizing phase and processor 

selection phase. We evaluate the performance of our algorithm 

by applying it on random DAGs. According to the evolved 

results, it has been found that our algorithm outperform the 

others. 
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1. INTRODUCTION 
Divers portions of an application task often require different 

types of computation. In general, it is impossible for a single 

machine architecture with its associated compiler, operating 

systems and programming tools to satisfy all the computational 

requirements in such an application equally well. Recent 

developments in high-speed digital communication have made 

it possible to connect a distributed suite of different high 

performance machines in order provide a powerful computing 

platform called Heterogeneous Distributed Computing System 

(HeDCS). This platform is utilized to execute computationally 

intensive applications that have diverse computing 

requirements. However, the performance of parallel 

applications on such systems is highly dependent on the 

scheduling of the application tasks onto these machines [1, 2].  

Task scheduling [3, 4] is of vital importance in HeDCS since a 

poor task-scheduling algorithm can undo any potential gains 

from the parallelism presented in the application. In general, 

the objective of task scheduling is to minimize the completion 

time of a parallel application by properly mapping the tasks to 

the processors. There are typically two categories of scheduling 

models: static and dynamic scheduling. In the static scheduling 

case, all the information regarding the application and 

computing resources such as execution time, communication 

cost, data dependency, and synchronization requirement is 

assumed available a priori. Scheduling is performed before the 

actual execution of the application [5, 6, 7]. On the other hand, 

in the dynamic mapping a more realistic assumption is used. 

Very little a priori knowledge is available about the application 

and computing resources. Scheduling is done at run-time [8]. 

In this paper, we focus on static scheduling. Static scheduling 

is classified into list-based, clustering and duplication based. 

List scheduling consists of two phases: a task prioritization 

phase, where a certain priority is computed and is assigned to 

each node of the DAG, and a machine assignment phase, where 

each task (in order of its priority) is assigned to machine that 

minimizes a suitable cost function. List-scheduling is generally 

accepted as an attractive approach since it pairs low complexity 

with good results [9, 10]. Examples of list-based algorithms 

are: Heterogeneous Earliest Finish Time (HEFT) and Critical 

Path On Processor (CPOP)  [11].  

Another static scheduling category is task duplication based 

algorithms [12, 13], in which tasks have been duplicated on 

more than one processor to reduce the waiting time of the 

dependent tasks. The main idea behind duplication based 

scheduling is to utilize processor idling time to duplicate 

predecessor tasks. This may avoid transfer of results from a 

predecessor, through a communication channel, and may 

eliminate waiting slots on other processors. Examples of 

duplication algorithms are Scalable Task Duplication Based 

Scheduling (STDS) [14] and Heterogeneous Critical Node First 

(HCNF) [15]. 

In this paper, a new algorithm called Communication Leveled 

DAG with Duplication (CLDD) is developed for static task 

scheduling for the HeDCS with limited number of processors. 

The developed algorithm is based on assigning a priority for 

each node by using Rank value, and it apply task duplication to 

minimize communication overhead. The new algorithm could 

overcome limitations of list scheduling and task duplication 

algorithms. 

The remainder of this paper organized as follows. Section 2 

discusses problem definition. Section 3 gives an overview of 

the related work. Section 4 presents our developed CLDD 

algorithm with examples. Section 5 discusses the results and in 

section 6, conclusions are given. 

2. PROBLEM DEFINITION 
In this section, we define the models of HeDCS, a target 

computing system, the model of the application, and the 

scheduling objective [16].  

A HeDCS is a set P of p processors connected in a fully 

connected topology. It is assumed that: 

 Any p can execute a task and communicate with other 

at the same time because of overlapping computation 

and communication time. 
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 Once a p has started a task, it continues without 

interruption. Then, after completing the execution, it 

immediately sends the corresponding output data to all 

of its children in parallel. 

An application is represented by a weighted Directed Acyclic 

Graph DAG G(V,E,W), where: V is the set of v nodes; and each 

node vi ϵ V represents an application task, which is an 

indivisible code segment that must be executed sequentially on 

the same P. 

W is a v x p computation cost matrix in which each wi,j gives 

the estimated time to execute task vi on pj. 

E is the set of communication edges. The directed edge ei,k 

connects nodes vi and vk, where node vi is called the parent 

node and node vk is called the child node. This implies that vk 

cannot start until vi finishes and sends its data to vk. The task 

with no parents is called root and the task with no children is 

called leaf.  

Fig.1 shows an application with ten tasks. The application is 

represented as a DAG and the execution costs estimated for the 

ten tasks on the HeDCS are shown as a computation cost 

matrix. Communication costs are written on edges of the DAG. 

