
International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 6, January 2015

1

Detecting Input Validation Attacks in Web Application

Sayma Khan Amit Saxena

TIEIT, Bhopal (MP) TIEIT, Bhopal (MP)

ABSTRACT

Internet remains to blow up exponentially and has become more

significant in our everyday life, but this resulted in web

application targeted by cyber crooks and hacker. The paper

identifies vulnerability attacks caused due to inputs performed

by a user which are not properly validated across the web

application. The existing IDS designed for validation

vulnerability attacks are language reliable. Survey paper present

a proposed IDS concept which is not language reliant i.e. it is

designed for any web application developed with the support of

PHP, Java, Dotnet etc. Such concept of IDS is helpful to detect

input validation weaknesses like directory traversal attacks,

cross site scripting attacks and SQL injection attacks; these

were not detected in the extant IDS.

General Terms
Input Validation Attack, Web Security, Data Validation, Web

Application.

Keywords

Directory traversal attacks, Detection, SQL Injection attacks,

XSS attacks.

1. INTRODUCTION
Network Application is most widely applied for supplying

service to the client like online reservation, online shopping,

and many more applications which is designed in perspective of

the user. And then the network application are popular attacks,

targeted because of financial constraints and time, narrow

understanding of the programming, limited knowledge security

awareness, misconfiguration that is meant lack of cognizance of

the protection configuration deployment on the gathering of the

coder. With the tending of input validation attacks, the invader

can take the confidential data which reduce the market

standards of the system. This means vulnerability is caused by a

malicious user to utilize the data without the legitimate user’s

prior permission. Web Application use the network port for

communication with server, generally TCP port 80[1] is

employed. This communication is not protected by the IVAs.

The Open Web Security Project (OWASP)[2] Vulnerabilities:

SQL Injection Attack, Cross Site Scripting Attack, Directory

Attack are input validation attacks. Existing invasion detection

system is designed [3, 4, 5, 6 and 7] in a manner that detects

SQL injection attacks; XSS attacks however they do not

identify the directory traversal attacks. Such IDS be projected

are language definite for e.g. system designed for JAVA based

web application; system designed for PHP based web

application. In this paper invasion detection system approach

identify SQL Injection attacks, Cross- Site Scripting attacks,

Directory Traversal attacks, and is not language specific. This

IDS approach require only window environment for detecting

IVA over the internet. It requires the web reference for data to

analyze the attacks if it detects several kind of IVA.

The Proposed IDS concept can be further more efficient for

getting several case of Input validation attacks and with the

assistance of this concept server administrator can take efficient

action against these attempts. Thus in this way this concept

would reduce the analysis time and likewise increase the

effectiveness of the organization. Rest of the paper is organized

as Section 2 has the description of input validation attacks and

section 3 shows related work. And sections 4 describe the

comparison with existing IDS. Finally conclusion and expected

result of proposed concept is given in last segment.

2. INPUT VALIDATION ATTACKS
The Input Validation Attacks (IVAs) try to present data which

the web application does not suppose to receive, that causes

very severe issues like SQL poisoning, session hijack, directory

browsing, source code disclosure etc. Input validation is a

security matter if an attacker finds that the application makes

unproven assumptions about the type, duration, format, or scope

of input data. The invader can then supply punctiliously crafted

input that compromises the application. Once network and host

level access points are planarity protected, public interface

exposed by the application develop into the lone cause of

attack. The input to application is an expedient to equally test

system. It is also a method to accomplish code on attacker’s

behalf. But if application blindly trusts input, it may be

susceptible to the following:

2.1 Buffer Overflows Attacks
Buffer overflows vulnerabilities are capable to direct denial of

service attacks or code injection. A process crash is caused due

to denial of service attack. Attacker injects code to modify the

execution address of a program is code injection attack. The

threat of buffer overflows attack is less likely to be on a

managed code while a unmanaged code are more likely a

subject of concern to avoid denial of service attacks.

