
International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 16, January 2015

30

A Novel RNS Overflow Detection and Correction

Algorithm for the Moduli Set 𝟐𝒏 − 𝟏, 𝟐𝒏, 𝟐𝒏 + 𝟏

P. A. Agbedemnab and E.K. Bankas
Department of Computer Science,

University for Development Studies,
Navrongo, Ghana.

ABSTRACT

In this paper, an efficient scheme for detecting and correcting

overflow during addition in Residue Number System (RNS) is

presented. The approach which is novel to the moduli set
 2𝑛 − 1, 2𝑛 , 2𝑛 + 1 is based on the Chinese Remainder

Theorem and demonstrates theoretically to be a very fast

scheme compared to similar state of the art schemes. The

proposed method is able to detect overflow in RNS addition

without full reverse conversion; Additionally, the scheme also

prevents the representation of wrong numbers as a result of

overflow, thus the scheme gives the accurate result without

errors whether overflow occurs or not. A comparison, which

proves the efficiency of the proposed scheme, in terms of

delay and area requirements is also presented.

General Terms

Residue Number System, Circuits and Systems, Computer

Arithmetic, Computer Architecture, Overflow, Digital Signal

Processing.

Keywords

Residue Number System, Chinese Remainder Theorem,

overflow detection, overflow correction, moduli set

 2𝑛 − 1, 2𝑛 , 2𝑛 + 1 .

1. INTRODUCTION
Residue Number System (RNS) is a non-weighted number

system that utilizes remainders to represent numbers. This

number system is capable of supporting parallel, carry-free

and high speed arithmetic. The system is applied in the fields

of Digital Signal Processing (DSP) intensive computations

like digital filtering, convolutions, correlations, Discrete

Fourier Transform (DFT) computations, Fast Fourier

Transform (FFT) computations and direct digital frequency

synthesis [1], [2], [3].

Nevertheless, operations such as division, overflow detection

and correction, sign detection and magnitude comparison are

problematic and very complex in RNS. In some cases, some

of these operations, such as overflow and sign detection, are

essential and cannot be avoided [4].

RNS is determined by a set S, of N integers that are pair-wise

relatively prime. That is

𝑆 = {𝑚1 , 𝑚2 , … , 𝑚𝑁}

Where 𝑔𝑐𝑑 𝑚𝑖 , 𝑚𝑗 = 1 for 𝑖, 𝑗 = 1, . . . , 𝑁 and 𝑖 ≠ 𝑗, and

gcd means the greatest common divisor [8].

Every integer 𝑋 in [0, 𝑀 − 1] can be uniquely represented

with a N-tuple where,

𝑀 = 𝑚𝑖

𝑁

𝑖=1

 , 𝑋 → 𝑥1 , 𝑥2, … , 𝑥𝑁

 and 𝑥𝑖 = 𝑋 𝑚 𝑖
= 𝑋 mod 𝑚𝑖 ; for 𝑖 = 1 𝑡𝑜 𝑁

The set S and the number 𝑥𝑖 are called the moduli set and

residue of X modulo 𝑚𝑖 respectively.

Now, to calculate the number X from its residues, we can

apply the CRT which is formulated as;

 𝑋 = ℓ𝑖

𝑁

𝑖=1

 𝑘𝑖𝑥𝑖 𝑚 𝑖

𝑀

 (𝟏)

where,

𝑀 = 𝑚𝑖

𝑁

𝑖=1

 ; ℓ𝑖 =
𝑀

𝑚𝑖
 ; 𝑘𝑖 × ℓ𝑖 𝑚 𝑖

= 1

Overflow is a condition where a number which falls outside

the legitimate range of a particular RNS i.e.,[0, 𝑀 − 1],

(𝑀 = 𝑚𝑖
𝑛
𝑖=1) is well represented as a legitimate RNS

number. During addition, this can be detected when the result

of the addition is less than one of the addends. For example,

given two RNS numbers 𝑋 and 𝑌 such that 𝑍 = 𝑋 + 𝑌 𝑚𝑜𝑑

𝑀 where 𝑋 ≥ 0 and 𝑌 < 𝑀, overflow will only occur when

𝑍 < 𝑋.

