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ABSTRACT

In this paper, the Legendre wavelet method (LWM) and He's
Homotopy perturbation method (HPM) are applied to
approximate solution for linear fractional integro-differential
equation with initial condition. A comparison between these
methods takes place. Numerical examples are presented to
illustrste the efficiency and accuracy of the proposed methods.
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1. INTRODUCTION

In recent years, for solving linear and nonlinear mathematical,
engineering and physical problems, many of the numerical
methods are used for seeking approximate solutions such as
Collocation method, Taylor expansion method, Adomian
decomposition method, Legendre wavelet method and
Homotopy perturbation method, see ([3, 4, 7, 12, 13]). The
analytic results on existence and uniqueness of problems
solutions to fractional differential equations have been
investigated by many authors [1, 6, 11, 14]. In this paper will
be taken the fractional integro-differential equations with a
Caputo fractional derivative of the type

t

Dy (6) = £(8) + POy () + j k(t, )y (s)ds  t
0

€ [0,1] (1.1
with the initial condition
y(0) =B, 0<ac<l1 (1.2)

where DY is Caputo‘s fractional derivative and « is a
parameter describing the order of the fractional
derivative, B is real constant, f(t) and k(t,s) are given
that can be approximated by Taylor polynomials. We applied
the LWM and HPM for approximating the solution of linear
fractional integro-differential equation. The outline of this
paper is as follows: In section 2, we present some definitions.
Sections 3, contains the application of Legendre wavelet
method. Section 4, contains the application of He's homotopy
perturbation method. Finally, sec.5 devoted to illustrste some
numerical examples on mentioned methods.
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2. SOME DEFINITIONS AND
NOTATIONS

Definition 2.1. A real function f(x),x > 0, is said to be in the
space C,, a € R, if there exists a real number p > a, such
that f(x) = x? f1(x), where f;(x) € C[0, ).

Definition 2.2. A real function f(x), x > 0, is said to be in
the space C¥ ,k € Nu {0}, if f* € C,,.
Definition 2.3. [6] D% (a is real) denotes the fractional

differential operator of order a in the sense of Riemann-
Liouville, defined by:

D% f(x)
f@)

1 dn X
- - | 7 <n-1 <
I"(n—oc)dx"f0 (x—t)“—”“dt'o_ " sasm

drf(x)
dxm '
Definition 2.4. [6] I denotes the fractional integral operator
of order a in the sense of Riemann-Liouville, defined by:
I* f(x) =D~ f(x)

1" f®
F(“)J; (x—t)l—adt'a>0.x>0,

= (2.2)

a=n€N. (2.1)

¥765) @=0.

Some basic properties of fractional integral and differential
operator are listed below [6]: for f € C,, u= -1, y = -1,
a,f =0:

11918 () = 19 F () = 1P 19 f(x).

2. I%xY =M aty,

Ia+y+1)
3. 1% € C,.
4. D*DP f(x) = D*E f(x).
5. D I% f(x) = £(x).
6. 1D () = f() — S5 fH N5, m—1<a s
m € N.

7. D%xY =Mxy—a x>0
' rpy+1—-a) ’ '
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Definition 2.5. [6] Let f € C™;,n € N.Then the Caputo
fractional derivative of f(x), defined by

D f(x)
1 D ARO,
j rn—a)), (x—ten+

dt,0<sn—1<a<n,

ld"f )
dxm '
To obtain a numerical schema for the approximation of

Caputo derivative, we can use a representation that has been
introduced by Elliots [2],

s 1 [(fO-fO
D () = s fo e @24)

where the integral in equation (2.4) is a Hadamard finite-part
integral.

a=n€N. (2.3)

Definition 2.6. The following functions

k
Win ) = lagl2yp(aft — nby),

form a family of discrete wavelets, where aq > 1, by > 0 and
n, k are positive integer and i is given function called
mother wavelet. Moreover, the functions

Y (1)

([ 1 6 . a-1_ A+l
m+§ 22 Pm(2 t—n), Zk St<2—k’
= (2.5)

0 otherwise

where

m
2mmldt™
are called Legendre wavelets polynomials, where i = 2n —

1Ln=1,.... ,2k=1 k e N,t € [0,1] and m is the order of
the Legendre polynomial B,,.

