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ABSTRACT 

In this paper, the Legendre wavelet method (LWM) and He's 

Homotopy perturbation method (HPM) are applied to 

approximate solution for linear fractional integro-differential 

equation with initial condition. A comparison between these 

methods takes place. Numerical examples are presented to 

illustrste the efficiency and accuracy of the proposed methods.  
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1. INTRODUCTION 
In recent years, for solving linear and nonlinear mathematical, 

engineering and physical problems, many of the numerical 

methods are used for seeking approximate solutions such as 

Collocation method, Taylor expansion method, Adomian 

decomposition method, Legendre wavelet method and 

Homotopy perturbation method, see ([3, 4, 7, 12, 13]). The 

analytic results on existence and uniqueness of problems 

solutions to fractional differential equations have been 

investigated by many authors [1, 6, 11, 14]. In this paper will 

be taken the fractional integro-differential equations with a 

Caputo fractional derivative of the type  

𝐷∗
𝛼𝑦 𝑡 = 𝑓 𝑡 + 𝑃 𝑡 𝑦 𝑡 +  𝑘 𝑡, 𝑠 𝑦 𝑠 𝑑𝑠

𝑡

0

, t

∈  0,1                                                                       (1.1) 

with the initial condition 

𝑦 0 = 𝛽,                             0 < 𝛼 ≤ 1                         (1.2) 

where 𝐷∗
𝛼   is Caputo’s fractional derivative and 𝛼 is a 

parameter describing the order of the fractional 

derivative, 𝛽 is  real constant,  f(t)  and 𝑘 𝑡, 𝑠  are given 

that can be approximated by Taylor polynomials. We applied 

the LWM and HPM for approximating the solution of linear 

fractional integro-differential equation. The outline of this 

paper is as follows: In section 2, we present some definitions. 

Sections 3, contains the application of Legendre wavelet 

method. Section 4, contains the application of He's homotopy 

perturbation method. Finally, sec.5 devoted to illustrste some 

numerical examples on mentioned methods.  

 

2. SOME DEFINITIONS AND 

NOTATIONS  
Definition 2.1. A real function 𝑓 𝑥 , 𝑥 > 0, is said to be in the 

space 𝐶𝛼 ,𝛼 ∈ ℝ, if there exists a real number 𝑝 > 𝛼, such 

that 𝑓 𝑥 = 𝑥𝑝𝑓1 𝑥 , where  𝑓1 𝑥 ∈ 𝐶 0,∞ . 

Definition 2.2. A real function  𝑓 𝑥 , 𝑥 > 0, is said to be in 

the space 𝐶𝛼
𝑘  ,𝑘 ∈ ℕ ∪ {0}, if 𝑓𝑘 ∈ 𝐶𝛼 . 

Definition 2.3. [6] 𝐷𝛼  (𝛼 is real) denotes the fractional 

differential operator of order 𝛼  in the sense of Riemann-

Liouville, defined by: 

𝐷𝛼  𝑓 𝑥 

=

 
  
 

  
 

1

𝛤 𝑛 − 𝛼 

𝑑𝑛

𝑑𝑥𝑛
 

𝑓 𝑡 

 𝑥 − 𝑡 𝛼−𝑛+1 𝑑𝑡
𝑥

0

, 0 ≤  𝑛 − 1 < 𝛼 ≤ 𝑛,

  
 
 

𝑑𝑛𝑓 𝑥 

𝑑𝑥𝑛
,                                         𝛼 = 𝑛 ∈ ℕ.                 (2.1)

   

Definition 2.4. [6] 𝐼𝛼  denotes the fractional integral operator 

of order 𝛼  in the sense of Riemann-Liouville, defined by: 

𝐼𝛼  𝑓 𝑥 = 𝐷−𝛼  𝑓 𝑥 

=

 
 
 

 
 

1

𝛤 𝛼 
 

𝑓 𝑡 

 𝑥 − 𝑡 1−𝛼
𝑑𝑡

𝑥

0

,𝛼 > 0, 𝑥 > 0,

 
 
 

𝑓 𝑥 ,                                               𝛼 = 0.

                         (2.2)  

Some basic properties of fractional integral and differential 

operator are listed below [6]: for 𝑓 ∈ 𝐶𝜇 , 𝜇 ≥ −1, 𝛾 ≥ −1,

𝛼,𝛽 ≥ 0: 

1.  𝐼𝛼 𝐼𝛽  𝑓 𝑥 = 𝐼𝛼+𝛽  𝑓 𝑥 = 𝐼𝛽 𝐼𝛼  𝑓 𝑥 . 

2.  𝐼𝛼𝑥𝛾 =
𝛤 𝛾 + 1 

𝛤 𝛼 + 𝛾 + 1 
𝑥𝛼+𝛾 . 

