
International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 1, January 2015

6

Effective use of Multi-Core Architecture through Multi-

Threading towards Computation Intensive Signal

Processing Applications

Prathmesh Deshmukh

 BRACT’S Vishwakarma
Institute of Information

Technology
Kondhawa, Pune-48
Maharashtra (India)

Akhil Kurup

BRACT’S Vishwakarma
Institute of Information

Technology
Kondhawa, Pune-48
Maharashtra (India)

Shailesh.V.Kulkarni
BRACT’S Vishwakarma
Institute of Information

Technology
Kondhawa, Pune-48
Maharashtra (India)

ABSTRACT

With the advent of Multicore architecture availability,

exploiting parallelism is posing certain trends and tides for

application deployment. Earlier approaches to explore

parallelism in applications were limited to either instruction

level parallelism (ILP) or use of architectural redundant

resources. In this paper, we attempted to use multicore

processor to demonstrate the speedup in compute intensive

tasks such as Convolution, primitive to most Digital Signal

Processing algorithms.

Further result of multithreaded application on Multicore

processor compared with single core is demonstrated for

lower and upper limit of granularity for application

fragmentation. This work suggests the need for design of

memory manager for Multithreading to exploit it more

effectively.

General Terms

Multithreading multicore architectures

Keywords

Multithreading, multicore, granularity

1. INTRODUCTION
In the present Signal processing scenario, large computations

are required that makes number crunching processes to be

cumbersome. As signal processing algorithms continues to

evolve, faster and more capable systems have to be

developed. Increasing the clock speed to get a boost in

performance seems to be an easy solution to this problem.
However, to facilitate timely executions, more than one task

may need to be performed simultaneously. In 1965 Gordon

Moore stated that the number of transistors on a chip will

double roughly every two years. Due to advances in circuit

technology and performance limitation in wide-issue, super-

speculative processors, Chip-Multiprocessors (CMP) or multi-

core technology has become the mainstream in CPU designs

[1]. Application should be designed and deployed to explore

the inherent parallelism present in hardware. In 2007 Intel

released a statement stating that software also has to start

following Moore's Law; the software has to double the

amount of parallelism that it can support every two years [2],

so as to bridge the gap between hardware acceleration and

software development. Since increase in silicon estate on chip

increases, number of cores per processor is expected to scale.

This demand for software to strive in order to attain maximum

core utilization. Three commonly used methods for execution

performance improvement reported in [8] are number of core

increase, cache increase and multithreading. Multithreaded

applications will fundamentally advances throughput of multi-

core processors. Presently developers are in a trend to exploit

multithreading on multi core architecture [9]. Multi-Core

processors allow multiple executions of tasks to transpire at

the same time which enhances the efficiency in terms of

computation time in a multi-tasking, multi-processing

environment. Multi-threading facilitates and parallel

algorithm enhances the performance of multiprocessor

architecture. Fragmenting an application into threads so as to

run them in parallel is known as Threading for Performance

[3]. Parallelism involves the use of more than one processor

core to put into effect the desired result. A thread is a

sequential flow of control within a process that enhances its

performance and responsiveness [3]. However, if used

erroneously, the overhead of threading can degrade the
performance and introduce instability and unpredictability [4].

By compiler intelligence, a sequential execution can be made

to run concurrently. Concurrency facilitates more than one

execution to be in progress, however not simultaneously.

Parallelism on the other hand, is the execution of threads at

the same time on different cores of the same CPU. Figure 1

illustrates the timeline execution of the above methods. In

order to explore multi-threading, we have experimented and

presented the results in subsequent sections. Our results can

prove perennial for those willing to march onto the path of

multi-threading approach on multicore system.

1.1 Threads: Benefits and Pitfalls
Threads are lightweight processes. As a result of lightweight

process, thread based deployments is benefited with less

overhead requirement as opposed to the launch and

termination of processes. Managing a thread requires fewer

system resources as opposed to a process [5]. The

implementation of threaded programming logic can be

influential on many fronts. Following are few of the merits

that call for multi-threaded programming.

“Figure 1”: Concurrent vs. Parallel execution of threads

International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 1, January 2015

7

 All threads share a common address space and

hence potential threat of memory leakages can be

avoided.

 Better control over Parallel execution of a task.

 Significant performance gain for large volume of

data as compared to small data set.

 Increased efficiency in terms of system resource

utilization.

In a processor with multiple cores, each core should perceive

the memory as a monolithic array, shared by all the cores.

Failing to do so will give rise to the Cache Coherence

Problem which will result into data inconsistency across the

core caches [5]. Some of the other common pitfalls are:

 Potential threat of landing into a deadlock.

 Starvation of threads.

 Context Switch timing is non-deterministic.

 Generalized increase in programming complexity

and difficulty in debugging.

1.2 Multithreading on Multicore
The use of multiple cores on a single chip provides an upper

hand in terms of raw processing power. Multi-Threaded

Multi-Core Programming (MTMCP) is the way to achieve

computing speedup [6]. Concurrent threads can execute on a

single processor but true Parallelism requires multiple cores to

be used in synchronized manner.

