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ABSTRACT 

In this paper, an efficient scheme for detecting and correcting 

overflow during addition in Residue Number System (RNS) is 

presented. The approach which is novel to the moduli set 
 2𝑛 − 1, 2𝑛 , 2𝑛 + 1   is based on the Chinese Remainder 

Theorem and demonstrates theoretically to be a very fast 

scheme compared to similar state of the art schemes. The 

proposed method is able to detect overflow in RNS addition 

without full reverse conversion; Additionally, the scheme also 

prevents the representation of wrong numbers as a result of 

overflow, thus the scheme gives the accurate result without 

errors whether overflow occurs or not. A comparison, which 

proves the efficiency of the proposed scheme, in terms of 

delay and area requirements is also presented. 
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1. INTRODUCTION 
Residue Number System (RNS) is a non-weighted number 

system that utilizes remainders to represent numbers. This 

number system is capable of supporting parallel, carry-free 

and high speed arithmetic. The system is applied in the fields 

of Digital Signal Processing (DSP) intensive computations 

like digital filtering, convolutions, correlations, Discrete 

Fourier Transform (DFT) computations, Fast Fourier 

Transform (FFT) computations and direct digital frequency 

synthesis [1], [2], [3].  

Nevertheless, operations such as division, overflow detection 

and correction, sign detection and magnitude comparison are 

problematic and very complex in RNS. In some cases, some 

of these operations, such as overflow and sign detection, are 

essential and cannot be avoided [4].  

RNS is determined by a set S, of N integers that are pair-wise 

relatively prime. That is 

𝑆 = {𝑚1 , 𝑚2 , … , 𝑚𝑁} 

Where 𝑔𝑐𝑑  𝑚𝑖 , 𝑚𝑗  = 1 for 𝑖, 𝑗 = 1, . . . , 𝑁 and 𝑖 ≠ 𝑗, and 

gcd means the greatest common divisor [8]. 

Every integer 𝑋 in [0, 𝑀 − 1] can be uniquely represented 

with a N-tuple where, 

𝑀 =  𝑚𝑖

𝑁

𝑖=1

  , 𝑋 →  𝑥1 , 𝑥2, … , 𝑥𝑁  

 and           𝑥𝑖 =  𝑋 𝑚 𝑖
=  𝑋 mod 𝑚𝑖  ; for 𝑖 = 1 𝑡𝑜 𝑁 

The set S and the number 𝑥𝑖  are called the moduli set and 

residue of X modulo 𝑚𝑖  respectively.  

Now, to calculate the number X from its residues, we can 

apply the CRT which is formulated as; 

                𝑋 =   ℓ𝑖

𝑁

𝑖=1

 𝑘𝑖𝑥𝑖 𝑚 𝑖
 

𝑀

                                             (𝟏) 

where, 

𝑀 =  𝑚𝑖

𝑁

𝑖=1

 ;    ℓ𝑖 =
𝑀

𝑚𝑖
 ;   𝑘𝑖 × ℓ𝑖 𝑚 𝑖

= 1 

Overflow is a condition where a number which falls outside 

the legitimate range of a particular RNS i.e.,[0, 𝑀 − 1], 

(𝑀 =  𝑚𝑖
𝑛
𝑖=1 ) is well represented as a legitimate RNS 

number. During addition, this can be detected when the result 

of the addition is less than one of the addends. For example, 

given two RNS numbers 𝑋 and 𝑌 such that 𝑍 = 𝑋 + 𝑌 𝑚𝑜𝑑 

𝑀 where 𝑋 ≥  0 and 𝑌 <  𝑀, overflow will only occur when 

𝑍 < 𝑋. 

Another efficient way to detect overflow in RNS is via parity 

checking [1], [5]. It indicates whether an integer is even or 

odd. Suppose two integers (𝑋, 𝑌) have the same parity: 

𝑍 = 𝑋 + 𝑌. An overflow occurs if Z is odd. Contrary, if 

 (𝑋, 𝑌) have different parity, then an overflow occurs if Z is 

even. This technique is one of the best and fastest suggested 

methods to detect the overflow in RNS. However, this 

technique is only suitable for moduli sets with odd dynamic 

range (DR). But RNS systems that have even DR have more 

attractive features than those with odd DR. This is because 

using (2𝑛) modulo which tends dynamic ranges to even, 

greatly simplifies and reduces the delay and complexity of the 

scheme [4]. Thus the need to devise techniques of detecting 

overflow in moduli sets with even dynamic range. 