3.  𝐼𝛼 ∈ 𝐶0. 

4.  𝐷𝛼𝐷𝛽𝑓 𝑥 = 𝐷𝛼+𝛽𝑓 𝑥 . 

5.  𝐷𝛼  𝐼𝛼  𝑓 𝑥 = 𝑓 𝑥 . 

6.  𝐼𝛼𝐷𝛼  𝑓 𝑥 = 𝑓 𝑥 −  𝑓𝑘 0+ 
𝑥𝑘

𝑘!
𝑚−1
𝑘=0 , 𝑚 − 1 < 𝛼 ≤

𝑚 ∈ ℕ.  

7.  𝐷𝛼𝑥𝛾 =
𝛤 𝛾 + 1 

𝛤 𝛾 + 1 − 𝛼 
𝑥𝛾−𝛼 , 𝑥 > 0. 
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Definition 2.5. [6] Let 𝑓 ∈ 𝐶−1
𝑛 ,𝑛 ∈ ℕ.Then the Caputo 

fractional derivative of 𝑓(𝑥), defined by  

𝐷∗
𝛼  𝑓 𝑥 

=

 
  
 

  
 

1

𝛤 𝑛 − 𝛼 
 

𝑓(𝑛) 𝑡 

 𝑥 − 𝑡 𝛼−𝑛+1 𝑑𝑡
𝑥

0

, 0 ≤  𝑛 − 1 < 𝛼 ≤ 𝑛,

  
 
 

𝑑𝑛𝑓 𝑥 

𝑑𝑥𝑛
,                                 𝛼 = 𝑛 ∈ ℕ.                           2.3  

   

To obtain a numerical schema for the approximation of 

Caputo derivative, we can use a representation that has been 

introduced by Elliots [2], 

𝐷∗
𝛼  𝑓 𝑥 =

1

𝛤 −𝛼 
 

𝑓 𝑡 − 𝑓(0)

 𝑥 − 𝑡 1+𝛼 𝑑𝑡,                                 (2.4)
𝑥

0

 

where the integral in equation (2.4) is a Hadamard finite-part 

integral. 

Definition 2.6. The following functions  

𝜓𝑘 ,𝑛 𝑡 =  𝑎0 
𝑘
2𝜓 𝑎0

𝑘𝑡 − 𝑛𝑏0 , 

form a family of discrete wavelets, where 𝑎0 > 1, 𝑏0 > 0 and 

n, k  are positive integer and  𝜓 is given function called 

mother wavelet. Moreover, the functions 

𝜓𝑛 ,𝑚  𝑡 

=

 
 
 

 
 
 𝑚 +

1

2
  2

𝑘
2  𝑃𝑚  2

𝑘𝑡 − 𝑛  ,   
𝑛 − 1

2𝑘
≤ 𝑡 <

𝑛 + 1

2𝑘
,

                                                                              
 

0                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         

      (2.5) 

where 

𝑃𝑚  𝑡 =
1

2𝑚𝑚!

𝑑𝑚

𝑑𝑡𝑚
[ 𝑡2 − 1)𝑚  , 𝑚 = 0,1,2,… 

are called Legendre wavelets polynomials, where 𝑛 = 2𝑛 −
1,𝑛 = 1,……  , 2𝑘−1  ,𝑘 ∈ ℕ, 𝑡 ∈ [0,1] and m is the order of 

the Legendre polynomial 𝑃𝑚 . 

3. LEGENDRE WAVELET METHOD 
Legendre wavelets method, [4, 15], are commonly used for 

the numerical solution of integral equations.                                                          

Consider the equation  (1.1) with the initial condition (1.2).                                                               

The exact solution of  (1.1) can be expanded as Legendre 

wavelets series as: 

y t =   𝐶𝑛𝑚𝜓𝑛 ,𝑚  𝑡 

∞

𝑚=0

∞

𝑛=1

, 

where  𝜓𝑛 ,𝑚  𝑡  is given by definition (2.5). We approximate 

the solution y(t) by the truncated series  

𝑌𝐾,𝑀 t =   𝐶𝑛𝑚𝜓𝑛 ,𝑚  𝑡 

𝑀−1

𝑚=0

2𝐾−1

𝑛=1

,                                            3.1  

then a total number of 2𝐾−1𝑀 conditions should exist for 

determination of  2𝐾−1𝑀 coefficients 

𝐶10 ,… ,𝐶1𝑀−1 ,𝐶21 ,…  ,𝐶2𝑀−1 ,…  ,𝐶2𝑘−10,…  ,𝐶2𝑘−1𝑀−1.  