3. LEGENDRE WAVELET METHOD
Legendre wavelets method, [4, 15], are commonly used for
the numerical solution of integral equations.

Consider the equation (1.1) with the initial condition (1.2).
The exact solution of (1.1) can be expanded as Legendre
wavelets series as:

y(© = i i Comnm (0,

n=1m=0
where 1, ,, (t) is given by definition (2.5). We approximate
the solution y(t) by the truncated series
2K-1y—1

CEDY Z Com (6, 3.0

n=1 m=

P, () = [(t%2 — 1™, m=0,1,2,..

then a total number of 2X~1M conditions should exist for
determination of 2X-1M coefficients
ClO’ ey ClM—l’ 621, ey CZM—l’ ey Czk—lo, ey CZ"*lM—l'

By the initial condition we obtain,
2K-1 -1

View(©) = Zchmwnm(o) 8. (32)

n=1m=
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We see that there should be 2K~1M — 1 extra conditions to
recover the unknown coefficients C,,,,, . These conditions can
be obtained by substituting equation (3.1) in equation(1.1),
261 m—1

DD Com DE P (0

n=1 m=0
2K-1 -1

—f®+ ) Z Com P(O) o (©)

n=1 m=l
2K-1 py—1

vy Z - f K(t,5) m (5)ds. (33)

n=1 m=l

Now we assume equation (3.3) is exact at 2K~1M — 1 points
X; as:
21 py—1

> Z Com DS W ()

n=1 m=
2K-1pm—1

= f(xz) + Z Z CnmP(xi) lpnm(xi)
n= 1m
2K-1 m—1

+ Z Z nmfk(xl,s) Yrm (s)ds. (3.4)

n=1m=

The best choice of the x; points are the zeros of the shifted
chebyshev of degree 2€~1M — 1 in the interval [0, 1] that is

Si +1 h . i
> »Wheres; = COS(ZK*M — 1),
i=1.,28Mm-1.

X; =

Approximating D v, ,, using Diegthelm method [10] on the
representation that has been given by equation (2.4), we get

Dg lpn,m(xi)
_ 1 i lpn,m (S) - lpn,m (O)d
‘r( Q) T o ¥
lpnm(xl xiw) - l/)n,m (0)
F( a)f wlta dw
2 Wi (3= 50) = P (O))

where L € N and the weights w, are given by
a(l—a)l™® re a) w,

l

(-1, ifr=0,

=22 — - -+ D%, ifr=1,.,L-1,

l(a —Dr = - +r%  ifr=L  (35)

Then equation (3.4) becomes

2K1y-1 L
D02 D ol (5 =) = Yn () o
n=1 m=0r=0
—f<x>+zz lecnmp(x)wnm(x)
n=1 m=
Z Mz f k(x;, 8) Yo m (s)ds. (3.6)
n=1m=0 0

Combine equation (3.2) and equation (3.6) to obtain 2X=1 M
linear equations from which we can compute the unknown
coefficients c,,, .
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4. HOMOTOPY PERTURBATION
METHOD

To illustrate the basic concepts of HPM for linear
fractional Integro-differential equations, consider equation
(1.1) with initial conditions (1.2). According to HPM [5, 7, 8,
9], we construct the following homotopy:

1 -P)Diy(©) +P <Df‘J/(t) - f(© - P@®)y(®)

- ftk(t, s)y(s) ds) =0, 4.1
0
or

Dfy(t) =P <f(t) + P(0)y(t)

t
+f k(t,s)y(s) ds)), (4.2)

0
where P € [0,1] is an embedding parameter. If P = 0, then
equation (4.2) becomes a linear  equation.
Diy(t) =0, (4.3)

and when P = 1, then the equation (4.2) becomes the original
equation (1.1). The solution of equation (1.1) can be written

as a power series in P as  follows:
y(®) = yo(®) + P y1(£) + P2y, () + - (4.4)
Put P =1 in equation (4.4), so the approximate solution of
equation (1.1) is:
y(@©) = yo(0) + y1(0) + y2(6) + - (4.5)

Substituting (4.4) in (4.2), and equating the coefficients of
like powers of P, we have the following series of linear
equations:

PO:D%y,(t) =0, (4.6)
PL: D%y, (1) = f(t) +tP(t)yo(t)
+ J k(t,s)yo(s) ds), 4.7)
0

P2:D%y,(x) = P(t)Jﬁt(t)
+J k(t,s)y,(s) ds), (4.8)
0

P3:D%y;3(x) = P(t)Y2t(t)
+J k(t,s)y,(s)ds), (4.9
0

It is obvious that these equations can be easily solved by
applying the operator I%, the inverse of the operator D¢,
which is defined by (2.2). Hence, the components
Vo), y1(t),y,(t) +--- of the HPM solution can be
determined. That is, in (4.5) we can determine the HPM
series solutions.

5. NUMERICAL EXAMPLES

In this section, we have applied Legendre wavelet method and
He's homotopy perturbation method for linear fractional
Integro-differential equations with known exact solution. All
the results are calculated by using the symbolic computation
software Maple 16.

Example 5.1. Consider the following fractional integro-
differential equation:
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D27y(t)
$0-25

1 1
— 4 _ 42 _ 3 __4+4
(125 t—t Zt 3t + ty(t)
t

+ f tsy(s)ds, (5.1)

0

with the initial condition

y(0) =1, (5.2)

with the exact solution
y@)=1+¢t (5.3)

Accordlng to LWM, Wlth K =2and M = 2. We have f(t) =

—_f — Z_l _ 1.4 — _ _
razs Tt zt t P(t) =t k(t,s)=ts, a=

0.75,m = 0,1, L=1, n=1,.2,
Y (£)
( 1k a-1 a+1
m+5 22 B, (4t —7), 7 <t< T
— (5.4)
0 otherwise

We get a system of equations from

Z Z z 0y Wpm (g = x7) = P 1 (0)) Cppy

n=lm= Or
ENSSRNP SRS SUPRRE S
= r(1 25) T T TN TR
+Z Z Com X lpnm(x)
n 1m
+ZZ nmfx S Yum(s)ds. (5.5)
n=1m=0
Where
s;+1 i .
X = ,where s; = cos(=), i=1,23,
2 3
and from (3.5) we get
-1, ifr=0,
r'(—0.75)
0.75, ifr=1
Vo0(0) = Z Z Camtbnm (0) = 1. (5.6)
n=1lm=

Combine equations (5.5) and (5.6) to obtain 4 linear
equations and solve it to g€t from which

Cio = 0.88388, C;; = 0.10206,
Cy0 = 1.23740, C,; = 0.10209.

Then the approximate solution of (5.1) will  be
2 1

> Canthum®

n=1m=0

0.88388(V2) + 0.10206(V6)(4t — 1), 0<t<0.5,

1.2374(vV2) + 0.10209(V6)(4t —3), 05<t<1,
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1.0000 4+ 0.99998¢, 0<t<0.5,
= 7
099989 +1.0003¢t, 05<t<1.

We compute the absolute error E; = |yapp — Vexact |, Where
YVexace = 1 +t, and yupp is the approximate solution of
(5.1) by using LWM that given by (5.7), (see Table 1).

According to HPM we construct the following homotopy

DYy(t) =P 0 t—t? - lt3 - lt‘* + ty(t)
T'(1.25) 2 3
t
+ f tsy(s)ds |, (5.8)

0

substituting (4.4) in (5.8), we obtain the following series
of equations with identical power of P :

PO D75 yy(6) = 0,
0.25

1 1
PL:DO75 y () = t—t>—=t3— §t4+t Vo ()

r(1.25) 2

t

+ f t s yo(s)ds,
0

t

P2 :DO75 y,(x) = t y,(t) +f t sy (s)ds,
0

t

P3: D075 ya(x) =t y,(t) + f tsy,(s)ds,
0

Consequently, by applying the operator 1°75 to the above sets
we get:
Yo (t) = 1!

y1(t) = t —0.4521829620 t>7> — 0.3046285217 t*75,

y,(t) = 0.4521829620 t>75 — 0.1432862435 t*°
—0.09679336446 t55
+0.1015428406 t*75
—0.008965361090 ¢85,

Therefore the approximate solution of (5.1) will be
y(®O=yo(O+y1(D+y2(D+ -
=1+t (59)

We compute the absolute error E; = |yapp — Vexact |
where yoraee = 1+ t, and y,pp is the approximate solution
of (5.1) by using HPM that given by (5.9), (see Table 1).
Comparison between the approximate solutions obtained by
LWM and HPM and the exact solution, (see Fig.1).