Over the past few years, researchers have made considerable 

efforts to design overflow detection schemes to handle both 

odd and even dynamic ranges schemes which do not rely on 

the traditional techniques such as CRT and Mixed Radix 

Conversion (MRC) for full reverse conversion, recently 

proposed RNS overflow detection algorithms still rely on the 

later [4], and other costly and time consuming procedures 

such as base extension, group number and sign detection as in 

[5], [6] and [7]. The scheme in [6] is demonstrated to be better 

than those in [4] and [5] in terms of both area and delay. 

In this paper, an efficient algorithm for RNS overflow 

detection and correction for the moduli set  2𝑛 − 1, 2𝑛 , 2𝑛 +
1  is proposed. The proposal does not require full reverse 

conversion and is suitable for even dynamic range schemes. It 
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is a very fast scheme compared to best known similar state of 

the art designs. 

The rest of the paper is organized as follows: Section 2 

presents the proposed method. In Section 3, the hardware 

implementation of the proposed scheme is presented, a 

simplified algorithm with numerical examples are also 

presented. The performance of the proposed scheme is 

evaluated in Section 4 whiles the paper is concluded in 

Section 5. 

2. PROPOSED METHOD 
In this section, a new method for detecting overflow as well as 

preventing the representation of illegitimate numbers as if 

they are legitimate numbers in the DR (thus correcting 

overflow) is presented. 

2.1 Algorithm for the Proposed Scheme 
The algorithm for the proposed method is as follows; 

1. Compute 𝜌𝑥  and 𝜌𝑦  according to (7) 

2. Determine 𝐾 and 𝛽 according to (10) and (11) 

3. Overflow occurs only under one of the following 

conditions; 

(i) If  the MSB of 𝐾  i.e 𝐾2𝑛 = 1  

(ii) If 𝐾2𝑛−1 down to 𝐾0 is “1” 

(iii) If 𝐾2𝑛−1 down to 𝐾1 is “1” and 𝛽 = 1 

4. The correct result is computing Z according to (10) 

Given the RNS numbers 𝑋 =  𝑥1 , 𝑥2 , 𝑥3  and  

𝑌 = (𝑦1, 𝑦2, 𝑦3) with respect to the moduli set  2𝑛 − 1, 2𝑛 ,
2𝑛 + 1 , where 𝑚1 = 2𝑛 − 1, 𝑚2 = 2𝑛  and 𝑚3 = 2𝑛 + 1 we 

have 

 ℓ1 = 2𝑛 2𝑛 + 1 ; ℓ2 =  22𝑛 − 1 ;  

ℓ3 = 2𝑛 2𝑛 − 1        (2) 

Theorem 1: For the given moduli set, we have 

 𝑘1 𝑚1
=  2𝑛−1 𝑚1

                           (3)  

 𝑘2 𝑚2
=  −1 𝑚2

                               (4)   

 𝑘3 𝑚3
=  −2𝑛−1 𝑚3

                        (5)   

The proof of (3) – (5) is demonstrated in [9]. 

Theorem 2: For the given moduli set, any RNS number X can 

be represented as; 

 𝑋 = 2𝑛𝜌 + 𝑥2       (6) 

where, 

 𝜌 =  
  2𝑛𝑥1 + 𝑥1 2𝑛−1 22𝑛−1 +  −2𝑛𝑥2 22𝑛−1

+ −𝑥3 22𝑛−1 +  +2𝑛−1𝑥3 22𝑛−1             
 

22𝑛−1

     (𝟕)  

      Proof: Substituting equations (2) through to (5) into (1) 

and factorizing out 2𝑛  we obtain (6). 