By the initial condition we obtain, 

𝑌𝐾,𝑀 0 =   𝐶𝑛𝑚𝜓𝑛 ,𝑚  0 = 𝛽

𝑀−1

𝑚=0

2𝐾−1

𝑛=1

.                                 3.2  

We see that there should be 2𝐾−1𝑀 − 1 extra conditions to 

recover the unknown coefficients 𝐶𝑛𝑚 . These conditions can 

be obtained by substituting equation  3.1  in equation 1.1 , 

  𝐶𝑛𝑚𝐷∗
𝛼  𝜓𝑛 ,𝑚  𝑡 

𝑀−1

𝑚=0

2𝐾−1

𝑛=1

                 

= 𝑓 𝑡 +   𝐶𝑛𝑚𝑃 𝑡  𝜓𝑛 ,𝑚  𝑡 

𝑀−1

𝑚=0

  

2𝐾−1

𝑛=1

+   𝐶𝑛𝑚

𝑀−1

𝑚=0

2𝐾−1

𝑛=1

 𝑘 𝑡, 𝑠  𝜓𝑛 ,𝑚  𝑠 𝑑𝑠.                                   3.3 

𝑡

0

 

Now we assume equation  3.3  is exact at 2𝐾−1𝑀 − 1 points 

𝑥𝑖  as: 

  𝐶𝑛𝑚𝐷∗
𝛼  𝜓𝑛 ,𝑚  𝑥𝑖 

𝑀−1

𝑚=0

2𝐾−1

𝑛=1

                 

= 𝑓 𝑥𝑖 +   𝐶𝑛𝑚𝑃 𝑥𝑖  𝜓𝑛 ,𝑚  𝑥𝑖 

𝑀−1

𝑚=0

  

2𝐾−1

𝑛=1

+   𝐶𝑛𝑚

𝑀−1

𝑚=0

2𝐾−1

𝑛=1

 𝑘 𝑥𝑖 , 𝑠  𝜓𝑛 ,𝑚  𝑠 𝑑𝑠.                                 3.4 

𝑥𝑖

0

 

The best choice of the  𝑥𝑖   points are the zeros of the shifted 

chebyshev of degree  2𝐾−1𝑀 − 1 in the interval [0, 1] that is  

𝑥𝑖 =
𝑠𝑖 + 1

2
 , where 𝑠𝑖 = cos(

𝜋𝑖

2𝐾−1𝑀 − 1
) ,

𝑖 = 1,…  , 2𝐾−1𝑀 − 1.  

Approximating 𝐷∗
𝛼  𝜓𝑛 ,𝑚  using Diegthelm method [10] on the 

representation that has been given by equation (2.4), we get  

  
𝐷∗
𝛼  𝜓𝑛 ,𝑚 (𝑥𝑖)  

=
1

Γ(−𝛼)
  

𝜓𝑛 ,𝑚  𝑠 −  𝜓𝑛 ,𝑚 (0)

 𝑥𝑖 − 𝑠 1+𝛼 𝑑𝑠
𝑥𝑖

0

= 
𝑥𝑖
−𝛼

Γ(−𝛼)
  

𝜓𝑛 ,𝑚  𝑥𝑖 − 𝑥𝑖𝜔 −  𝜓𝑛 ,𝑚 (0)

𝜔1+𝛼 𝑑𝜔
1

0

≃   𝜔𝑟(𝜓𝑛 ,𝑚  𝑥𝑖 −
𝑥𝑖𝑟

𝐿
 −  𝜓𝑛 ,𝑚 (0))

𝐿

𝑟=0

  

where 𝐿 ∈ ℕ and the weights 𝜔𝑟  are given by 

𝛼 1 − 𝛼 𝐿−𝛼  
Γ −𝛼 

𝑥𝑖
−𝛼  𝜔𝑟

=

 
 
 

 
 

−1 ,                                                            𝑖𝑓 𝑟 = 0,               
 

2𝑟1−𝛼 −  𝑟 − 1 1−𝛼 −  𝑟 + 1 1−𝛼 ,      𝑖𝑓 𝑟 = 1,… , 𝐿 − 1,
 

 𝛼 − 1 𝑟−𝛼 −  𝑟 − 1 1−𝛼 + 𝑟1−𝛼 ,       𝑖𝑓 𝑟 = 𝐿.        (3.5)

  

Then equation  3.4  becomes 

   𝜔𝑟(𝜓𝑛 ,𝑚  𝑥𝑖  −
𝑥𝑖𝑟

𝐿
 − 𝜓𝑛 ,𝑚  0  ) 𝐶𝑛𝑚  

𝐿

𝑟=0

𝑀−1

𝑚=0

2𝐾−1

𝑛=1

 

= 𝑓 𝑥𝑖 +   𝐶𝑛𝑚𝑃 𝑥𝑖  𝜓𝑛 ,𝑚  𝑥𝑖                            

𝑀−1

𝑚=0

  

2𝐾−1

𝑛=1

+   𝐶𝑛𝑚

𝑀−1

𝑚=0

2𝐾−1

𝑛=1

 𝑘 𝑥𝑖 , 𝑠  𝜓𝑛 ,𝑚  𝑠 𝑑𝑠.

