
International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 13, January 2015

29

Study of Techniques for Checking the Consistency in

File System

Aniket G. Meshram
Department of Computer Engineering,

Pimpri Chinchwad College of Engineering, Pune.

Sonal Gore
Assisant Profressor,

Department of Computer Engineering,
Pimpri Chinchwad College of Engineering, Pune.

ABSTRACT
File Systems today have grown from a minimal software to a

sophisticated system code that is much robust than it was a few

years ago. However, still there are issues with the file system

design that lead to system crashes and failures. Maintaining file

system consistency, even in the face of these crashes remains a

subject of study. Like any other information, the metadata

information within a file system is a critical aspect that requires

attention. In order to maintain file system consistency, it is

necessary that the operations the file system carries out be

without any bugs. Solutions such as the use of the fsck tool,

along with techniques such as journaling and copy-on-write

provide solutions only when the user is not using the system.

This drawback can be overcome with the concept of runtime

checking, but however, deciding the nature of parameter that

need to be checked during runtime remains one of the major

problems faced by file system experts. In this paper, a

discussion is presented of what parameters are required to be

checked at runtime describing a way to define those parameters.

These parameters can be referred to as declarative consistency

rules that can be checked at runtime.

Keywords
File system consistency, Metadata updates, file system checker,

journaling, copy-on-write, runtime checking, file system bugs.

1. INTRODUCTION
How does one ensure that the file system is consistent? This is a

question that has been bugging the file system experts for a long

time. It is clear now that file systems have bugs. Various file

system operations have shown the existence of bugs that can

corrupt the system and create many problems. A study of file

systems bugs has shown that bugs that relate to metadata

corruption create serious problems to file system metadata

which can be disastrous for organizations that carry out heavy

duty operations. Even a small bug into the system can lead to a

major crisis for company‟s working day and night.

UNIX experts had found a solution for this which came out as a

tool called the „fsck‟ utility tool. This tool is an offline checker

that works around the file system to find and repair any bugs

that it encounters during its operation. However there are many

situations where this offline checker fails to maintain

consistency and may produce insecure repairs [14]. It has been

shown that fsck may in some cases (instead of repairing)

introduce bugs into the system. Further, fsck processing is

rather a very slow operation that can take a lot of time for

repairing systems leading to a significant downtime. System

that operates on large file systems will find using this tool very

time consuming and very cumbersome.

However, there are other techniques that are developed to

minimize the use of fsck namely journaling and shadow paging.

These techniques are well known for creating logs for each

transaction done by the file system. The file system checker

then makes use of this log that currently holds the information

where corruption might be possible and repairs them. Though

this works out as a good solution for maintaining consistency

they are still error prone since, if bugs propagate to a log they

can make the file system prone to failure and crash the system

eventually.

Recent study has introduced the technique of a runtime checker

that operates even when the user is using the file system. This

runtime checking can provide a standard solution to

maintaining consistency even when the system is „live‟ with the

user. However, still a question remains as to how to define rules

that can be checked online with the system, what are the

consistency rules that can be checked by the runtime checker,

and how do we optimize those rules so as to speed up the

runtime checking process. Next we describe what sort of

consistency checks are performed by the tools and methods

discussed before viz. the file system checker tool (fsck), the

methods like journaling and the copy-on-write methods. We

then go on to describe the related work that has been carried out

in this area.

2. LITERATURE SURVEY

2.1. File System Checker (fsck)
Fsck is a very comprehensive tool that checks almost every bit

and inch of the file system looking for bugs and repairing them

accordingly based on the repair methods defined within it. Fsck

is said to normally run in non-interactive mode. But in cases

when it seems that a human intervention is required it goes

interactive. The primary requirement of the fsck checker is that

file system should be unmounted before performing any

operations on it. It internally mounts the file system with its

mounting handlers and locks the file system for the checking

and repairing purpose. The checks that it performs can be

summarized as below:

2.1.1. Superblock Checking
This involves checking the superblock for any inconsistencies

in file-system size, number of inodes, free-block count, and the

free-inode count. In order to do that it scans the entire file

system and collect this information in its structure. Each Block

Group in the file system structure begins with a superblock.

This superblock contains all the metadata information for that

block group in the structure. A structure is maintained within

the file system that scans all the superblock parameters for

consistency along with the parameters mentioned above.