Another efficient way to detect overflow in RNS is via parity

checking [1], [5]. It indicates whether an integer is even or

odd. Suppose two integers (𝑋, 𝑌) have the same parity:

𝑍 = 𝑋 + 𝑌. An overflow occurs if Z is odd. Contrary, if

 (𝑋, 𝑌) have different parity, then an overflow occurs if Z is

even. This technique is one of the best and fastest suggested

methods to detect the overflow in RNS. However, this

technique is only suitable for moduli sets with odd dynamic

range (DR). But RNS systems that have even DR have more

attractive features than those with odd DR. This is because

using (2𝑛) modulo which tends dynamic ranges to even,

greatly simplifies and reduces the delay and complexity of the

scheme [4]. Thus the need to devise techniques of detecting

overflow in moduli sets with even dynamic range.

Over the past few years, researchers have made considerable

efforts to design overflow detection schemes to handle both

odd and even dynamic ranges schemes which do not rely on

the traditional techniques such as CRT and Mixed Radix

Conversion (MRC) for full reverse conversion, recently

proposed RNS overflow detection algorithms still rely on the

later [4], and other costly and time consuming procedures

such as base extension, group number and sign detection as in

[5], [6] and [7]. The scheme in [6] is demonstrated to be better

than those in [4] and [5] in terms of both area and delay.

In this paper, an efficient algorithm for RNS overflow

detection and correction for the moduli set 2𝑛 − 1, 2𝑛 , 2𝑛 +
1 is proposed. The proposal does not require full reverse

conversion and is suitable for even dynamic range schemes. It

International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 16, January 2015

31

is a very fast scheme compared to best known similar state of

the art designs.

The rest of the paper is organized as follows: Section 2

presents the proposed method. In Section 3, the hardware

implementation of the proposed scheme is presented, a

simplified algorithm with numerical examples are also

presented. The performance of the proposed scheme is

evaluated in Section 4 whiles the paper is concluded in

Section 5.

2. PROPOSED METHOD
In this section, a new method for detecting overflow as well as

preventing the representation of illegitimate numbers as if

they are legitimate numbers in the DR (thus correcting

overflow) is presented.

2.1 Algorithm for the Proposed Scheme
The algorithm for the proposed method is as follows;

1. Compute 𝜌𝑥 and 𝜌𝑦 according to (7)

2. Determine 𝐾 and 𝛽 according to (10) and (11)

3. Overflow occurs only under one of the following

conditions;

(i) If the MSB of 𝐾 i.e 𝐾2𝑛 = 1

(ii) If 𝐾2𝑛−1 down to 𝐾0 is “1”

(iii) If 𝐾2𝑛−1 down to 𝐾1 is “1” and 𝛽 = 1

4. The correct result is computing Z according to (10)

Given the RNS numbers 𝑋 = 𝑥1 , 𝑥2 , 𝑥3 and

𝑌 = (𝑦1, 𝑦2, 𝑦3) with respect to the moduli set 2𝑛 − 1, 2𝑛 ,
2𝑛 + 1 , where 𝑚1 = 2𝑛 − 1, 𝑚2 = 2𝑛 and 𝑚3 = 2𝑛 + 1 we

have

 ℓ1 = 2𝑛 2𝑛 + 1 ; ℓ2 = 22𝑛 − 1 ;

ℓ3 = 2𝑛 2𝑛 − 1 (2)

Theorem 1: For the given moduli set, we have

 𝑘1 𝑚1
= 2𝑛−1 𝑚1

 (3)

 𝑘2 𝑚2
= −1 𝑚2

 (4)

 𝑘3 𝑚3
= −2𝑛−1 𝑚3

 (5)

The proof of (3) – (5) is demonstrated in [9].