𝑥𝑖

0

                                 3.6  

Combine equation   3.2  and equation   3.6  to obtain 2𝐾−1𝑀  

linear equations from which we can compute the unknown 

coefficients 𝑐𝑛𝑚 . 
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4. HOMOTOPY PERTURBATION 

METHOD 
To illustrate the basic concepts of HPM for linear              

fractional Integro-differential equations, consider equation 

(1.1) with initial conditions  1.2 . According to HPM [5, 7, 8, 

9], we construct the following homotopy: 

 1 − 𝑃 𝐷∗
𝛼𝑦 𝑡 + 𝑃  𝐷∗

𝛼𝑦 𝑡 − 𝑓 𝑡 − 𝑃(𝑡)𝑦(𝑡)

− 𝑘 𝑡, 𝑠 𝑦(𝑠)
𝑡

0

𝑑𝑠 = 0,                   (4.1) 

or   

𝐷∗
𝛼𝑦 𝑡 = 𝑃  𝑓 𝑡 + 𝑃 𝑡 𝑦 𝑡 

+  𝑘 𝑡, 𝑠 𝑦(𝑠)
𝑡

0

𝑑𝑠) ,                          4.2  

where 𝑃 ∈   0, 1   is an embedding parameter. If 𝑃 = 0, then 

equation  4.2  becomes a linear equation. 

𝐷∗
𝛼𝑦 𝑡 = 0,                                                                                 4.3  

and when 𝑃 = 1, then the equation  4.2  becomes the original 

equation  1.1 . The solution of equation  1.1  can be written 

as a power series in 𝑃  as follows:                                                                                                                       

𝑦 𝑡 = 𝑦0 𝑡 + 𝑃 𝑦1 𝑡 + P2𝑦2 𝑡 + ⋯                               4.4  
Put 𝑃 = 1 in equation  4.4 , so the approximate solution of 

equation  1.1  is:                                                              

𝑦 𝑡 = 𝑦0 𝑡 + 𝑦1 𝑡 + 𝑦2 𝑡 + ⋯                                        4.5  
Substituting  4.4  in  4.2 , and equating the coefficients of  

like powers of  P, we have  the following series of linear 

equations:   

𝑃0 ∶ 𝐷 
𝛼  𝑦0 𝑡 = 0,                                                                   (4.6)  

𝑃1 ∶ 𝐷 
𝛼  𝑦1 𝑡 = 𝑓 𝑡 + 𝑃 𝑡 𝑦0 𝑡 

+  𝑘 𝑡, 𝑠 𝑦0(𝑠)
𝑡

0

𝑑𝑠),                         (4.7)  

𝑃2 ∶ 𝐷 
𝛼  𝑦2 𝑥 = 𝑃 𝑡 𝑦1 𝑡 

+  𝑘 𝑡, 𝑠 𝑦1(𝑠)
𝑡

0

𝑑𝑠),                         (4.8)  

𝑃3 ∶ 𝐷 
𝛼  𝑦3 𝑥 = 𝑃 𝑡 𝑦2 𝑡 

+  𝑘 𝑡, 𝑠 𝑦2(𝑠)
𝑡

0

𝑑𝑠),                         (4.9)  

  It is obvious that these equations can be easily solved by 

applying the operator 𝐼𝛼 , the inverse of the operator 𝐷𝛼 , 

which is defined by (2.2). Hence, the components  

𝑦0 𝑡 , 𝑦1 𝑡 ,𝑦2 𝑡 + ⋯  of the HPM solution can be 

determined. That is, in  4.5  we can determine the HPM 

series solutions.  

5. NUMERICAL EXAMPLES 
In this section, we have applied Legendre wavelet method and 

He's homotopy perturbation method for linear fractional 

Integro-differential equations with known exact solution. All 

the results are calculated by using the symbolic computation 

software Maple 16. 