EST(ti,pj) and EFT(ti,pj) are important functions to assign a task 

into properly processor. EST(ti,pj) and EFT(ti,pj) are the 

Earliest Start Time and Earliest Finish Time , as shown in 

Equations (1) and (2) respectively. 

EST       =max{ TAvailable(  ),max{AFT(  )+    }---- (1) 

Where TAvailable (  ) is the earliest time at which processor    is 

ready. AFT (  ) is the Actual Finish Time of a task    (where tk 

is the parent of task ti and k=1, 2,…, n) on the processor   .      

is the communication cost from task    to task   ,      equal 

zero if the predecessor task    is assigned to processor   . For 

the entry task, EST(       ,  )= 0.  

EFT       = EST       +       -----------------------------(2) 

Where wi,j  is the computational cost of    on a processor   . 

Performance ratio=1- Improvement ratio. 

 

 
Fig. 1: Sample DAG and Computation Cost Matrix 

3. EXPECTED COMPLETION TIME 

BASED SCHEDULING ALGORITHM 
ECTS algorithm consists of two phases namely, task 

prioritization phase and processor selection phase [17]. The 

task-prioritizing phase consists of two stages such as level wise 

task priority stage and task selection stage. In the first stage, 

the algorithm computes the priority for every task at each level 

by using Expected Completion Time (ECT) value. Average 

Computation Cost (ACC) and Maximum Data Arrival Cost 

(MDAC) compute the ECT value. Next Equations (3, 4, and 5) 

explains ACC, MDAC and ECT respectively. 

ACC(ti)= 
    

 

 
     ----------------------------------------------(3) 

Where Wi,j is the estimated execution time of task ti on 

processor pj and m is the number of processors. 

MDCA(ti)=               (Ck,i ) ---------------------------(4) 

Where tk is the set of predecessors of task ti. 

ECT(ti)=ACC(ti)+ MDCA(ti) ---------------------------------(5) 

The second stage related to the task selection in which the tasks 

are selected from all levels based on their priority. Moreover, 

in the second phase, the selected tasks are assigned to the 

proper processor, which minimizes its EFT by using the 

insertion-based scheduling policy [11]. 

4. NEW SCHEDULING ALGORITHM 
The developed Communication Leveled DAG with Duplication 

(CLDD) algorithm consists of three phases, level sorting, task 

prioritization, and processor selection. The detailed explanation 

of each phase of the algorithm is given below: 

Level sorting phase: Like[16], the given DAG is traversed in a 

top-down fashion to sort tasks at each level in order to group 

the tasks that are independent of each other. As a result, tasks 

in the same level can be executed at the same time. 

Task prioritizing phase: In this phase, the CLDD algorithm 

selects a level and gives a priority to its tasks. It computes the 

priority for each task according to new attribute called Rank 

using Equation 6. 

Rank(ti)=wmin(ti)+MCC(ti)+Max(Ckϵpred,ti) -------------(6) 

Where wmin(ti) is the minimum weight of ti, MCC(ti) refers to 

Mean Communication of Children (Equation 7) 

MCC(ti)=(     
 
   )/n ----------------------------------------(7) 

Where n is the number of children,      is the communication 

cost between ti and its child task tm. Ckϵpred,ti refers to 

communication between task tk ( parent of ti) and ti. Fig. 3 

shows CLDD algorithm steps. After the algorithm assigns a 

priority for each task in selected level, it creates a new Tasks 

List TL (in which the CLDD algorithm sorts all level tasks in 

decreasing order to execute the next phase) 

Processor Selection Phase: This phase consists of two stages, 

processor selection stage, and duplication stage. Schedule_Task 

Function in Fig. 2 is used to execute this phase. 

Processor Selection Stage: the CLDD algorithm calculates 

EFT of task ti by Equation (2) for each processor, and selects 

the processor that has a minimum EFT to assign the task. 

Duplication Stage: Schedule_Task function also executes 

stage of duplication test. Attests’, if Data Ready Time (DRT) of 

task ti is more than the EFT of maximum parent of task ti on the 

same processor pj, the algorithm duplicates the maximum 
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parent on pj and updates EFT of task ti without violating 

precedence constraints. Data Ready Time DRT is the idle time 

waited by ti on pj.. Maximum parent is the task parent with 

maximum earliest finish time on different processor    and 

communication weight between this task and the maximum 

parent. A case study is taken into account as following. 

Schedule_Task(ti) 

{ 

  For each( processor    in the processor set (   є Q)) 

   { 

      Compute EFT(  ,   ) value  

   } 

  Assign task    to the processor pj that minimizes EFT 

  If ( Data Ready Time(DRT)of task ti on processor pj>EFT 

of maximum parent on processor pj) 

    { 

       Duplicate maximum parent  on processor    

      Update EFT of task ti on processor pj 

    } 

} 
Fig. 2: Schedule_Task Function. 