From (6), let 𝑋 and 𝑌 be two RNS numbers such that their 

sum is 𝑍. Which implies from (6) that: 

 𝑋 = 2𝑛𝜌𝑥 + 𝑥2        (8) 

 𝑌 = 2𝑛𝜌𝑦 + 𝑦2   (9) 

 𝑍 = 2𝑛 𝜌𝑥 + 𝜌𝑦 + 𝑥2 + 𝑦2 

                 = 2𝑛𝐾 + 𝜇                                                (10) 

Where 𝐾 = 𝜌𝑥 + 𝜌𝑦 and  𝜇 = 𝑥2 + 𝑦2 

Let  

                𝛽 =  

𝜇 < 2𝑛 ,    0

𝜇 ≥ 2𝑛 ,    1

                                    (11) 

Theorem 3: Given any two RNS numbers  

𝑋 =  𝑥1 , 𝑥2, 𝑥3  and 𝑌 = (𝑦1, 𝑦2, 𝑦3), overflow occurs if and 

only if 

 𝐾 ≥ 22𝑛 − 1    (12) 

     or  

      𝐾 = 22𝑛 − 2 and 𝛽 = 1   (13) 

Proof: Assume (12) holds true; then for (10) 

        𝑍 ≥ 2𝑛 22𝑛 − 1 +  𝜇 

            ≥ 𝑀 + 𝜇 

Which is outside the legitimate range, i.e. [0, 𝑀 − 1], hence 

overflow will occur.  

Furthermore, if (13) holds true then (10) can be rewritten as 

 𝑍 = 2𝑛 22𝑛 − 2 + 1  

      = 𝑀,  

which is also outside the legitimate range, therefore overflow 

will occur. Hence proofed. 

From equation (10), 𝑍 will be the correct result of summing 𝑋 

and 𝑌 whether overflow occurs or not in the given moduli set, 

but will be out of the range in  [0, 𝑀 − 1] if either (12) or (13) 

holds; therefore 𝐾 should be added to the DR to be [0, 𝑀 +
𝐾 − 1] in order to legitimize 𝑍. 

3. HARDWARE IMPLEMENTATION 
Equation (7) can further be simplified as follows 

𝜌 =  𝜑1 + 𝜑2 + 𝜑3 + 𝜑4 22𝑛−1                (14) 

where 

𝜑1 =   2𝑛𝑥1 + 𝑥1 2𝑛−1 22𝑛−1       (15) 

𝜑2 =  −2𝑛𝑥2 22𝑛−1                             (16) 

𝜑3 =  −𝑥3 22𝑛−1             (17) 

𝜑4 =  2𝑛−1𝑥3 22𝑛−1            (18) 

Now, we consider (14)-(17) and simplify them for 

implementation in a VLSI system. It is necessary to note that 

𝑥𝑖,𝑗  means the j-th bit of 𝑥𝑖 . 

Evaluation of  𝜑1 

The residue 𝑥1 can be represented as follows; 

𝑥1 =   𝑥1,𝑛−1 … 𝑥1,1𝑥1,0                                                  (19) 

Thus, 

  2𝑛𝑥1 + 𝑥1 2𝑛−1 22𝑛−1 = 

  2𝑛−1  𝑥1,𝑛−1 … 𝑥1,0 0. . .0 
𝑛 𝐵𝑖𝑡𝑠

           
2𝑛−𝑏𝑖𝑡𝑠

+ 0. . .0 
𝑛 𝐵𝑖𝑡𝑠

𝑥1,𝑛−1 …𝑥1,0           
2𝑛

  

22𝑛−1
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=  2𝑛−1  𝑥1,𝑛−1 … 𝑥1,1𝑥1,0𝑥1,𝑛−1 … 𝑥1,1𝑥1,0                     
2𝑛−𝑏𝑖𝑡𝑠

  

22𝑛−1

 

= 𝑥1,0𝑥1,𝑛−1 … 𝑥1,1𝑥1,0             
𝑛+1 𝐵𝑖𝑡𝑠

𝑥1,𝑛−1 … 𝑥1,𝑛+2𝑥1,1             
𝑛−1

        (20) 

Evaluation of  𝜑2: 

The residue 𝑥2 can be represented as follows; 

𝑥2 = 𝑥2,𝑛−1 … 𝑥2,1𝑥2,0                                                  (21) 

Therefore, 

 −2𝑛𝑥2 22𝑛−1 = 𝑥2,𝑛−1 … 𝑥2,1𝑥2,0 11. . .11     
𝑛 𝐵𝑖𝑡𝑠

            (22) 