Example 5.1. Consider the following fractional integro-

differential equation: 

 

𝐷∗
0.75𝑦 𝑡 

=
𝑡0.25

Γ(1.25)
− 𝑡 − 𝑡2 −

1

2
𝑡3 −

1

3
𝑡4 + 𝑡𝑦 𝑡 

+  𝑡𝑠𝑦 𝑠 𝑑𝑠

𝑡

0

,                                                                           (5.1) 

with the initial condition 

𝑦 0 = 1,                                                                                     (5.2) 

with the exact solution  

𝑦 𝑡 = 1 + 𝑡.                                                                              (5.3) 

 According to LWM, with 𝐾 = 2 and 𝑀 = 2. We have 𝑓 𝑡 =
𝑡0.25

Γ(1.25)
− 𝑡 − 𝑡2 −

1

2
𝑡3 −

1

3
𝑡4, 𝑃 𝑡 = 𝑡, 𝑘(𝑡, 𝑠) = 𝑡𝑠, 𝛼 =

0.75, 𝑚 = 0,1, 𝐿 = 1, 𝑛 = 1,2, 
𝜓𝑛 ,𝑚  𝑡 

=

 
 
 

 
 
 𝑚 +

1

2
  2

𝑘
2  𝑃𝑚   4𝑡 − 𝑛  ,   

𝑛 − 1

4
≤ 𝑡 <

𝑛 + 1

4
,

                                                                              
 

0                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         

       (5.4) 

We get a system of equations from 

   𝜔𝑟  (𝜓𝑛 ,𝑚  𝑥𝑖  − 𝑥𝑖𝑟 − 𝜓𝑛 ,𝑚  0  ) 𝐶𝑛𝑚  

1

𝑟=0

1

𝑚=0

2

𝑛=1

 

=
𝑥𝑖

0.25

Γ(1.25)
− 𝑥𝑖  − 𝑥𝑖

2 −
1

2
𝑥𝑖

3 −
1

3
𝑥𝑖

4

+   𝐶𝑛𝑚  𝑥𝑖   𝜓𝑛 ,𝑚  𝑥𝑖                            

1

𝑚=0

  

2

𝑛=1

+   𝐶𝑛𝑚

1

𝑚=0

2

𝑛=1

 𝑥𝑖  𝑠  𝜓𝑛 ,𝑚  𝑠  𝑑𝑠.

𝑥𝑖

0

                                       5.5  

Where  

𝑥𝑖 =
𝑠𝑖 + 1

2
 , where  𝑠𝑖 = cos(

𝜋𝑖

3
) , 𝑖 = 1, 2,3,  

and from  3.5  we get 

0.75  0.25  
Γ −0.75 

𝑥𝑖
−0.75  𝜔𝑟 =

 
 
 

 
 
−1 ,                         𝑖𝑓 𝑟 = 0,

 
 
 

0.75 ,                      𝑖𝑓 𝑟 = 1.

  

𝑌2,2 0 =   𝐶𝑛𝑚𝜓𝑛 ,𝑚  0 = 1

1

𝑚=0

2

𝑛=1

.                                    5.6  

Combine equations  5.5  and  5.6  to obtain 4 linear 

equations and solve it to get from which 

 𝐶10 = 0.88388,   𝐶11 = 0.10206, 
𝐶20 = 1.23740,    𝐶21 = 0.10209. 

Then the approximate solution of  5.1   will be 

  𝐶𝑛𝑚𝜓𝑛 ,𝑚  𝑡 

1

𝑚=0

2

𝑛=1

=  
0.88388  2 + 0.10206  6  4𝑡 − 1 ,        0 ≤ 𝑡 < 0.5,

 

1.2374  2 + 0.10209  6  4𝑡 − 3 , 0.5 ≤ 𝑡 ≤ 1,
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=  
1.0000 + 0.99998 𝑡,        0 ≤ 𝑡 < 0.5,

 
0.99989 + 1.0003 𝑡, 0.5 ≤ 𝑡 ≤ 1.

                        (5.7)  

We compute the absolute error  𝐸1 =  𝑦𝐴𝑃𝑃 − 𝑦𝑒𝑥𝑎𝑐𝑡  , where 

𝑦𝑒𝑥𝑎𝑐𝑡 = 1 + 𝑡, and 𝑦𝐴𝑃𝑃  is the approximate solution of  

(5.1) by using LWM that given by (5.7), (see Table 1). 

According to HPM we construct the following homotopy  

𝐷∗
0.75𝑦 𝑡 = 𝑃 

𝑡0.25

Γ(1.25)
− 𝑡 − 𝑡2 −

1

2
𝑡3 −

1

3
𝑡4 + 𝑡𝑦 𝑡 

+  𝑡𝑠𝑦 𝑠 𝑑𝑠

𝑡

0

 ,                                 5.8  

substituting  4.4  in  5.8 , we obtain the following series 

of equations with identical power of  𝑃 :  

𝑃0 ∶ 𝐷 
0.75  𝑦0 𝑡 = 0,                                                     

𝑃1 ∶ 𝐷 
0.75  𝑦1 𝑡 =

𝑡0.25

𝛤 1.25 
−𝑡 − 𝑡2 −

1

2
𝑡3 −

1

3
𝑡4+𝑡 𝑦0 𝑡 

+  𝑡 𝑠 𝑦0 𝑠 
𝑡

0

𝑑𝑠, 

𝑃2 ∶ 𝐷 
0.75  𝑦2 𝑥 = 𝑡 𝑦1 𝑡 +  𝑡 𝑠 𝑦1(𝑠)