 

Generate the DAG 

Sort the DAG levels according to dependency ordering 

For each level Lj 

{ 

    For each task ti in Lj 

     { 

        Compute  Rank(ti)=wmin(ti)+MCC(ti)+Max(Ckϵpred,ti) 

     } 
   Create new Tasks List TL 

   Sort all tasks in decreasing order of Rank value in TL 

   For each task ti in TL 

    { 

        Call Schedule_Task(ti) function 

    } 

} 

Fig. 3: The Steps of the CLDD Algorithm. 

 

Case Study: 

Let us consider the application DAG shown in Fig.1 and the 

computation matrix. Table 1 shows stepwise trace of 

calculating task priority according to Equation 6. The 

generated schedule along with stepwise trace of the CLDD 

algorithm and ECTS algorithm are shown in Fig. 4.  

 

Table 1. Stepwise Trace of Calculating Task Priority 

Lj T Wmin Max(Ckϵpred,ti) MCC Rank Priority 

1 T1 21 0 21.4 42.4 1 

 

 

2 

 

T2 18 17 16.5 51.5 3 

T3 27 31 16 74 2 

T4 4 29 9 42 4 

T5 27 13 57 97 1 

T6 17 17 5 39 5 

 

3 

 

T7 14 16 9 39 3 

T8 23 11 42 76 1 

T9 8 57 7 72 2 

5 T10 13 42 0 55 1 

 

 

The algorithm starts from Tentry to compute the Rank value 

Rank(t1)=21 + (17+31+29+13+17)/5+0=42.4, Rank(t2) =18+ 

(30+3)/2+17=51.5, and so on. The schedule generated by 

CLDD algorithm has length of 125, while the schedule length 

generated by ECTS algorithm is 134. Therefore, the CLDD 

algorithm has shorter execution length than that the ECTS 

algorithm. The CLDD algorithm applies task duplication to 

decrease the communication overhead using idle time. When 

the algorithm duplicates a task, it decreases DRT of its children 

and decreases EFT. This leads to good utilization of processors 

in the system. 

 

(a) CLDD                              (b) ECTS 

Fig. 4: The Schedules Generated By (a) CLDD Algorithm 

and (b) ECTS Algorithm. 

5. RESULTS AND DISCUSSIONS 

5.1 Simulation Environment 
To evaluate the performance of our developed CLDD 

algorithm, a simulator had been built using visual C# .NET 4.0 

on machine with configuration: Intel(R) Core(TM) i3 CPU M 

350 @2.27GHz,  RAM of 4.00 GB, and the operating system is 

window 7, 64-bit. 

To test the performance of CLDD algorithm with the other 

algorithms a set of Standard Task Graphs STG (as a 

benchmark) are  generated varying a set of parameters that 

determines the characteristics of the generated DAGs [18]. 

These parameters are described as follows: 

 DAG size: n (i.e. the number of tasks in the DAG). 

 Density: 

We use "sameprob" and "layrprob" methods to generate 

the DAG [19, 20]. 

 Sameprob: Let A denote a task connection matrix with 

elements a(i,j), where 0≤ i ≤ n, and  0≤ j ≤ n, represent the 

task number (t0 is the entry dummy node and tn is the exit 

dummy node). When a(i,j)=1, ti precedes task tj, when 

a(i,j)=0, ti and tj are independent of each other. In the " 

sameprob " edge connection method, a(i,j) is determined 

by independent random values defined as follows: 

P[a(i,j)=1]=p for 1≤i<j≤n and P[a(i,j)=0]=1-p for 

1≤i<j≤n, P[a(i,j)=0]=1 if i ≥ j, where p indicates the 

probability that there exists an edge (precedence constraint) 

between ti and tj .  

 Layerprob: In this method, firstly the number of levels L 

in the task graph is generated. Next, the number of 

independent tasks in each level is randomly decided. 

Finally, edges between levels are connected with the same 

probability p, as is "sameprob''. 
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 With six different numbers of processors varying from 2, 

4, 8, 16, 32 and 64 processors. For each number of 

processors, six different DAG sizes have been generated 

varying from 10, 20, 40, 60, 80 and 100 tasks. In each 

experiment, the probability p and number of levels are 

assigned from the corresponding sets given below: 

 SETp={0.5, 0.6, 0.7, 0.8, 0.9} 

 L={No. Tasks/3, No. Tasks/4, No. Tasks/5, No. Tasks/6, 

No. Tasks/8} according to number of tasks. 

5.2 Comparison Metrics and Results 
The comparison metrics are schedule length, speedup, 

efficiency and time complexity. 

5.2.1 Schedule Length 
Schedule length is the maximum finish time of the exit task in 

the scheduled DAG. From Fig. 5, 6, 7, 8, 9, it is noted that the 

schedule length decreases after applying CLDD algorithm. 