2.2 Cross-Site Scripting Attacks
XSS attack originates by an uninformed code to execute in

user’s web browser though the web browser is attached to a

faithful Web site. These XSS attacks aim the application’s

client whereas application itself is used as the medium used for

the assault. User’s browser downloads the script code from a

trusted Web site; the browser is uninformed of the fact that the

code is not legitimate. Internet Explorer safety measures zones

supply no protection regarding the script code attack. A user’s

validation cookies are usually intended by attack as the attacker

code has right to use the cookies related with the object Web

site.

Example of Cross-Site Scripting:

Initially the attacker must persuade the user to connect to a

cautiously prepared hyperlink, for e.g., by grouping a link in an

email forwarded by the user or else by joining a malicious link

to a post by a newsgroup. The linkage points to open to attack

page in the application that becomes invalidated to the web

browser within output stream of HTML. For example, consider

following two links.

Below is a link depicting legitimate user sign on to a web app:

http://www.browsewebapplication.com/signon.aspx?username=

sayma

International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 6, January 2015

2

Here is a malicious link:

www.browsewebapplication.com/signon.aspx?username=<scrip

t>alert ('hacker code') </script>

As the Web application takes the query sequence, fails to

properly validate it, and after that leads to the web browser,

causing the script code to run in the browser. The preceding

example displays an undamaging pop-up message. As the script

is appropriate, the assailant can slowly create the user’s

validation cookie, moreover post this on his site, and

consequently generate a call to the objective Web site as the

legitimated user.

2.3 SQL Injection Attacks
SQL injection attack utilizes weaknesses in input validation

runs uninformed commands in the database. It can happen when

the request to a application utilizes input to create active SQL

statements to contact the database. It can also happen if system

code utilizes stored procedures with the purpose are passed as

strings that contain unprocessed user input. Using the SQL

injection attack, the assailant can perform uninformed

commands in the database. The issue is enhancing as the

executing command utilizes an over-privileged description to

append to a database. Here in this occurrence it is possible to

occupy database server to run operating system’s command and

potential cooperation with other servers, also it is able to

destroy, retrieve and manipulate data.

2.4 Canonicalization
Unusual structure of input that determine to the similar regular

name (the fundamental name), be referred to canonicalization.

Rule code is mainly vulnerable to canonicalization concern if it

creates protection assessment support on the name of a resource

that is agreed by a program as input. Files, directory paths, and

URLs are reserve type that are vulnerable to canonicalization

for the reason that in each case many different ways are present

to correspond to the same name. Sometimes names of file can

also be challenging.

2.5 Directory Traversal Attack
This attack is used to obtain passwords. Most of the systems do

not store passwords in plain text form or in encrypted form.

Usually encrypted form passwords are avoided because a

conceded key which leads to concede of all passwords in data

base store. A key lost means that password is invalidated. With

the aid of this directory traversal attacks attacker uses a program

to iterate through all the words in a dictionary and computes the

hash for each word. Thus the weak passwords such as “bob”

can be cracked easily. Once attacker gets a list of password

hashes, the directory traversal attack can be performed offline

even without the interaction with the application. With the aid

of directory traversal attack the assault get directory path of the

web application.

3. RELATED WORK
Existing system in practice used in development and test time to

prevent or detect input validation vulnerability attacks so as to

improve programs for input validation vulnerability attacks can

be reduced. Subsequent section depicts a study of those

techniques and also compares with our approach.

3.1 Protect Web Application using Positive

Tainting and Syntax-Aware Evaluation[3]
Halfond, William GJ, Alessandro Orso, and Pete Manolios

proposed an automatic approach for prevention and detection

of SQLIAs. This approach uses four terms to detect SQLIA

which are Syntax-aware evaluation of queries string, Exact and

proficient taint propagation, Positive tainting and nominal

deployment condition. This approach is a SQL Injection attacks

detection system only and provides language support for Java.

3.2 VIPER used for SQL Injection Attacks

Detection [4]
Ciampa, A., Visaggio, C. A., & Di Penta, proposed a heuristic-

based approach for detecting SQL-injection vulnerabilities in

Web applications. In this technique, SQL Injection attack is

detected by using heuristic rules which are intended to increase

the possibility of work out some problem based approach. It

basically performs panetration testing of the web application.