𝑡

0

𝑑𝑠, 

𝑃3 ∶ 𝐷 
0.75  𝑦3 𝑥 = 𝑡 𝑦2 𝑡 +  𝑡 𝑠 𝑦2(𝑠)

𝑡

0

𝑑𝑠, 

      

Consequently, by applying the operator  𝐼0.75  to the above sets 

we get: 

 𝑦0 𝑡 = 1, 

 𝑦1 𝑡 =  𝑡 − 0.4521829620 𝑡2.75 − 0.3046285217 𝑡4.75 , 

𝑦2 𝑡 =  0.4521829620 𝑡2.75 − 0.1432862435 𝑡4.5 

− 0.09679336446 𝑡6.5

+ 0.1015428406  𝑡4.75   

− 0.008965361090  𝑡8.5 , 

Therefore the approximate solution of  5.1  will be 

y t =y0 t +y1 t +y2 t + ⋯   

       = 1+t.                                                                                (5.9 )  

We compute the absolute error 𝐸2 =  𝑦𝐴𝑃𝑃 − 𝑦𝑒𝑥𝑎𝑐𝑡  , 
where 𝑦𝑒𝑥𝑎𝑐𝑡 = 1 + 𝑡, and 𝑦𝐴𝑃𝑃  is the approximate solution 

of  (5.1) by using HPM that given by (5.9), (see Table 1). 

Comparison between the approximate solutions obtained by 

LWM and HPM and the exact solution, (see Fig.1). 

Table 1. The absolute errors of example 5.1.  

t Abs. 𝐸1 (LWM) Abs. 𝐸2 (HPM) 

0.0 0.0 0.0 

0.1 2.0E-6 0.0 

0.2 4.0E-6 0.0 

0.3 6.0E-6 0.0 

0.4 8.0E-6 0.0 

0.5 4.0E-5 0.0 

0.6 7.0E-5 0.0 

0.7 1.0E-4 0.0 

0.8 1.3E-4 0.0 

0.9 1.6E-4 0.0 

1.0 1.9E-4 0.0 

  

 

Fig.1. comparison of approximate solutions obtained by 

LWM and HPM with the exact solution of example 5.1. 

Example 5.2. Consider the following fractional integro-

differential equation: 

𝐷∗
0.25𝑦 𝑡 =

2𝑡1.75

Γ(2.75)
+ 𝑒𝑡  1 +

1

2
𝑡2 −

1

3
𝑡3 − 𝑒𝑡𝑦 𝑡 

+  𝑒𝑡  𝑠 𝑦 𝑠 𝑑𝑠

𝑡

0

,                                (5.10) 

with the initial condition 

𝑦 0 = 1,                                                                                  (5.11) 

with the exact solution  

𝑦 𝑡 = 1 + 𝑡2.                                                                         (5.12) 

According to LWM we solved the linear system that was 

obtained by equations (3.2)  and (3.6) with 𝐾 = 2 and 𝑀 = 2 

to get: 

𝐶10 = 0.7535243273,    𝐶11 = 0.0267948984, 
𝐶20 = 1.0953173580,    𝐶21 = 0.1226796548. 

Then the approximate solution of  5.10   will be 

  𝐶𝑛𝑚𝜓𝑛 ,𝑚  𝑡 

1

𝑚=0

2

𝑛=1

=  
1.000000000 + 0.2625364145 𝑡,   0 ≤ 𝑡 < 0.5,

 
0.6474863647 + 1.202015258 𝑡,   0.5 ≤ 𝑡 ≤ 1.

     (5.13) 

  

We compute the absolute error 𝐸3 =  𝑦𝐴𝑃𝑃 − 𝑦𝑒𝑥𝑎𝑐𝑡   , 
where 𝑦𝑒𝑥𝑎𝑐𝑡 = 1 + 𝑡2, and 𝑦𝐴𝑃𝑃  is the approximate solution 

of (5.10) by using LWM that given by  5.13 , (see Table 2). 