Figure 2 shows the architecture of a generic multi-core CPU.

Multiple cores are present in one single package, with each

core having its own execution unit. This unit can execute a

single thread at one time. In addition to this execution unit, it

also has a data cache that works in parallel with the other core

caches and the related registers. All these cores share a

common pool of data memory known as the Global Memory

Figure 2 shows the architecture of a generic multi-core CPU.

Multiple cores are present in one single package, with each

core having its own execution unit. This unit can execute a

single thread at one time. In addition to this execution unit, it

also has a data cache that works in parallel with the other core

caches and the related registers. All these cores share a

common pool of data memory known as the Global Memory.

As illustrated in Figure 3, a process can be fragmented into

smaller, more easily operable modules. A thread can be

assigned to each of these modules which can be scheduled to

execute on different cores. After the desired output is

achieved, they can be recombined, hence enhancing the

performance by completing the tasks simultaneously.

“Figure 2”: A Multi-Core CPU

“Figure 3”: Parallel processing of Threads on multiple

cores of the same chip

2. MULTITHREADED APPROACH
The world today depends upon Digital Signal Processing

(DSP) algorithms in almost every domain. DSP is fast

becoming one of the highest-volume applications, demanding

high computation power. It is easier to develop a framework

on General Purpose Processor (GPP's) as compared to DSP's

because of the availability of prototyped and well tested

software and Integrated Development Environment. As

processor technology improves, number of cores in a

processor keep increasing, which makes their use in Number-

Crunching Signal-Processing applications more time efficient

by segregating the task into small fragments and allocating

them onto different cores.

2.1 POSIX P- Threads
Portable Operating System Interface (POSIX) includes a

standard library that defines Application Programming

Interface (API) for thread-based distributed processing on

multi-core systems to achieve fine grain parallelism. A

programmer has to create threads manually and explicitly

assign tasks to each thread. The programmer decides how

many threads will be spawned, how they will be invoked and

how they will terminate. This ensures that the programmer, at

all times, has control over the flow of execution.

2.2 Granularity
In the execution of a program, each routine is serially

completed first before starting the second, and completely

finishing the second before starting the third. However, if the

order in which the first two routines execute doesn't affect the

third, the third routine can be executed. This property of a

program that statements can be executed in any order without

changing the result is called potential parallelism. Tasks such

as Overlapping of I/O's, printing (display) of results, addition/

multiplication can be carried out simultaneously.

Granularity is the degree to which a process can be

fragmented into threads. There is data-dependency incurred in

sub-divisions of a process that introduces overheads.

Programmer should pay enough heed to write a balanced

application such that the overheads are accounted for and

there is merit in parallel computation.

3. IMPLEMENTATION DETAILS
Linear Convolution mathematically describes the relationship

between input and output signals of Linear Time Invariant

(LTI) systems [7]. It involves multiplication of the first signal

with the shifted version of the inverted second signal. The

total number of multiplications to be performed equals the

International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 1, January 2015

8

product of the size of the input data sets and the number of

summations to be performed equals the product of the size of

the input data sets minus two. This makes linear convolution

computation intensive for a large input data set, which is why

we have chosen convolution operation to exploit multi-

threading into the signal processing primitive such as

convolution.

Algorithm implemented is as follows:

START

Step 1: Generating two input data sets and storing them as

 matrices.

Step 2: Padding zero's to the input matrices so as to satisfy the

dimensions of the resultant convolution matrix.

Size of convolution matrix = (size of first input matrix

 + size of second input matrix

 – 1) … (1)

Step 3: Performing matrix multiplication of the two matrices.

Step 4: Addition of the time-shifted matrix elements.

Step 5: Displaying the resultant matrix.

END

Implementation was performed on the following platform:

System: Dell XPS L502X with Intel® Core™ i52410M CPU

@ 2.30GHz x 4

Operating System: Ubuntu 12.04.3 LTS 64-bit

Kernel: 3.8.0-29-generic

Compiler: gcc v4.6.3: to compile and link '.c' file

Thread model: POSIX p-thread

Generation of input data sets, Padding of Zero's and

performing matrix-multiplication were explicitly assigned

different threads taking into account their dependencies. This

resulted into parallel execution of the above steps which can

be monitored from the CPU usage.Figure 4 (a) shows the

CPU usage during sequential execution and Figure 4 (b)

shows parallel execution of the same algorithm.

“Figure 4”: CPU usage during execution of code displayed

in a graphical format

During sequential execution the CPU requires a long time and

the core utilization is less (45 – 50 %).Whereas, in parallel

execution the time required is less and the core utilization is

also greater (~ 80 %). This evidences parallel usage of cores

and hence demonstrates faster execution.

The command „time‟ was appended to the executable on the

Linux shell prompt to return the execution time for the code

under evaluation. The execution time of various trials has

been tabulated in table 1.

4. RESULT DISCUSSION
The synthetic data set generated consisted of 145 elements.

The execution time for various levels of granularity for 10

trials can be observed in Table 1.