Evaluation of  𝜑3 and 𝜑4: 

The residue 𝑥3 can be represented as follows; 

𝑥3 = 𝑥3,𝑛 … 𝑥3,1𝑥3,0                                 (23) 

 Therefore, 

𝜑3 =  −𝑥3 22𝑛−1 = 11. . .11     
𝑛 𝐵𝑖𝑡𝑠

𝑥3,𝑛−1 … 𝑥3,1𝑥3,0           
𝑛  𝐵𝑖𝑡𝑠

        (24) 

Again,  

𝜑4 =  2𝑛−1𝑥3 22𝑛−1 = 0𝑥3,𝑛 … 𝑥3,1𝑥3,0           
𝑛+1  𝐵𝑖𝑡𝑠

00. . .00     
𝑛−1 𝐵𝑖𝑡𝑠

    (25) 

Correction unit 

In order to evaluate the sum Z, we further simplify equation 

(10). 

𝑍 = 𝜏 + 𝜇   (26) 

 𝜏 = 2𝑛𝐾 = 𝐾2𝑛𝐾2𝑛−1 … 𝐾1𝐾0 00 … 0     
𝑛 𝑏𝑖𝑡𝑠

                 
3𝑛+1 𝑏𝑖𝑡𝑠

    (27) 

 𝜇 = 𝜇𝑛𝜇𝑛−1 … 𝜇1𝜇0         
𝑛+1 𝑏𝑖𝑠

  (28) 

Therefore, 

𝑍 = 𝜏3𝑛𝜏3𝑛−1 … 𝜏1𝜏0 + 00 … 0     
2𝑛 𝑏𝑖𝑡𝑠

𝜇𝑛𝜇𝑛−1 … 𝜇1𝜇0                           
3𝑛+1 𝑏𝑖𝑡𝑠

     (29) 

Implementation of equations (26) – (29) gives the correct 

result of 𝑍 whether overflow occurs or not. 

3.1 Proposed Architecture 
ρ is computed according to equation (14) where all the 

parameters are defined in equations (15) – (18). For two 

numbers 𝑋 and 𝑌, 𝜌𝑥  and 𝜌𝑦  are the ρ values corresponding 𝑋 

and 𝑌 respectively and are computed separately.  As shown in 

Fig 1, ρ is computed using CSAs 1and 2 and two regular 2𝑛-

bit CPAs 1 and 2. The results of these CPAs are passed on to 

a multiplexer (MUX 1) which would then pass either of them 

down. MUX 1 will pass on the result of CPA 1 if the carry out 

of CSA 1 is a „0‟, otherwise the result of CPA 2 is passed on. 

𝜌𝑥  corresponding to the binary number 𝑋 and 𝜌𝑦  

corresponding to the binary number 𝑌 is added using a regular 

(2𝑛 + 1) 𝑏𝑖𝑡𝑠 CPA 3 in order to get 𝐾; at the same time, 𝑥2 

and 𝑦2 is computed using a regular ( 𝑛 + 1) 𝑏𝑖𝑡𝑠 CPA 4 to 

obtain 𝜇. A multiplexer (Mux 2) is used to select the value of 

𝛽 to be zero if the most significant bit (MSB) of  𝜇 is 0, 

otherwise, it selects one (1) if the MSB of 𝜇 is 1. This is 

shown in figure 2 which is the overflow detection unit. 

CSAs 1 and 2 require an area of 2𝑛∆𝐹𝐴  each as well as CPAs 

1 and 2. Therefore, in order to obtain ρ will require a total 

area of 8𝑛∆𝐹𝐴 . So for two numbers X and Y, the total area 

requirement will be 16𝑛∆𝐹𝐴 .  

CPA 3 demands an area of (2𝑛 + 1)∆𝐹𝐴  and CPA 4 also 

requires (𝑛 + 1)∆𝐹𝐴  of resources. Thus, the area requirement 

for the overflow detection component is (3𝑛 + 2)∆𝐹𝐴. 

Therefore, the total area requirement of the overflow detection 

scheme is (19𝑛 + 2)∆𝐹𝐴 . 