According to HPM we construct the following homotopy  
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𝐷∗
0.25𝑦 𝑡 = 𝑃 

2𝑡1.75

Γ(2.75)
+ 𝑒𝑡  1 +

1

2
𝑡2 −

1

3
𝑡3 − 𝑒𝑡𝑦 𝑡 

+  𝑒𝑡  𝑠 𝑦 𝑠 𝑑𝑠

𝑡

0

 ,                          5.14  

substituting  4.4  in  5.14 , we obtain the following series of 

equations with identical power of  𝑃 :  

𝑃0 ∶ 𝐷 
0.75  𝑦0 𝑡 = 0,                                                     

𝑃1 ∶ 𝐷 
0.25  𝑦1 𝑡 =

2𝑡1.75

Γ(2.75)
+ 𝑒𝑡  1 +

1

2
𝑡2 −

1

3
𝑡3 −𝑒𝑡𝑦0 𝑡 

+  𝑒𝑡  𝑠 𝑦0 𝑠 
𝑡

0

𝑑𝑠, 

𝑃2 ∶ 𝐷 
0.25  𝑦2 𝑥 = −𝑒𝑡𝑦1 𝑡 +  𝑒𝑡  𝑠 𝑦1(𝑠)

𝑡

0

𝑑𝑠, 

𝑃3 ∶ 𝐷 
0.25  𝑦3 𝑥 = −𝑒𝑡𝑦2 𝑡 +  𝑒𝑡  𝑠 𝑦2(𝑠)

𝑡

0

𝑑𝑠, 

      

      ⋮ 

By applying the operator  𝐼0.25  to the above sets and to avoid 

the difficult fractional integral, we can simplify the 

integrations by taking the truncated Taylor expansions for the 

exponential term:  𝑒𝑡 ≅ 1 +
𝑡

1!
+

𝑡2

2!
+

𝑡3

3!
      to get the 

following                 

 𝑦0 𝑡 = 1, 

 𝑦1 𝑡 = 0.9999999998 𝑡2 + 0.7845423297. 𝑡2.25

+  0.4827952799 𝑡3.25

+ 0.1135988894 𝑡4.25

+  0.03462061391 𝑡6.25 , 

𝑦2 𝑡 = 𝐼0.25  −𝑒𝑡𝑦1 𝑡 +  𝑒𝑡  𝑠 𝑦1 𝑠 𝑑𝑠

𝑡

0

 , 

Therefore the approximate solution of  5.10  will be 

y t =y0 t +y1 t +y2 t + ⋯   

        = 1+0.9999999998 𝑡2.                                                (5.15)  

We compute the absolute error 𝐸4 =  𝑦𝐴𝑃𝑃 − 𝑦𝑒𝑥𝑎𝑐𝑡  , 
where 𝑦𝑒𝑥𝑎𝑐𝑡 = 1 + 𝑡2and 𝑦𝐴𝑃𝑃  is the approximate solution 

of  (5.10) by using HPM that given by (5.15), (see Table 2). 

Comparison between the approximate solutions obtained by 

LWM and HPM and the exact solution, (see Fig.2). 

Table 2. The absolute errors of example 5.2.  

t Abs. 𝐸3 (LWM) Abs. 𝐸4 (HPM) 

0.0 0.0 0.0 

0.1 1.625364145E-2 2.0E-12 

0.2 1.250728290E-2 8.0E-12 

0.3 1.123907565E-2 1.8E-11 

0.4 5.49854342E-2 3.2E-11 

0.5 1.50600630E-3 5.0E-11 

0.6 8.69551950E-3 7.2E-11 

0.7 1.10295470E-3 9.8E-11 

0.8 3.09014289E-2 1.2E-10 

0.9 8.06999033E-2 1.62E-10 

1.0 1.50498377E-1 2.0 E-10 

                                        

 

Fig.2. comparison of approximate solutions obtained by 

LWM and HPM with the exact solution of example 5.2. 

Example 5.3. Consider the following fractional integro-

differential equation: 

𝐷∗
0.5𝑦 𝑡 

=
2𝑡0.5

Γ(1.5)
+ sin 𝑡 + 𝑡 (2𝑡 𝑐𝑜𝑠 𝑡 + cos 𝑡 − 1) − sin 𝑡 𝑦 𝑡 

+  𝑡 sin 𝑠  𝑦 𝑠 𝑑𝑠

𝑡

0

,                                                               (5.15) 

with the initial condition 

𝑦 0 = 1,                                                                                  (5.16) 

with the exact solution  

𝑦 𝑡 = 1 + 2𝑡.                                                                        (5.17) 

According to LWM we solved the linear system that was 

obtained by equations (3.2)  and (3.6) with 𝐾 = 2 and 𝑀 = 2 

to get: 

 𝐶10 = 1.06066,    𝐶11 = 0.20412, 

  𝐶20 = 1.76780,   𝐶21 = 0.20414. 

Then the approximate solution of  5.15   will be 

  𝐶𝑛𝑚𝜓𝑛 ,𝑚  𝑡  

1

𝑚=0

2

𝑛=1

=  
1.0000 + 2.0000 𝑡,   0 ≤ 𝑡 < 0.5,

 
0.9999 + 2.0002 𝑡,   0.5 ≤ 𝑡 ≤ 1.