Because the CLDD algorithm uses the duplication algorithm to 

minimize the communication overhead, the time required for 

finishing application execution by CLDD algorithm is better 

than  the other algorithms. The performance ratio in schedule 

length is 17.6%, 

 
Fig.  5: Schedule Length with 4 Processors. 

 

Fig.  6: Schedule Length with 8 Processors. 

 
Fig.  7: Schedule Length with 16 Processors. 

 
Fig.  8: Schedule Length with 32 Processors. 

 
Fig.  9: Schedule Length with 64 Processors. 

5.2.2 Speedup 
Speedup of a schedule is defined as the ratio of the schedule 

length obtained by assigning all tasks to the fastest processor, 

to the schedule length of application. 

Speedup = 
                 

   

  
  ---------------------------------(8) 

Where        means the weight of task ti on processor pj and 

SL means the schedule length. Speedup is a good measure for 

the execution of an application program on a parallel system. 

The results of the comparative study according to the speedup 

parameter have been presented in Fig. 10, 11, 12, 13, 14, and 

15. According to the results, it is clear that speedup of  CLDD 

algorithm is better than speedup of the other algorithms, 

because all processors have finished tasks execution earlier 

than other algorithm so, our proposed algorithm outperforms 

the the other algorithms in speedup parameter. The 

performance ratio in speedup is 16.9% . 

 

 

 
Fig. 10: Speedup with 10 Tasks. 
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Fig.  11: Speedup with 20 Tasks. 

 

 
Fig. 12: Speedup with 40 Tasks. 

 

 
Fig. 13: Speedup with 60 Tasks. 

 

 
Fig. 14: Speedup with 80 Tasks 

 
Fig. 15: Speedup with 100 Tasks 

 

5.2.3 Efficiency 
Efficiency is the speedup divided by the number of processors 

used. 

Efficiency =
       

                         
 --------------------(9) 

Using task duplication involves the largest number of parallel 

computers and makes balance between them. Efficiency is an 

indication to what percentage of a processors time is being 

spent in useful computation. Therefore, efficiency of the CLDD 

algorithm outperforms efficiency of the other algorithms. Fig. 

16, 17, 18, 19, 20, and 21 show the efficiency of the CLDD 

algorithm compared with HEFT, CPOP and ECTS algorithms. 

The performance ratio in efficiency that has been achieved by 

CLDD algorithm is 16.6%. 

 

 
Fig.  16: Efficiency with 10 Tasks. 

 

 
Fig. 17: Efficiency with 20 Tasks. 
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Fig.  18: Efficiency with 40 Tasks. 

 

 
Fig. 19: Efficiency with 60 Tasks. 

 

 
Fig. 20: Efficiency with 80 Tasks. 

 

 
Fig. 21: Efficiency with 100 Tasks. 

 

5.2.4 Time complexity 
Time complexity is the amount of time taken to assign every 

task to specific processor according to specific priority. The 

CLDD algorithm used depth first search to sort the DAG levels 

with time complexity O(n+e) where n is the number of nodes, 

and e is the number of edges. And it used the binary heap to 

implement the priority, which has a time complexity of O(log 

n). So the time complexity of the priority phase is O(n log n). 

The time complexity of processor selection is O(np). Finally 

total time complexity equal O(np+ n log n+ n+e). Time 

complexity of CLDD algorithm may be approximated to O(np). 

Insertion based technique increases time complexity, because 

the algorithm search in all processors for processor with proper 

idle time to assign specific take into it. In CLDD algorithm, we 

replace this technique by task duplication with low time 

complexity. From Table 2, we observed that, CLDD algorithm 

has the lowest time complexity.  

Table 2. Time Complexity of Some Algorithms 

Algorithm Reference Complexity 

HEFT [11] O(n2p) 

CPOP [11] O(n2p) 

HCNF [15] O(n2 log n) 

ECTS [17] O(n2p) 

CLDD OURS O(np) 

 

6. CONCLUSIONS 
In this paper, a new Communication Leveled DAG with 

Duplication CLDD algorithm is presented for heterogeneous 

distributed computing systems (HeDCS). This algorithm is 

based on rank value to give a priority to each task. The CLDD 

algorithm also uses task duplication with low time complexity 

to minimize communication overhead. According to the 

simulation results, it is noted that the CLDD algorithm is better 

than ECTS, HEFT, CPOP algorithms in terms of time 

complexity, schedule length, speedup and efficiency. 

Performance ratio in schedule length, speedup and efficiency 

respectively are 17.6%, 16.9% and 16.6%. The CLDD 

algorithm can be tested on real applications and the 

development can be made on efficiency. The algorithm can be 

applied on cloud and grid systems as a future work. 
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