Theorem 2: For the given moduli set, any RNS number X can

be represented as;

 𝑋 = 2𝑛𝜌 + 𝑥2 (6)

where,

 𝜌 =
 2𝑛𝑥1 + 𝑥1 2𝑛−1 22𝑛−1 + −2𝑛𝑥2 22𝑛−1

+ −𝑥3 22𝑛−1 + +2𝑛−1𝑥3 22𝑛−1

22𝑛−1

 (𝟕)

 Proof: Substituting equations (2) through to (5) into (1)

and factorizing out 2𝑛 we obtain (6).

From (6), let 𝑋 and 𝑌 be two RNS numbers such that their

sum is 𝑍. Which implies from (6) that:

 𝑋 = 2𝑛𝜌𝑥 + 𝑥2 (8)

 𝑌 = 2𝑛𝜌𝑦 + 𝑦2 (9)

 𝑍 = 2𝑛 𝜌𝑥 + 𝜌𝑦 + 𝑥2 + 𝑦2

 = 2𝑛𝐾 + 𝜇 (10)

Where 𝐾 = 𝜌𝑥 + 𝜌𝑦 and 𝜇 = 𝑥2 + 𝑦2

Let

 𝛽 =

𝜇 < 2𝑛 , 0

𝜇 ≥ 2𝑛 , 1

 (11)

Theorem 3: Given any two RNS numbers

𝑋 = 𝑥1 , 𝑥2, 𝑥3 and 𝑌 = (𝑦1, 𝑦2, 𝑦3), overflow occurs if and

only if

 𝐾 ≥ 22𝑛 − 1 (12)

 or

 𝐾 = 22𝑛 − 2 and 𝛽 = 1 (13)

Proof: Assume (12) holds true; then for (10)

 𝑍 ≥ 2𝑛 22𝑛 − 1 + 𝜇

 ≥ 𝑀 + 𝜇

Which is outside the legitimate range, i.e. [0, 𝑀 − 1], hence

overflow will occur.

Furthermore, if (13) holds true then (10) can be rewritten as

 𝑍 = 2𝑛 22𝑛 − 2 + 1

 = 𝑀,

which is also outside the legitimate range, therefore overflow

will occur. Hence proofed.

From equation (10), 𝑍 will be the correct result of summing 𝑋

and 𝑌 whether overflow occurs or not in the given moduli set,

but will be out of the range in [0, 𝑀 − 1] if either (12) or (13)

holds; therefore 𝐾 should be added to the DR to be [0, 𝑀 +
𝐾 − 1] in order to legitimize 𝑍.

3. HARDWARE IMPLEMENTATION
Equation (7) can further be simplified as follows

𝜌 = 𝜑1 + 𝜑2 + 𝜑3 + 𝜑4 22𝑛−1 (14)

where

𝜑1 = 2𝑛𝑥1 + 𝑥1 2𝑛−1 22𝑛−1 (15)

𝜑2 = −2𝑛𝑥2 22𝑛−1 (16)

𝜑3 = −𝑥3 22𝑛−1 (17)

𝜑4 = 2𝑛−1𝑥3 22𝑛−1 (18)

Now, we consider (14)-(17) and simplify them for

implementation in a VLSI system. It is necessary to note that

𝑥𝑖,𝑗 means the j-th bit of 𝑥𝑖 .