Table 1. The absolute errors of example 5.1.

t Abs. E; (LWM) Abs. E, (HPM)
0.0 0.0 0.0
0.1 2.0E-6 0.0
0.2 4.0E-6 0.0
03 6.0E-6 0.0
0.4 8.0E-6 0.0
05 40E5 0.0
06 7.0E-5 0.0
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0.7 1.0E-4 0.0
0.8 1.3E-4 0.0
0.9 1.6E-4 0.0
1.0 1.9E-4 0.0
2
15 iy
|

el

Exact
0.5 .
B LWM approximate
HPM approximate
0
0 0.2 0.4 0.6 0.8 1

Fig.1. comparison of approximate solutions obtained by
LWM and HPM with the exact solution of example 5.1.

Example 5.2. Consider the following fractional integro-
differential equation:

0.25 2178 t 1, 1, ¢
D} y(t)=r(275)+e (1+§t —§t)—e y(t)

+fetsy(s)ds, (5.10)
0

with the initial condition

y(0) =1, (5.11)
with the exact solution
y(t) =1+ t2 (5.12)

According to LWM we solved the linear system that was
obtained by equations (3.2) and (3.6) with K =2and M =2
to get:

Cio = 0.7535243273, Cy; = 0.0267948984,
Cy0 = 1.0953173580, C,; = 0.1226796548.

Then the approximate solution of (5.10) will be

i i Com Y ()
=1m=0

—1m=
" {in.ooooooooo +0.2625364145¢, 0 <t < 0.5,

(5.13)
0.6474863647 + 1.202015258¢, 0.5 <t < 1.

We compute the absolute error E3 = |Vapp — Vexact | »
Where Yoy = 1+ t2, and y,pp is the approximate solution
of (5.10) by using LWM that given by (5.13), (see Table 2).

According to HPM we construct the following homotopy
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1.75

1 1
0.25 — t 242 243 _ ot
D)% y(t) =P F(2.75)+e <1+2t 3t) ety(t)

t

+fetsy(s)ds , (5.14)
0

substituting (4.4) in (5.14), we obtain the following series of
equations with identical power of P :
P : DO75 y,(t) = 0,

2t1'75

1 1
PL: D%y (t) = 14562 - §t3> —e"yo(t)

t
r275) T ¢ ( 2
t
+f et s yo(s)ds,
0

t

P2 : D25 y,(x) = —ely, (t) +f et sy (s)ds,
0

t
P D025 . (x) = —ety, (1) + f e's y,(s) ds,
0

By applying the operator 1°%° to the above sets and to avoid
the difficult fractional integral, we can simplify the
integrations by taking the truncated Taylor expansions for the

xponential trm'(t21+i+ﬁ+£) t t th
exponential term: (ef = TR TRET 0 ge e
following
Yo(t) =1,

y1(£) = 0.9999999998 t2 + 0.7845423297. t>25
+ 0.4827952799 t3-25
+0.1135988894 t*+25
+ 0.03462061391 ¢625,

t

Ya() = 1975 | —ety, (6) + f e's yi (s)ds|,
0

Therefore the approximate solution of (5.10) will be
y(®O=yo(O+y1(O+y2(D+ -
=1+0.9999999998 ¢2. 6.15)

We compute the absolute error E4 = |yapp — Vexact |
WheEre yeyqee = 1+ t2and y,pp is the approximate solution
of (5.10) by using HPM that given by (5.15), (see Table 2).

Comparison between the approximate solutions obtained by
LWM and HPM and the exact solution, (see Fig.2).

