International Journal of Computer Applications (0975 8887)
Volume 110 - No. 16, January 2015

Parallelization of Shortest Path Finder on GPU:
Floyd-Warshall

Dhananjay Kulkarni
Department of Computer Engineering
GES RHS COE MSR
Nasik

Neha Sharma
Department of Computer Engineering
GES RHS COE MSR
Nasik

Prithviraj Shinde
Department of Computer Engineering
GES RHS COE MSR
Nasik

Vaishali Varma

Department of Computer Engineering
GES RHS COE MSR

ABSTRACT

The project deals with implementation of Floyd Warshall
Algorithm i.e All Pair Shortest Path. This algorithm is implemented
using parallel programming concept for faster solution. This is a
research based project in which the serial and parallel computations
are compared.Floyd Warshall algorithm has overcome the
drawbacks of Dijkstra’s and Bellman Ford Algorithm. For
parallel programming, the project is implemented using NVIDIA
GPU(NVIDIA GeForce 820M , 410M) for which CUDA(CUDA
Toolkit 6.0) is used . The purpose of developing this project
is to find the shortest path between all the present nodes in a
graph.This system is designed to work on a large dataset(set of 48
or 72 or 100 cities).This project can be implemented for Airline
Systems, Transportation services, Courier Services, Networking.

General Terms:

Reduces the time of computation ,Parallel computation of the algorithm
,Guarantee of optimal solution.

Keywords:

Floyd Warshall Algorithm,Parallel Programming, CUDA,NVIDIA
GPU.

1. INTRODUCTION
1.1 Parallel Computing

Traditionally Serial computing was widely used. In serial
computing the execution was carried out serially i.e after
completion of first instruction the next instruction was executed,
this was time consuming process. To overcome this problem
Parallel computing was introduced.Parallel computing is a
form of computation in which many computations are carried
out simultaneously. In this a large problem is divided into
multiple sub problems and then executed simultaneously on the
processor. This reduces the time complexity as compared to
serial computation. In parallel computing more than one ALU is
used hence the instructions are executed simultaneously. Parallel

Nasik

Computing mainly uses Flyn’s Taxonomy from which it uses
SIMD(Single Instruction Multiple Data).In this the instruction
remains constant,but the data changes continuously. This increases
the data handling capacity of the processor.

1.2 Floyd Warshall

Floyd Warshall algorithm is All Pair Shortest Path finder.It is
mainly used to overcome the drawbacks of Dijkstra’s and Bellman
Ford Algorithm. It considers negative weight present in the graph.
In Floyd Warshall algorithm every node of the graph is visited and
the shortest path is computed.

2. LITERATURE SURVEY

As mentioned earlier, a graph can be used to represent a map
where the cities are represented by vertices and the routes or roads
are represented by edges within the graph. In this section, a graph
representation of a map is explained further, and brief descriptions
and implementations of the three shortest path algorithms being
studied are presented. The following algorithms are discussed
below:

— Dijkstra’s Algorithm.

Dijkstra’s Algorithm is used to compute the single source
shortest path.In this algorithm the minimum distance is
computed from a single source to single destination.Dijkstra’s
algorithm does not support the use of negative weights in the
graph,hence all the weights in the graph should have positive
weight.Although Dijkstra‘s algorithm does not solve the all pair
shortest path problem,it is possible to get the shortest distances
for all pairs of vertices by running Dijkstra‘s algorithm for every
vertex of the graph[2].

INPUT: A graph G(V,E) where V is a set of vertices
and E is set of weighted edges between these

vertices.
A source vertex from V.

OUTPUT: The distance of shortest paths between
the source vertex and every vertex in V.

for each vertex v in V
dist[v]=infinity
previous[v]=undefined
end for

dist [source]=0

Q=V

while Q is not Empty
u= vertex in Q with smallest distance in dist[]
Q=Q/{u}

if dist[ul=infinity
break

for each neighbour v of u in Q
alt = dist[u] + dist_between(u,v)
if alt < dist[v]

dist[v] = alt

previous[v] = u

decrease-key v in Q

end if

end for

end while

return dist

— Bellman-Ford Algorithm.

In comparison to Dijkstra‘s Algorithm, the Bellman-Ford
Algorithm admits or acknowledges the edges with negative
weights. That is why, a graph can contain cycles of negative
weights, which will generate numerous number of paths from
the starting point to the final destination, where each cycle will
minimize the length of the shortest path[4].

INPUT: A graph G(V,E) where V is A set of vertices
and E is set of weighted edges between these
vertices.

A source vertex from V.

dfo] = 0;

for(int i=0;i<n-1;i++)

{

for(int j=0;j<n;j++)

{

if (dlal[j][0]-1]< 30000)
{

dld[jI[1] - 1] =
math.min (d[alj]l[1]1-1],d[al[jl[0]-1]1 = aljl[2]);
}

}

}

International Journal of Computer Applications (0975 8887)
Volume 110 - No. 16, January 2015

Table 1. Comparison of algorithms

Algorithm Description | Negative Values | Time Complexity
Dijkstra’s Algo. SSSP NO on? + m)
Bellman Ford Algo. SSSP NO 0(n?)
Floyd Warshall Algo. | APSP YES O(n3)

— Floyd-Warshall Algorithm.