This approach analyzes the web request for detrmining

hyperlinks configuration along with input supplied by a client

and generates a error message, if some type of SQL insertion

occurres. This tool uses automatic technique to recognize SQL

Injection vulnerability proving support for any language.

3.3 AMNESIA: Analysis and Monitering for

Neutralizing SQLI Attacks[5]
AMNESIA technique is a runtime SQL Iinjection attack

detection tool over web application. These technique operates

on static approach likewise for runtime monitoring. Before

executeion on a database server, it detects structural query

injected by a form support approach. This technique has two

partition one is a static part which is used to put together a

legel queries using program analysis whereas another is in

dynamic part which dynamically generates the queries

automatically next to statically build queries using monitoring

during runtime. If queries resist the approach then the technique

prevents the operation of the queries on a database server. Steps

involved for preventing injection by using this tool (a)Identify

the hotspot, (b)Build SQL-query models, (c)Instrument

application, (d) Runtime monitoring.

3.4 ARDILLA Tool[6]
Kieyzun, A., Guo, P. J., Jayaraman, K., & Ernst developed a

method to recognize the SQL Injection attack and XSS attack

vulnerabilities. This technique works on unmodified existing

code, produce concrete input that depict vulnerabilities and

work before software be deployed. This is a programmed tool

designed for creating attacks. It is white box testing tool in a

conduct that it requires source code of the application. Basis of

the tool is the input generation and alteration, also taint spread

to expose variants of an execution that exploit vulnerability.

3.5 D-WAV: A Web Application

Vulnerabilities Detection Tool Using

Characteristics of Web Form[7]
This approach proposed a novel programmed dynamic testing

technique of the web form characteristics based on its analysis

result. As the web forms are analysed, they generate test suites

to detect vulnerability on web application to handle security

issues caused by malicious data input. This technique detects

SQL Injection and XSS vulnerabilities over web application.

3.6 On Predictive Errors of SQL Injection

Attack Detected by the Feature of the Single

Character[8]
Takeshi Matsuda,Daiki Koizumi,Michio Sonoda,Shigeichi

Hirasawa proposed a technique that uses a sigmoid function for

detecting SQL injection attacks. An algorithm for detection of

SQL Injection Attack supported by using a single character is

proposed. When the SQL character string is the SQL Injection,

International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 6, January 2015

3

it describe an attack character string. This approach used to

decrease the analytical error in SQL Injection attack detection.

3.7 Obfuscation-based Analysis of SQL

Injection Attacks[9]
Halder, Raju, and Agostino Cortesi proposed Obfuscation-based

approach of SQLIA. They implemented collective composition

of static testing and dynamic testing which is based on the

obfuscation and de-obfuscation of SQL commands. SQL

Injection attacks can be simply detected for the reason that

dynamic verification is conceded out on obfuscated queries, at

atomic formula level only those atomic formulas which are

tagged as vulnerable. And this come close to find the source

foundation of SQL Injection attacks in dynamic query creation.

4. COMPARISON WITH EXISTING IDS
This section shows that why our proposed concept is advanced

to previous IDS to detect input validation attacks in web

application. Table 1 gives the comparative view of the existing

IDS with our proposed IDS concept.

Table 1: Comparison Analysis

Techniques
Preve

ntion

Detction
Language Attacks

WASP[2]

JAVA

supported

Web

Application

SQL

Injection

VIPER[3]
× ANY

SQL

Injection

AMNESIA[4]

JAVA

supported

Web

Application

SQL

Injection

ARDILLA[5]

×

PHP

supported

Web

Application

SQL

Injection ,

XSS

attacks

D-WAV[6]
×

ANY
SQL

Injection,

XSS

attacks

Our

Proposed

IDS

 ×

ANY

SQL

Injection,

XSS

attacks,

Directory

Traversal

Attacks

In this analysis table our propose IDS will take hold for all web

applications that are developed using several languages like

PHP, java, Dot Net etc. The proposed System will also hold the

XSS attacks, SQL Injection attacks, Directory Traversal attacks.