Evaluation of 𝜑1

The residue 𝑥1 can be represented as follows;

𝑥1 = 𝑥1,𝑛−1 … 𝑥1,1𝑥1,0 (19)

Thus,

 2𝑛𝑥1 + 𝑥1 2𝑛−1 22𝑛−1 =

 2𝑛−1 𝑥1,𝑛−1 … 𝑥1,0 0. . .0
𝑛 𝐵𝑖𝑡𝑠

2𝑛−𝑏𝑖𝑡𝑠

+ 0. . .0
𝑛 𝐵𝑖𝑡𝑠

𝑥1,𝑛−1 …𝑥1,0
2𝑛

22𝑛−1

International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 16, January 2015

32

= 2𝑛−1 𝑥1,𝑛−1 … 𝑥1,1𝑥1,0𝑥1,𝑛−1 … 𝑥1,1𝑥1,0
2𝑛−𝑏𝑖𝑡𝑠

22𝑛−1

= 𝑥1,0𝑥1,𝑛−1 … 𝑥1,1𝑥1,0
𝑛+1 𝐵𝑖𝑡𝑠

𝑥1,𝑛−1 … 𝑥1,𝑛+2𝑥1,1
𝑛−1

 (20)

Evaluation of 𝜑2:

The residue 𝑥2 can be represented as follows;

𝑥2 = 𝑥2,𝑛−1 … 𝑥2,1𝑥2,0 (21)

Therefore,

 −2𝑛𝑥2 22𝑛−1 = 𝑥2,𝑛−1 … 𝑥2,1𝑥2,0 11. . .11
𝑛 𝐵𝑖𝑡𝑠

 (22)

Evaluation of 𝜑3 and 𝜑4:

The residue 𝑥3 can be represented as follows;

𝑥3 = 𝑥3,𝑛 … 𝑥3,1𝑥3,0 (23)

 Therefore,

𝜑3 = −𝑥3 22𝑛−1 = 11. . .11
𝑛 𝐵𝑖𝑡𝑠

𝑥3,𝑛−1 … 𝑥3,1𝑥3,0
𝑛 𝐵𝑖𝑡𝑠

 (24)

Again,

𝜑4 = 2𝑛−1𝑥3 22𝑛−1 = 0𝑥3,𝑛 … 𝑥3,1𝑥3,0
𝑛+1 𝐵𝑖𝑡𝑠

00. . .00
𝑛−1 𝐵𝑖𝑡𝑠

 (25)

Correction unit

In order to evaluate the sum Z, we further simplify equation

(10).

𝑍 = 𝜏 + 𝜇 (26)

 𝜏 = 2𝑛𝐾 = 𝐾2𝑛𝐾2𝑛−1 … 𝐾1𝐾0 00 … 0
𝑛 𝑏𝑖𝑡𝑠

3𝑛+1 𝑏𝑖𝑡𝑠

 (27)

 𝜇 = 𝜇𝑛𝜇𝑛−1 … 𝜇1𝜇0
𝑛+1 𝑏𝑖𝑠

 (28)

Therefore,

𝑍 = 𝜏3𝑛𝜏3𝑛−1 … 𝜏1𝜏0 + 00 … 0
2𝑛 𝑏𝑖𝑡𝑠

𝜇𝑛𝜇𝑛−1 … 𝜇1𝜇0
3𝑛+1 𝑏𝑖𝑡𝑠

 (29)

Implementation of equations (26) – (29) gives the correct

result of 𝑍 whether overflow occurs or not.

3.1 Proposed Architecture
ρ is computed according to equation (14) where all the

parameters are defined in equations (15) – (18). For two

numbers 𝑋 and 𝑌, 𝜌𝑥 and 𝜌𝑦 are the ρ values corresponding 𝑋

and 𝑌 respectively and are computed separately. As shown in

Fig 1, ρ is computed using CSAs 1and 2 and two regular 2𝑛-

bit CPAs 1 and 2. The results of these CPAs are passed on to

a multiplexer (MUX 1) which would then pass either of them

down. MUX 1 will pass on the result of CPA 1 if the carry out

of CSA 1 is a „0‟, otherwise the result of CPA 2 is passed on.