Regarding the delay, each CSA (i.e. CSAs 1 and 2) impose a 

delay of 𝐷𝐹𝐴  while the CPA pair 1 and 2 impose a delay of  

2𝑛𝐷𝐹𝐴  since they are in parallel, for two numbers this will 

become 4𝑛𝐷𝐹𝐴 , thus delay imposed on computing ρ is 

(4𝑛 + 2)𝐷𝐹𝐴 . Also the CPA pair 3 and 4 impose a delay of  

(2𝑛 + 1)𝐷𝐹𝐴for the overflow detection unit. Therefore, the 

delay required for the proposed scheme is (6𝑛 + 3)𝐷𝐹𝐴. 

The correction unit uses a regular (3𝑛 + 1) 𝑏𝑖𝑡𝑠 CPA 5. The 

area requirement is (3𝑛 + 1)∆𝐹𝐴 and its delay is also (3𝑛 +
1)𝐷𝐹𝐴. 

The schematic diagrams for the proposed scheme are shown 

below.

 

 

 

 

 

 

 

 

 

 

       

2𝑛 𝐵𝑖𝑡𝑠 CSA 1 

2𝑛 𝐵𝑖𝑡𝑠 CSA 2 

2𝑛 𝐵𝑖𝑡𝑠 CPA 1 

𝑥1 𝑥3 𝑥2 

Operands Preparation (OPPR) 

𝑐1 

𝜑1 𝜑3 𝜑2 𝜑4 

𝑠1 

𝑐2 𝑠2 

2𝑛 𝐵𝑖𝑡𝑠 CPA 2  0 

MUX 1 0 1 

1 

𝜌 

 
Fig 1: Block diagram of the partial reverse converter 

2𝑛 + 1 𝐵𝑖𝑡𝑠 

CPA 3 

𝜌𝑦  𝜌𝑥  

𝑛 + 1 𝐵𝑖𝑡𝑠 

CPA 4  

𝑦2 𝑥2 

MSB(𝜇) 

𝜇 

 

sel 

0 1 

𝛽 

Fig 2: Overflow detection unit 

3𝑛 + 1 𝐵𝑖𝑡𝑠 

CPA 5 

𝜇 𝜏 

𝑍 
Fig 3: Correction unit 
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3.2 Numerical Illustrations 
Let us now look at numerical examples with the proposed 

scheme. 

Checking overflow in the sum of 49 and 21 using RNS moduli 

set {3, 4, 5} 

49 = (1,1,4)𝑅𝑁𝑆 3 4 5 =  01,01,100 𝑅𝑁𝑆 11|100|101  

21 = (0,1,1)𝑅𝑁𝑆 3 4 5 =  00,01,001 𝑅𝑁𝑆 11|100|101  

              =   01,01,100 +  00,01,001  
𝑅𝑁𝑆 11|100|101 

 

              =  01,10,000 𝑅𝑁𝑆 11|100|101  

RNS to decimal conversion of  01,10,000 𝑅𝑁𝑆 11|100|101  

will result in the decimal number 10. Whilst the sum of the 

decimal numbers 49 and 21 is 70 which is obvious of 

overflow occurring. 

Checking for RNS overflow using the proposed algorithm 

𝜌𝑥 = 12 = 01100 

𝜌𝑦 = 5 = 00101 

             𝐾 = 𝜌𝑥 + 𝜌𝑦 = 01100 + 00101 = 10001 

 𝜇 = 01 + 01 = 010,   𝛽 = 0 

Since the MSB of 𝐾 is “1”, the scheme will detect that 

overflow has occurred. 

From (27), 

𝑍 = 1000100 + 0000010 = 1000110 = (70)decimal  

Checking overflow in the sum of 28 and 32 using RNS moduli 

set {3, 4, 5} 

28 = (1,0,3)𝑅𝑁𝑆 3 4 5 =  01,00,011 𝑅𝑁𝑆 11|100|101  

32 = (2,0,2)𝑅𝑁𝑆 3 4 5 =  10,00,010 𝑅𝑁𝑆 11|100|101  

              =   01,00,011 +  10,00,010  
𝑅𝑁𝑆 11|100|101 

 

             =  00,00,000 𝑅𝑁𝑆 11|100|101  

RNS to decimal conversion of  00,00,000 𝑅𝑁𝑆 11|100|101  

will result in the decimal number 0. Whilst the sum of the 

decimal numbers 28 and 32 is 60, a clear sign of overflow 

occurring. 