Previous IDS system WASP [3] does not identify XSS attacks,

directory traversal attacks whereas they perform detection only

on Java supported web application. A different tool is VIPER

[4] which is language independent but does not spot XSS

attacks and directory traversal attacks. AMNESIA [5] performs

detection simply on Java supported web application and detects

only SQL Injection attacks. ARDILLA [6] does not detect

directory traversal attacks and they execute detection just on

PHP supported web application. And another tool D-WAV [7]

is an automatic technique that provides any language support

but detects XSS and SQL Injection attacks only.

5. CONCLUSION AND EXPECTED

OUTCOME OF PROPOSED CONCEPT
This paper present a survey on web application attacks i.e. types

of security threats within web application. The paper proposes

an improved detection of input validation attacks on web

application. Our proposed detection concept will detect to

recognize Cross Side Scripting attacks, SQL injection attacks,

and also detect Directory Traversal attacks. In addition with

this, proposed IDS model support every web applications

developed using several languages like PHP, java, Dot net etc.

Thus our proposed method has a concept to be used for

detecting and securing web application from input validation

vulnerability. And also expect that the concept will reduce the

analysis time because entire process operates without developer

interaction. Future work of our study will be the implementation

of a technique that uses a method for the detection of input

validation attacks on web application. Additionally this paper

proposes an improved and efficient tool that would provide web

security.

6. ACKNOWLEDGMENTS
The attainment of this research work has not been certain

without the assistance and supervision of a enthusiastic group of

people in our institute TIEIT Bhopal. One of the author (SK)

truly conveys her gratefulness to director TIEIT, Head of Dept.

CSE, TIEIT, M.Tech., Bhopal for providing continuous support

and motivation to carry out research work. SK also wishes to

express gratitude and deepest appreciation to persons, who, in

any way have contributed and inspired the scholar.

7. REFERENCES
[1] Dainotti, A.; Gargiulo, F.; Kuncheva, L.I.; Pescape, A.;

Sansone, C., "Identification of Traffic Flows Hiding

behind TCP Port 80," Communications (ICC), 2010 IEEE

International Conference on , vol., no., pp.1,6, 23-27 May

2010 ISSN 1550-3607.

[2] OWASPD-Open Web Application Security Project. “Top

ten most critical Web Application Security

Risks”, https://www.owasp.org/index.php/Top_10_2013-

Top_10.

[3] Halfond, William GJ, Alessandro Orso, and Pete Manolios.

"WASP: Protecting Web applications using positive

tainting and syntax-aware evaluation." Software

Engineering, IEEE Transactions on 34.1 (2008): 65-81.

[4] Ciampa, A., Visaggio, C. A., & Di Penta, M. (2010, May).

“A heuristic-based approach for detecting SQL-injection

vulnerabilities in Web applications”. In Proceedings of the

2010 ICSE Workshop on Software Engineering for Secure

Systems (pp. 43-49). ACM.

[5] William G.J. Halfond and Alessandro Orso, ”AMNESIA:

Analysis and Monitoring for Neutralizing SQLI Attacks”

20th IEEE/ACM International Conference on Automated

Software Engineering, Long Beach, USA 2005, pp. 174-

183.

[6] Kieyzun, A., Guo, P. J., Jayaraman, K., & Ernst, M. D.

(2009, May). Automatic creation of SQL injection and

cross-site scripting attacks. In Software Engineering, 2009.

International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 6, January 2015

4

ICSE 2009. IEEE 31st International Conference on (pp.

199-209). IEEE.

[7] Lijiu Zhang, Quing Gu, Shushen Peng, Xiang Chen,

Haigang Zhao, Daoxu,” D-WAV Aweb Application

Vulnerabilities Detection Tool Using Characteristics of

Web Forms” ICSEA’10, IEEE.

[8] Takeshi Matsuda,Daiki Koizumi,Michio Sonoda,Shigeichi

Hirasawa, ”On predictive errors of SQL injection attack

detection by the feature of the single character” Systems,

Man, and Cybernetics (SMC), 2011 IEEE International

Conference on 9-12 Oct 2011, On Page 1722-1727.

[9] Halder, Raju, and Agostino Cortesi. "Obfuscation-based

analysis of SQL injection attacks." In Computers and

Communications (ISCC), 2010 IEEE Symposium on, pp.

931-938. IEEE, 2010.

IJCATM : www.ijcaonline.org