𝜌𝑥 corresponding to the binary number 𝑋 and 𝜌𝑦

corresponding to the binary number 𝑌 is added using a regular

(2𝑛 + 1) 𝑏𝑖𝑡𝑠 CPA 3 in order to get 𝐾; at the same time, 𝑥2

and 𝑦2 is computed using a regular (𝑛 + 1) 𝑏𝑖𝑡𝑠 CPA 4 to

obtain 𝜇. A multiplexer (Mux 2) is used to select the value of

𝛽 to be zero if the most significant bit (MSB) of 𝜇 is 0,

otherwise, it selects one (1) if the MSB of 𝜇 is 1. This is

shown in figure 2 which is the overflow detection unit.

CSAs 1 and 2 require an area of 2𝑛∆𝐹𝐴 each as well as CPAs

1 and 2. Therefore, in order to obtain ρ will require a total

area of 8𝑛∆𝐹𝐴 . So for two numbers X and Y, the total area

requirement will be 16𝑛∆𝐹𝐴 .

CPA 3 demands an area of (2𝑛 + 1)∆𝐹𝐴 and CPA 4 also

requires (𝑛 + 1)∆𝐹𝐴 of resources. Thus, the area requirement

for the overflow detection component is (3𝑛 + 2)∆𝐹𝐴.

Therefore, the total area requirement of the overflow detection

scheme is (19𝑛 + 2)∆𝐹𝐴 .

Regarding the delay, each CSA (i.e. CSAs 1 and 2) impose a

delay of 𝐷𝐹𝐴 while the CPA pair 1 and 2 impose a delay of

2𝑛𝐷𝐹𝐴 since they are in parallel, for two numbers this will

become 4𝑛𝐷𝐹𝐴 , thus delay imposed on computing ρ is

(4𝑛 + 2)𝐷𝐹𝐴 . Also the CPA pair 3 and 4 impose a delay of

(2𝑛 + 1)𝐷𝐹𝐴for the overflow detection unit. Therefore, the

delay required for the proposed scheme is (6𝑛 + 3)𝐷𝐹𝐴.

The correction unit uses a regular (3𝑛 + 1) 𝑏𝑖𝑡𝑠 CPA 5. The

area requirement is (3𝑛 + 1)∆𝐹𝐴 and its delay is also (3𝑛 +
1)𝐷𝐹𝐴.

The schematic diagrams for the proposed scheme are shown

below.

2𝑛 𝐵𝑖𝑡𝑠 CSA 1

2𝑛 𝐵𝑖𝑡𝑠 CSA 2

2𝑛 𝐵𝑖𝑡𝑠 CPA 1

𝑥1 𝑥3 𝑥2

Operands Preparation (OPPR)

𝑐1

𝜑1 𝜑3 𝜑2 𝜑4

𝑠1

𝑐2 𝑠2

2𝑛 𝐵𝑖𝑡𝑠 CPA 2 0

MUX 1 0 1

1

𝜌

Fig 1: Block diagram of the partial reverse converter

2𝑛 + 1 𝐵𝑖𝑡𝑠

CPA 3

𝜌𝑦 𝜌𝑥

𝑛 + 1 𝐵𝑖𝑡𝑠

CPA 4

𝑦2 𝑥2

MSB(𝜇)

𝜇

sel

0 1

𝛽

Fig 2: Overflow detection unit

3𝑛 + 1 𝐵𝑖𝑡𝑠

CPA 5

𝜇 𝜏

𝑍
Fig 3: Correction unit

International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 16, January 2015

33

3.2 Numerical Illustrations
Let us now look at numerical examples with the proposed

scheme.

Checking overflow in the sum of 49 and 21 using RNS moduli

set {3, 4, 5}

49 = (1,1,4)𝑅𝑁𝑆 3 4 5 = 01,01,100 𝑅𝑁𝑆 11|100|101

21 = (0,1,1)𝑅𝑁𝑆 3 4 5 = 00,01,001 𝑅𝑁𝑆 11|100|101

 = 01,01,100 + 00,01,001
𝑅𝑁𝑆 11|100|101

 = 01,10,000 𝑅𝑁𝑆 11|100|101

RNS to decimal conversion of 01,10,000 𝑅𝑁𝑆 11|100|101

will result in the decimal number 10. Whilst the sum of the

decimal numbers 49 and 21 is 70 which is obvious of

overflow occurring.