Checking for RNS overflow using the proposed algorithm 

𝜌𝑥 = 7 = 00111 

𝜌𝑦 = 8 = 01000 

𝐾 = 𝜌𝑥 + 𝜌𝑦 = 00111 + 01000 = 01111 

𝜇 = 00 + 00 = 000,   𝛽 = 0. 

Even though, the MSB of 𝐾 is not “1”, all other bits are “1” 

therefore the scheme will detect that overflow has occurred.  

From (27), 

𝑍 = 0111100 + 0000000 = 0111100 = (60)decimal  

Checking overflow in the sum of 10 and 11 using RNS moduli 

set {3, 4, 5} 

10 = (1,2,0)𝑅𝑁𝑆 3 4 5 =  01,10,000 𝑅𝑁𝑆 11|100|101  

11 = (2,3,1)𝑅𝑁𝑆 3 4 5 =  10,11,001 𝑅𝑁𝑆 11|100|101  

              =   01,10,000 +  10,11,001  
𝑅𝑁𝑆 11|100|101 

 

           =  00,01,001 𝑅𝑁𝑆 11|100|101  

RNS to decimal conversion of  00,01,001 𝑅𝑁𝑆 11|100|101  

will result in the decimal number 21 which is correct result of 

10 + 11. 

Checking for RNS overflow using the proposed algorithm 

𝜌𝑥 = 2 = 00010 

𝜌𝑦 = 2 = 00010 

𝐾 = 00010 + 00010 = 00100 

𝜇 = 10 + 11 = 101,   𝛽 = 1. 

After processing, the scheme will obviously detect no 

overflow since it is only 𝐾2𝑛−2 = 1. 

And from (27), 

𝑍 = 0010000 + 0000101 = 0010101 = (21)decimal  

4. PERFORMANCE EVALUATION 
In order to evaluate the performance of the proposed overflow 

detection scheme, it is compared with similar best known state 

of the art schemes.  

Theoretical analysis from Table 1 shows that the proposed 

scheme has less delay and complexity without compromising 

on accuracy compared to [4] which is the current best state of 

the art and has a correction component. The proposed scheme 

is also faster than [6] which was the best state of the art before 

[4]. Even though, the hardware complexity of the proposed 

scheme is higher than that in [6], the proposed scheme uses 

three comparators and a single AND gate whilst [6] uses six 

comparators and three AND gates which are not included in 

the comparison. It is also clear from the 𝐴𝐷2 analysis that the 

proposed scheme is very efficient than the state of the art 

schemes. 

The correction part is not included in the evaluation just as it 

is not included in [4] for fairness. In any case, the accurate 

result is a  3𝑛 + 1  𝑏𝑖𝑡 sum (Z) in (10) therefore, a  3𝑛 +
1  𝑏𝑖𝑡 adder is designed to cater for the addition. 

5. CONCLUSION 
Detecting overflow is one of the most important and complex 

operations in RNS. In this paper, a novel method for detecting 

and correcting overflow during addition is presented. The 

proposed technique does not require full RNS-binary 

conversion. The proposed scheme is able to give the correct 

result for the sum of two numbers whether overflow occurs or 

not. The proposed scheme is demonstrated theoretically to be 

very efficient than similar state of the art designs. Since only 

theoretical analysis was presented, our next focus will be to 

implement the proposed method using VHDL in Xilinx.  
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Table 1: Area, Delay Comparison 

Scheme Area(∆𝐹𝐴) Delay(𝐷𝐹𝐴) 𝑨𝑫𝟐 

[6] 11𝑛 + 6 22𝑛 + 12 5324𝑛3 + 81712𝑛2 + 4752𝑛 + 864 

[4] 37𝑛 + 18 16𝑛 + log 𝑛 + 13 9472𝑛3 + 20000𝑛2 + 13661𝑛 + 3042 

Proposed 19𝑛 + 2 6𝑛 + 3 684𝑛3 + 756𝑛2 + 243𝑛 + 18 
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