2.1.2. Inode State Checking
Fsck sequentially checks the inode list in the file system from

inode 2 (since inode 0 and inode 1 are file system reserved) till

the last inode for any discrepancy. In an inode structure there is

a mode field as shown in Figure 1. Based on this mode and the

allocation information the inode is checked for correctness. If

the allocation states that it is neither unallocated nor allocated,

then it is considered as bad data and may be cleared.

International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 13, January 2015

30

Fig 1. A Typical Inode Structure

2.1.3. Inode Link Checking
Fsck checks the number of links each inode contains starting

from the root directory and counting as it continues checking

downwards till the current file position the file system

hierarchy. If this count does not match the link count specified

in the inode structure then the inode is marked as not updated

and updates are done based on the new values retrieved from

the recent transactions and use operations.

2.1.4. Free Block Checking
This involves checking all the blocks that are marked free in the

cylinder group block. If this free block is held by any files then

the allocations are rebuilt again. Next, the fsck tool checks if the

free block plus the inode block are equal to the total number of

blocks in the file system. Further this count is also checked

against the summary information within the super-block that

counts the total number of free blocks in the file system.

2.1.5. Directory Checks
Fsck checks if the directory marked with „.‟ has an entry in the

directory data block. This entry should be first entry followed

by the „..‟ entry which account for the immediate parent entry

for that file. Further, fsck checks that if directories are not

linked anywhere into the file system, it links the directory back

in a special directory called the lost & found directory.

2.2. Journaling
Journaling is nothing but maintaining a log in the file system

that contains information about the transactions that take place

in the file system. It maintains information about the changes

that take place while transactions occur. These changes are

typically logged before any transactions are committed into the

file system. An ext3 file system is the one that came with the

journaling capabilities. A journal was added to the structure just

after the superblock as shown in Figure 2.

Fig 2. Journal Structure in an ext3 file system

A journal maintain two blocks that keeps track of changes viz.

the transaction begin block and the final block that mark the end

of transaction. These blocks along with the metadata updates

are written to disk and checkpointed. Checkpointing includes

writing metadata as well as all the other datablock updates into

the right places in the file system.

Journal works as a helping hand for the file system checker,

which would rather have scanned the entire file system for

bugs, wasting lots of business hours. For example, suppose that

the system crash occur after the transaction is written to the

logs. In this case suppose that checking is also not done then

recovery is performed as follows. When the system restarts, the

file system checker (fsck) checks for any discrepancies that

might have occurred the last time file system was active. In this

case, since the system was crashed earlier a log was maintained.

Using this log, a redo logging operation is performed to repeat

the same operation for update data and metadata on the final on-

disk locations.

2.3. Copy-on-Write
This technique is similar to the journaling technique, except that

it uses the concept of one-time sequential write to update on-

disk data structures. In this method, when writing to disk, first

all the updates including the metadata updates are buffered in

the memory segment. When the segment becomes full all this

segment information is written to the disk in one single stroke

to a free segment without overwriting any existing data

structures on the disk.

3. RELATED WORK

3.1. SQCK Checker
Gunawi, et al., has proposed a file system checker based on a

declarative query language called SQCK. Borrowing heavily

from the database community, SQCK employs declarative

queries to check and repair a file system image. The purpose of

the e2fsck utility is to check and repair the data structures of an

ext2/ext3 file system on disk; in the ideal case, the repaired file

system is readable, writable, and contains all of the directories,

files, and data of the original file system. E2fsck is a tool that

contains more than 30,000 lines of C code and can identify and

return 269 different error codes. SQCK is built around five

components namely; the scanner that reads the relevant

portions of the file system from the disk, the loader that loads

the corresponding information into the database tables. The

checker that is then responsible for running the declarative

queries that both check and repair the file system structures and

the flusher which completes the loop by writing out the changes

to disk.

3.2. Runtime Checking
An excellent technique has been presented by Daniel fryer et al.

[3] for performing consistency checking operations on a live

user system. The techniques spans across procedures from when

to check to how to check with the help of what is called a

change record. They argue that transaction commit points are

well-defined point at which a file system claims to be

consistent. The idea of runtime checking works around

checking consistency rules at this transaction commit point

before the transactions commits itself. Below we describe the

details of how, when and what is checked during runtime.