Checking for RNS overflow using the proposed algorithm

𝜌𝑥 = 12 = 01100

𝜌𝑦 = 5 = 00101

 𝐾 = 𝜌𝑥 + 𝜌𝑦 = 01100 + 00101 = 10001

 𝜇 = 01 + 01 = 010, 𝛽 = 0

Since the MSB of 𝐾 is “1”, the scheme will detect that

overflow has occurred.

From (27),

𝑍 = 1000100 + 0000010 = 1000110 = (70)decimal

Checking overflow in the sum of 28 and 32 using RNS moduli

set {3, 4, 5}

28 = (1,0,3)𝑅𝑁𝑆 3 4 5 = 01,00,011 𝑅𝑁𝑆 11|100|101

32 = (2,0,2)𝑅𝑁𝑆 3 4 5 = 10,00,010 𝑅𝑁𝑆 11|100|101

 = 01,00,011 + 10,00,010
𝑅𝑁𝑆 11|100|101

 = 00,00,000 𝑅𝑁𝑆 11|100|101

RNS to decimal conversion of 00,00,000 𝑅𝑁𝑆 11|100|101

will result in the decimal number 0. Whilst the sum of the

decimal numbers 28 and 32 is 60, a clear sign of overflow

occurring.

Checking for RNS overflow using the proposed algorithm

𝜌𝑥 = 7 = 00111

𝜌𝑦 = 8 = 01000

𝐾 = 𝜌𝑥 + 𝜌𝑦 = 00111 + 01000 = 01111

𝜇 = 00 + 00 = 000, 𝛽 = 0.

Even though, the MSB of 𝐾 is not “1”, all other bits are “1”

therefore the scheme will detect that overflow has occurred.

From (27),

𝑍 = 0111100 + 0000000 = 0111100 = (60)decimal

Checking overflow in the sum of 10 and 11 using RNS moduli

set {3, 4, 5}

10 = (1,2,0)𝑅𝑁𝑆 3 4 5 = 01,10,000 𝑅𝑁𝑆 11|100|101

11 = (2,3,1)𝑅𝑁𝑆 3 4 5 = 10,11,001 𝑅𝑁𝑆 11|100|101

 = 01,10,000 + 10,11,001
𝑅𝑁𝑆 11|100|101

 = 00,01,001 𝑅𝑁𝑆 11|100|101

RNS to decimal conversion of 00,01,001 𝑅𝑁𝑆 11|100|101

will result in the decimal number 21 which is correct result of

10 + 11.

Checking for RNS overflow using the proposed algorithm

𝜌𝑥 = 2 = 00010

𝜌𝑦 = 2 = 00010

𝐾 = 00010 + 00010 = 00100

𝜇 = 10 + 11 = 101, 𝛽 = 1.

After processing, the scheme will obviously detect no

overflow since it is only 𝐾2𝑛−2 = 1.

And from (27),

𝑍 = 0010000 + 0000101 = 0010101 = (21)decimal

4. PERFORMANCE EVALUATION
In order to evaluate the performance of the proposed overflow

detection scheme, it is compared with similar best known state

of the art schemes.

Theoretical analysis from Table 1 shows that the proposed

scheme has less delay and complexity without compromising

on accuracy compared to [4] which is the current best state of

the art and has a correction component. The proposed scheme

is also faster than [6] which was the best state of the art before

[4]. Even though, the hardware complexity of the proposed

scheme is higher than that in [6], the proposed scheme uses

three comparators and a single AND gate whilst [6] uses six

comparators and three AND gates which are not included in

the comparison. It is also clear from the 𝐴𝐷2 analysis that the

proposed scheme is very efficient than the state of the art

schemes.