Floyd-Warshall Algorithm is an all pair shortest path algorithm.
As the negative values are not considered in Dijkstra’s Algorithm
it considers the negative weights in the graph. In this algorithm
every node present in the graph is visited in order to compute
the shortest path.

The serial computation of these algorithms is time consuming
so to increase the efficiency of the result This algorithm is
implemented using GPU. Due to this the computation time is
reduced drastically. Floyd Warshall overcomes the disadvantages
of Dijkstra’s and Bellman Ford Algorithm so Floyd Warshall
Algorithm is implemented parallely using CUDA on GPU.

Here ’'n’ is Number of Vertices and *'m’ is Number of edges.
SSSP- Single source shortest path.
APSP- All pair shortest path.

3. PROPOSED SYSTEM
3.1 Graphical Processing Unit.

Graphics Processing units have evolved into a very attractive
hardware platform for general purpose computations due to
their extremely high floating point processing performance[3].
GPU-accelerated computing is the use of a graphics processing
unit (GPU) together with a CPU to accelerate scientific, analytics,
engineering, consumer, and enterprise applications[4].GPUs are
used in computers, mobiles, game consoles. Modern GPUs are very
efficient for high definition computer graphics.The highly parallel
structure of GPU makes it far more efficient than general purpose
CPU for processing of large data.The rapid evolution of GPUs
in performance, architecture and programmability can provide
application potential beyond their primary purpose of graphics
processing[2]. The building blocks of GPU are Grids.Grids are
further divided into blocks and the blocks are divided into threads.
There are various parallel computing platforms like MPI, OpenCl,
CUDA, this project is implemented using CUDA.

3.2 CUDA(Compute Unified Device Architecture)

CUDA was first introduced by NVIDIA in 2007. It was developed
for both Windows and Linux platform later version 2.0 was
compatible with Mac OS. NVIDIA has developed CUDA specially
for NVIDIA Graphic Cards. It is an unique programming language
for the NVIDIA Graphic cards as it uses the all the cores of the
graphic card efficiently.

3.2.1 Programming Model. CUDA uses an extended C language
that allows the user to program using the CUDA architecture.A user
defined C function that is executed in the GPU is called a kernel.
The number of times the kernel to be executed is decide by the
programmer by providing the number of threads. So, if the user
specifies the number of threads as N, the kernel will be executed N
times by N different threads. The Kepler architecture also supports
concurrent global kernel execution by allowing up to 16 kernels to
execute simultaneously.

3.3 CUDA Memory

A large amount of time of computation is spent on reading the
data. As the GPU has multiple threads it has to select the most
appropriate memory for computation. The four types of memory
are.

— Global Memory :

It is the largest memory present on the device. It is read and
write type of memory. It the slowest memory.

— Shared Memory :

The Shared memory is read-and-write memory physically
resides on the GPU. It is faster than the global memory. The
threads present in the block are only allowed to access the
memory.Thread in one block can access that block shared
memory but threads in other block don’t have access to shared
memory in different blocks. This results in high speed as the
thread access the shared memory simultaneously.The threads
in the block communicate with each other using the shared
memory. Shared memory is limited to 16 kilobytes per block.

— Texture Memory :

Texture memory is accessed using read only cache and it
is used for performing floating point operations.It is very costly
operation.

— Constant Memory :

Constant memory is read only memory and it does not
change during the kernel execution.

4. SYSTEM FEATURES

The features of our system are as follows:

— Reduces the time of computation.
— Parallel computation of the algorithm.

— Guarantee of optimal solution.

4.1 Operating Environment
— NVIDIA GEForce GPU.

— Ubuntu 12.04
— CUDA Toolkit 6.0

— NSIGHT Eclipse.

International Journal of Computer Applications (0975 8887)
Volume 110 - No. 16, January 2015

4.2 Hardware Interfaces
— NVIDIA GEForce Graphics Card.

— Intel Core 13 4th Generation.

— 4GB RAM.

4.3 Software Interfaces

— Languages Used : CUDA,C.

— CUDA ToolKit 6.0.

— NSIGHT Eclipse Edition.

— UBUNTU 12.04.

— Documentation Tools :Dia,Tex Maker.

5. MODULES

The Project is divided into six modules.The modules are as follows:

— Read Data from file.

— Convert raw file data into matrix form.

— Launch GPU Kernel.

— Compute shortest Path.

— Return Output from GPU to CPU.

— Display output on CPU.

5.1 Read data from file

The input to the algorithm will be a large data set of 45 to 70
cities.The data from the file will be fetched and processed in the
further modules.

5.2 Convert raw file data into matrix form

The input will be in the form of matrix hence, the raw data from
the file will be converted in to adjacency matrix form using File
handling.

5.3 Launch GPU Kernel

The algorithm will be computed parallely on GPU hence the
data processed in the above modules will be given to GPU using
the kernel function.In the Kernel function the Floyd-Warshall

Launch GPU kenel

GPU kernel

n/b Threads

| n/b Threads |
i i

cPU v

| n/b Threads |

Output
Shortest Path Distance Matrix

Fig. 1. blockdiagram

algorithm will be executed .