Table 2. The absolute errors of example 5.2.

t Abs. E5 (LWM) Abs. E4 (HPM)
0.0 0.0 0.0

0.1 1.625364145E-2 2.0E-12
0.2 1.250728290E-2 8.0E-12
03 1.123907565E-2 1.8E-11
04 5.49854342E-2 3.2E-11
05 1.50600630E-3 5.0E-11
0.6 8.69551950E-3 7.2E-11
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0.7 1.10295470E-3 9.8E-11
0.8 3.09014289E-2 1.2E-10
0.9 8.06999033E-2 1.62E-10
1.0 1.50498377E-1 2.0E-10
2

/'
A

1.5

1 "__’HH_V/-

Exact
0.5 .
B LWM approximate
HPM approximate
0
0 0.2 0.4 0.6 0.8 1

Fig.2. comparison of approximate solutions obtained by
LWM and HPM with the exact solution of example 5.2.

Example 5.3. Consider the following fractional integro-
differential equation:

DYy (1)
2t%5
= (1) +sint+t (2tcost +cost —1) —sint y(t)
¢
+ f tsins y(s)ds, (5.15)

0
with the initial condition

y(0) =1, (5.16)
with the exact solution
y(t) =1+ 2t. (5.17)

According to LWM we solved the linear system that was
obtained by equations (3.2) and (3.6) with K =2and M = 2
to get:

Cio = 1.06066, Cj; = 0.20412,

Cy0 = 1.76780, Cy; = 0.20414.
Then the approximate solution of (5.15) will be
2 1

D Comtbam ®

n=1m=0
1.0000 + 2.0000¢, 0<t<0.5,
= { (5.18)
0.9999 + 2.0002¢t, 0.5<t<1.

We compute the absolute error Es = |V4pp — Vexact | »
where y.vae: = 2t + 1, and y,pp is the approximate solution
of (5.15) by using LWM that given by (5.18) , (see Table 3).

According to HPM we construct the following homotopy
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D2%y(t)
05
=P (15 +sint +t (2t cost +cost — 1) —sint y(t)
t
+ftsins y(s)ds |, (5.19)

0

Substituting (4.4) in (5.19), we obtain the following series
of equations with identical power of P :

PO : D05 yy(t) =0,
05

P : DOy (t) =2t—+ sint +t (2t cost + cost — 1)
T(15)

t

—sintyy(t) + f tsins yo(s)ds,
0
t

P2 : D% y,(x) = —sinty, (t) + f tsins y;(s)ds,
0
t

P3: D% y.(x) = —sinty,(t) + f tsins y,(s)ds,

0
By applying the operator 1% to the above sets and to avoid
the difficult fractional integral, we can simplify the
integrations by taking the truncated Taylor expansions
for the trigonometric terms:

N 2t e B 5
(Cost=1—z+a—a,smt=t—§+§—ﬂ)

to get the following
y()(t) = 1!

1 (£) = 2.000000000 £ + 1.203604445t>> —
0.4585159790 t*° + 0.03206405448 t%° —
0.0009388690461 t%° — 0.000007941561481 t°->,

t

yo(t) = 195 | —sint y, (£) + f tsins y;(s)ds|,
0

Therefore the approximate solution of (5.10) will be
y(O=yo(O+y1(O+y2(O+ -
=1+42.000000000 t. (5.20)

We compute the absolute error Eg = |yapp — Vexact |
where yoraee = 1+ 2t, and y,pp is the approximate solution
of (5.15) by using HPM that given by (5.20), (see Table 3).

Comparison between the approximate solutions obtained by
LWM and HPM and the exact solution, (see Fig.3).

Table 3. The absolute errors of example 5.3.

t Abs. E5 (LWM) Abs. Eg (HPM)
0.0 0 0
0.1 0 0
0.2 0 0
03 0 0
0.4 0 0
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0.5 0 0
0.6 2E-5 0
0.7 4E-5 0
0.8 6E-5 0
0.9 8E-5 0
1.0 10E-5 0
3
2
18 Exact
B LWM approximate
HPM approximate
0
0 0.2 0.4 0.6 0.8 1

Fig.3. Comparison of approximate solutions obtained by
LWM and HPM with the exact solution of example 5.3.

6. CONCLUSION

In this paper, this study showed that for most linear fractional
integro-differential equations we usually derive very good
approximations to the solutions. It can be concluded that the
LWM and HPM are a powerful and efficient technique in
finding very good solutions for this kind of equations. We
find that the results in HPM are better than the results in

LWM (see Fig.1, Fig.2 and Fig.3).
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