3.2.1. Consistency Properties to Check at Runtime
The consistency properties to check at runtime are derived from

the fsck checker itself. But however they are modified so as to

create an invariant rule that can save runtime operation. The

invariants are declare so that they can be checked at runtime

rather than doing a full disk scan. For example, consider a

consistency rule that “all live data blocks are marked in the

block bitmap”. An invariant for such a rule would be to check

only the block pointers and the block bitmaps. As they are the

only structure that are updated for that rule, checking them at

runtime will be effective.

International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 13, January 2015

31

3.2.2. When to Check for Consistency Properties
When a user is live with the system, it is clear that the data or

the metadata for that matter would be in an inconsistent state.

The in-memory blocks cannot be checked at such state since

that would obviously lead to inconsistency, as one is unaware if

these copies would get modified or not. Instead one can check

for inconsistencies at a point when the file system themselves

settles for a consistent state within transaction operations. For

journaling, these are the transaction commit points at which the

file system is consistent. At this point, a runtime check can be

performed to scan the necessary parameters before they

commit, so that the updated blocks on the on-disk data

structures remain consistent. For example, in shadow paging

systems, superblocks are updated after all the transactions are

committed to disk.

3.2.3. Data Structure used for Checking

Consistency
As mentioned earlier, a change record is maintained, that

updates the data structures on the on-disk storage. The format of

the change records can be shown as below:

[type, id, field, oldval, newval]

where,

type field mentions the data structure (e.g., inode, directory

block).

id is the unique identifier of a specific object of the given type

(e.g. inode number). The (type, id) pair locates the specific data

structure in the file system image.

field is a field in the structure (e.g. inode size field) or a key

from a set (e.g. directory entry name).

oldval and newval are the old and new values of the

corresponding field.

4. CONCLUSION AND FUTURE SCOPE
Maintaining file system consistency is a very complex issue and

requires an extensive study in understanding the file system

structure. Moreover, a deep study is required for understanding

the correct behaviour for file system. Even in cases where the

existing tools and method lack techniques in maintaining file

system consistency, runtime checking can play a major role in

establishing an effective system. The only question remains is

up to what extent this runtime checker maintains consistency

and how much can we rely on such techniques for a clean, bug

free systems.

5. REFERENCES
[1] Checking the Integrity of Transactional Mechanisms,

Daniel Fryer, Mike Qin, Jack Sun, Kah Wai Lee, Angela

Demke Brown, Ashvin Goel University of Toronto

[2] A Study of Linux File System Evolution, Lanyue Lu,

Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,

Shan Lu Computer Sciences Department, University of

Wisconsin, Madison

[3] Recon: Verifying File System Consistency at Runtime,

Daniel Fryer, Kuei Sun, Rahat Mahmood, TingHao

Cheng, Shaun Benjamin, Ashvin Goel, Angela Demke

Brown University of Toronto

[4] Fsck: The UNIX File System Check Program, Marshall

Kirk McKusick Computer Science Division Department

of Electrical Engineering and Computer Science

University of California, Berkeley T. J. Kowalski Bell

Laboratories New Jersey

[5] Using Declarative Invariants for Protecting File-System

Integrity, Jack Sun, Daniel Fryer, Ashvin Goel and

Angela Demke Brown University of Toronto

[6] Journaling the Linux ext2fs Filesystem, Stephen C.

Tweedie

[7] Anatomy of Linux journaling file systems, M. Tim

Jones, Consultant Engineer Emulex Corp.

[8] Analysis and Evolution of Journaling File Systems,

Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and

Remzi H. Arpaci-Dusseau Computer Sciences

Department University of Wisconsin, Madison

[9] “Soft Updates: A Solution to the Metadata Update

Problem in File Systems”, Gregory R. Ganger, Marshall

Kirk Mckusick, Craig A. N. Soules, Yale N. Patt

[10] ffsck: The Fast File System Checker, Ao Ma, Chris

Dragga, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-

Dusseau

[11] SQCK: A Declarative File System Checker, Haryadi S.

Gunawi, Abhishek Rajimwale, Andrea C. Arpaci-

Dusseau, Remzi H. Arpaci-Dusseau.

IJCATM : www.ijcaonline.org