                               (5.18) 

We compute the absolute error 𝐸5 =  𝑦𝐴𝑃𝑃 − 𝑦𝑒𝑥𝑎𝑐𝑡   , 
where 𝑦𝑒𝑥𝑎𝑐𝑡 = 2𝑡 + 1, and 𝑦𝐴𝑃𝑃  is the approximate solution 

of (5.15) by using LWM that given by  5.18  , (see Table 3). 

According to HPM we construct the following homotopy  
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𝐷∗
0.5𝑦 𝑡 

= 𝑃 
2𝑡0.5

Γ(1.5)
+ sin 𝑡 + 𝑡 (2𝑡 𝑐𝑜𝑠 𝑡 + cos 𝑡 − 1) − sin 𝑡 𝑦 𝑡 

+  𝑡 sin 𝑠  𝑦 𝑠 𝑑𝑠

𝑡

0

 ,                                                             5.19  

Substituting  4.4  in  5.19 , we obtain the following series 

of equations with identical power of  𝑃 :  

𝑃0 ∶ 𝐷 
0.5 𝑦0 𝑡 = 0,                                                     

𝑃1 ∶ 𝐷 
0.5 𝑦1 𝑡 =

2𝑡0.5

Γ(1.5)
+ sin 𝑡 + 𝑡 (2𝑡 𝑐𝑜𝑠 𝑡 + cos 𝑡 − 1)

− sin 𝑡 𝑦0 𝑡 +  𝑡 sin 𝑠  𝑦0 𝑠 𝑑𝑠

𝑡

0

, 

𝑃2 ∶ 𝐷 
0.5 𝑦2 𝑥 = − sin 𝑡 𝑦1 𝑡 +  𝑡 sin 𝑠  𝑦1 𝑠 𝑑𝑠

𝑡

0

, 

𝑃3 ∶ 𝐷 
0.5 𝑦3 𝑥 = − sin 𝑡 𝑦2 𝑡 +  𝑡 sin 𝑠  𝑦2 𝑠 𝑑𝑠

𝑡

0

, 

By applying the operator  𝐼0.5 to the above sets and to avoid 

the difficult fractional integral, we can simplify the 

integrations by taking the truncated Taylor expansions 

for the trigonometric terms: 

  cos 𝑡 ≅ 1−
𝑡2

2!
+

𝑡4

4!
−

𝑡6

6!
 , sin 𝑡 ≅ 𝑡 −

𝑡3

3!
+

𝑡5

5!
−

𝑡7

7!
    

to get the following 

𝑦0 𝑡 = 1, 

 𝑦1 𝑡 = 2.000000000 𝑡 + 1.203604445𝑡2.5 −

0.4585159790 𝑡4.5 + 0.03206405448 𝑡6.5 −

0.0009388690461 𝑡8.5 − 0.000007941561481 𝑡9.5,  

𝑦2 𝑡 = 𝐼0.5  − sin 𝑡 𝑦1 𝑡 +  𝑡 sin 𝑠  𝑦1 𝑠 𝑑𝑠

𝑡

0

 , 

Therefore the approximate solution of  5.10  will be 

y t =y0 t +y1 t +y2 t + ⋯   

        = 1+2.000000000 𝑡.                                                    (5.20)  

We compute the absolute error 𝐸6 =  𝑦𝐴𝑃𝑃 − 𝑦𝑒𝑥𝑎𝑐𝑡  , 
where 𝑦𝑒𝑥𝑎𝑐𝑡 = 1 + 2𝑡, and 𝑦𝐴𝑃𝑃  is the approximate solution 

of  (5.15) by using HPM that given by (5.20), (see Table 3). 

Comparison between the approximate solutions obtained by 

LWM and HPM and the exact solution, (see Fig.3). 

Table 3. The absolute errors of example 5.3.  

t Abs. 𝐸5 (LWM) Abs. 𝐸6 (HPM) 

0.0 0 0 

0.1 0 0 

0.2 0 0 

0.3 0 0 

0.4 0 0 

0.5 0 0 

0.6 2E-5 0 

0.7 4E-5 0 

0.8 6E-5 0 

0.9 8E-5 0 

1.0 10E-5 0 

 

 

Fig.3. Comparison of approximate solutions obtained by  

LWM and HPM with the exact solution of example 5.3. 

6. CONCLUSION 
 In this paper, this study showed that for most linear fractional 

integro-differential equations we usually derive very good 

approximations to the solutions. It can be concluded that the 

LWM and HPM are a powerful and efficient technique in 

finding very good solutions for this kind of equations. We 

find that the results in HPM are better than the results in 

LWM (see Fig.1, Fig.2 and Fig.3). 
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