5.4 Compute shortest path

The shortest path will be computed with the help of the adjacency
matrix passed from the CPU to GPU.The operation on the data
will be performed parallely with the help of threads and blocks.

5.5 Return OQutput from GPU to CPU

After computing the shortest path using the Floyd-Warshall
algorithm the result matrix will be again send from the GPU to
CPU.The Computations are made on GPU and the final result are
send to the CPU.

5.6 Display output on CPU

The output matrix which is send by the GPU to CPU is displayed
on the CPU.

6. PSEUDO CODE

The Floyd-Warshall algorithm compares all possible paths through
the graph between each pair of vertices. Consider a graph G(V,E)
where V is no. of vertices and E is no. of edges. For computing
minimum path between each pair of node Wk is computed where
k ranges from 1 to V. For computing shortest from i to j, W[i, j] =
WIi, k] +W[k, jl

INPUT: A graph G(V,E) where V is as et of vertices and E is set of
weighted edges between these vertices. A source vertex form V.

OUTPUT: The distance of shortest paths between the source vertex
and every vertex in G.

6.1 Code

Read the input from the provided file.
Convert the present data of file into Matrix form.
Launch kernel of GPU which will execute the Floyd Warshall

International Journal of Computer Applications (0975 8887)
Volume 110 - No. 16, January 2015

Algorithm parallely.

Compute the shortest path

for all nodes

for all nodes

if there is an edge from one node to other node
dist[0][nodel][node2] = the length of the edge from one node to
other node

else

dist[0][node][node2] = INFINITY

for k =1 to all nodes

fori=1 to all nodes

for j =1 to all nodes

dist[k][i][j] = min(dist[k-1][i][j], dist[k-1][i][k] + dist[k-1][k][j])
After all iterations the distance dist(N,i,j) represents the shortest
distance between i and j.

Send final shortest path from GPU to CPU.

Display the shortest path on the CPU.

7. CONCLUSION

Parallel computing is an emerging technology with a wide range
of applications.The concept of parallel computing is applied
using NVIDIA GPU and applying Floyd-Warshall algorithm using
NVIDIA’s parallel computing platform CUDA(CUDA ToolKit
6.0). This is a research based project which compares the time
complexity of serial as well as parallel algorithm. CUDA is efficient
in using maximum cores of GPU, hence this is considered as the
best parallel computing platform. Thus, the system implements
Parallelization of shortest path finder algorithm: Floyd-Warshall
on GPU. This system can be implemented in the areas where the
operation is to be performed on large dataset and the computation
time should be less hence to reduce the time of computation
parallelization can be implemented using GPU.

8. REFERENCES

[1] Jian Ma ; Sch. of Transp. Eng., Tongji Univ., Shanghai,
China ; Ke-Ping Li ; Li-yan Zhang, A Parallel Floyd-Warshall
algorithm based on TBB, IEEE.

[2] http://ati.amd.com/products/streamprocessor/index.html

[3] John D.owens, David Luebke, Naga Govindaraju, Mark
Harris, Jens Kruger, Aaron E.Lefohn, Timothy. Purcell,A
survey of general-purpose computation on graphics hardware,

Computer Graphics Forum 34(March) (2007)80-113.

[4] Kairanbay Magzhan, Hajar Mat Jani”A review and evaluation
of shortest path algorithms”.

[5] Olaf Schenk,Matthias Christen,Helmar Burkhart”J. Parallel
Distrib. Comput”.

[6] http://www.nvidia.com/object/what-is-gpu-computing.html
[7] Efficient multi GPU algorithm for All pair shortest path.

[8] G. Venkataraman, S. Sahni, and S. Mukhopadhyaya, A
blocked all-pairs shortest-paths algorithm, J. Exp. Algorithmics.

[9] P. Harish and P. Narayanan, Accelerating large graph
algorithms on the GPU using CUDA, Lecture Notes in Computer

Science

[10] A. Buluc, J. R. Gilbert, and C. Budak, Solving path
problems on the GPU, Parallel Computing, vol. In Press,
Corrected Proof, 2009.

[11] R. Seidel. On the all-pairs-shortest-path problem in
unweighted undirected graphs. Journal of Computer and System
Sciences

[12] U. Bondhugula, A. Devulapalli, J. Fernando, P. Wyckoff,
and P. Sadayappan, Parallel fpga-based all-pairs shortest-paths
in a directed graph, Parallel and Distributed Processing
Symposium, International,

International Journal of Computer Applications (0975 8887)
Volume 110 - No. 16, January 2015

	Introduction
	Parallel Computing
	Floyd Warshall

	Literature Survey
	Proposed system
	Graphical Processing Unit.
	CUDA(Compute Unified Device Architecture)
	Programming Model

	CUDA Memory

	System Features
	Operating Environment
	Hardware Interfaces
	Software Interfaces

	Modules
	Read data from file
	Convert raw file data into matrix form
	Launch GPU Kernel
	Compute shortest path
	Return Output from GPU to CPU
	Display output on CPU

	Pseudo Code
	Code

	Conclusion
	References