The correction part is not included in the evaluation just as it

is not included in [4] for fairness. In any case, the accurate

result is a 3𝑛 + 1 𝑏𝑖𝑡 sum (Z) in (10) therefore, a 3𝑛 +
1 𝑏𝑖𝑡 adder is designed to cater for the addition.

5. CONCLUSION
Detecting overflow is one of the most important and complex

operations in RNS. In this paper, a novel method for detecting

and correcting overflow during addition is presented. The

proposed technique does not require full RNS-binary

conversion. The proposed scheme is able to give the correct

result for the sum of two numbers whether overflow occurs or

not. The proposed scheme is demonstrated theoretically to be

very efficient than similar state of the art designs. Since only

theoretical analysis was presented, our next focus will be to

implement the proposed method using VHDL in Xilinx.

6. REFERENCES
[1] A. Omondi and B. Premkumar. Residue Number

Systems: Theory and Implementation. Imperial College

Press. UK 2007.

[2] K. A. Gbolagade. An Efficient MRC based RNS-to-

Binary Converter for the {22n − 1, 2n , 22n+1 − 1}

Moduli Set. International Journal of Advanced Research

in Computer Engineering & Technology

(IJARCET)Volume 2, Issue 4, April 2013.

International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 16, January 2015

34

[3] K.A. Gbolagade, R. Chaves, L. Sousa, and S.D.

Cotofana. An improved reverse converter for the

22n+1 − 1, 2n , 2n − 1 moduli set. IEEE International

Symposium on Circuits and Systems (ISCAS 2010) , pp.

2103-2106, Paris, France, June,2010.

[4] D. Younes and P. Steffan. Universal approaches for

overflow and sign detection in residue number system

based on {2n − 1, 2n , 2n + 1}. The Eighth International

Conference on Systems (ICONS 2013), pp. 77 – 84,

2013.

[5] M. Rouhifar, M. Hosseinzadeh, S. Bahanfar and M.

Teshnehlab. Fast Overflow Detection in Moduli set
 2n − 1, 2n , 2n + 1 . International Journal of Computer

Science Issues, Vol (8/3), pp 407-414, May 2011.

[6] H. Siewobr and K. A. Gbolagade. RNS Overflow

Detection by Operands Examination. International

Journal of Computer Applications (0975 – 8887), Vol 85,

No. 18, January, 2014.

[7] M. Hosseinzadeh, A.S. Molahosseini and K. Navi. A

parallel Implementation of the Reverse Converter for the

moduli set 2n − 1, 2n , 2n−1 − 1 . World Academy of

Science, Engineering and Technology, Vol. 55, pp. 494-

498. 2009.

[8] A. S. Molahosseini, K. Navi. New Arithmetic residue to

binary Converters. International Journal of Computer

Sciences and Engineering Systems, Vol. 1, No.4, pp.

295-299 Oct., 2007.

[9] E. K. Bankas and K. A. Gbolagade. A New Efficient

FPGA Design of Residue-To-Binary Converter.

International Journal of VLSI design & Communication

Systems (VLSICS), Vol 4, No. 6, December, 2013.

Table 1: Area, Delay Comparison

Scheme Area(∆𝐹𝐴) Delay(𝐷𝐹𝐴) 𝑨𝑫𝟐

[6] 11𝑛 + 6 22𝑛 + 12 5324𝑛3 + 81712𝑛2 + 4752𝑛 + 864

[4] 37𝑛 + 18 16𝑛 + log 𝑛 + 13 9472𝑛3 + 20000𝑛2 + 13661𝑛 + 3042

Proposed 19𝑛 + 2 6𝑛 + 3 684𝑛3 + 756𝑛2 + 243𝑛 + 18

IJCATM : www.ijcaonline.org