“Table 1”: The Execution time observed for various levels

of threading

“Table 1”also shows that the average time required for

execution keeps on reducing as the granularity increases. A

plot of these average execution times is shown in “Figure 6”.

A plot of these values depicts a scenario as shown in Figure.5,

wherein the final execution time is minimal for almost every

trial.A plot of these values depicts a scenario as shown in

Figure.5, wherein the final execution time is minimal for

almost every trial.

Initially, the average time taken to execute non-threaded code

was observed to be 246msec. Upon increasing the number of

threads, the execution time shows a gradual decrease with the

exception of first instance of thread usage. This is because the

overheads overwhelm the merit of parallelism. The final

execution time was a mere 125.9msec which is 1.95 times

faster than the sequential execution, which took 121msec

more.

“Figure 5”: Graphical representation showing the

variation in execution time with levels of threading.

International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 1, January 2015

9

“Figure 6”: Average execution time for various levels of

granularity.

4.1 Analysis towards Speed Gain
The results from the Table 1 were used for calculation of

efficiency in terms of execution time.

% efficiency =
Speedup

Time for execution of sequential code
× 100 %

 … (2)

Where:

Speedup = Time for execution of sequential code
− Time for execution of threaded code

 … (3)

A plot of these efficiencies with respect to size of input data

set is shown in “Figure 7”.The data set was increased from 30

elements all the way up to 750 elements. Unfortunately, as the

data size was increased above 750 elements, the program

continually crashed. This could be indicative of the fact that

memory manager was not able to allocate as much memory

required for its operation.

A small data set proved to be inefficient because the time

required to execute parallel code was greater than that of

sequential code. This shows that overheads are high for a

small data set suggesting that threads should be used only for

a large data so as to make parallelism fruitful. As the data set

was increased, the efficiency also kept increasing until the

efficiency plot saturates at about 58%. A mathematical model

illustrated by the best fit curve using the „cftool „of

MATLAB® is shown in figure 6. The curve is governed by a

power function as shown in (4) which calculates efficiency.

“Figure 7”: A Plot showing variation of efficiency.

% efficiency =-18276 × (x-1.298+ 59.367) … (4)

(Where ' x ' is the size of input data set)

The root mean square error (RMSE) while fitting the curve

was observed to be 5.98.

The ability of the above stated model to achieve parallelism

can be obtained using equation (4). The user can specify the

size of input data set and the % efficiency can be calculated

with a tolerance of 4% from which the user can decide

whether or not to use this model.

5. CONCLUSION
In this paper, we have demonstrated the use of multithreading

on multicore processor to achieve speedup in compute

intensive tasks. Using implementation of linear convolution,

increase in core utilization of almost 80% was achieved and

subsequently time required for execution found to be reduced.

The extent to which an application can be granulated to

benefit the multithreading for maximum efficiency of

resources is also demonstrated and upper and lower limit of

fragmentation granularity is tested.

This lower limit can be associated to the increased overheads

incurred in threading, which led to a decrease in efficiency.

The upper limit is indicative of the limitation of the current

memory manager to incorporate multiple threads urging the

need for a memory manager designed towards multithreading.

Above experimentation and result discussion is made

considering convolution as the DSP primitive operation.

However, we aim to apply above framework for more

compute intensive signal processing applications such as

motion-estimation algorithms in the video processing domain.

6. ACKNOWLEDGMENT
The authors express their profound gratitude to the department

of Electronics & Tele-communication, VIIT Pune, for its

continued interest and support in this research. The authors

are also thankful to Harshal Waghmare, VIIT Pune for

discussion on curve-fitting using MATLAB®.

7. REFERENCES
[1] L. Peng et al, “Memory Performance and Scalability of

Intel‟s and AMD‟s Dual-Core Processors: A Case

Study”, IEEE, 2007.

[2] T. Holwerda, “Intel: Software Needs to Heed Moore‟s

Law”,http://www.osnews.com/story/17983/Intel-

Software-Needs-to-Heed-Moores-Law/

[3] Student Guide, “Multi-Core Programming For

Windows”, Intel Corp 2006.

[4] Student Handout, “POSIX* Threading API Quick

Reference”, Intel Corp 2006

[5] Ananth Grama, George Karypis, Vipin Gupta, Anshul

Kumar, “Introduction to Parallel Computing, 2nd

edition”, Pearson publication

[6] Georgios Kornaros, “Multi-Core Embedded Systems”,

CRC Press

[7] Simon Haykin, Barry Van Veen, “Signals and Systems,

2nd edition”, John Wiley and Sons.

[8] Massimiliano Meneghin, et.al,”Performance evaluation

of inter-thread communication mechanisms on multicore/

multithreaded architectures”, IBM technical paper

[9] Jun Yan, Wei Zhang, “Hybrid Multi-Core Architecture

for Boosting Single-Threaded Performance”, ACM

SIGARCH Computer Architecture News, , Vol. 35, No.

1, March 2007, pp 141-148.

IJCATM : www.ijcaonline.org

