
International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 5, January 2015

21

A Cyber-Physical Stream Algorithm for Intelligent

Software Defined Storage

Adi Alhudhaif Maryam Yammahi Tong Yan Simon Berkovich
Department of Computer Science, The George Washington University

Washington, DC. 20052, USA

ABSTRACT
The paper presents a new Cyber Physical Stream algorithm for

selecting a predominant item from very large collections of

data. The algorithm effectively works for frequencies of the

predominant items starting from about 2%. The algorithm is

focused on querying massive data in Software-Defined Storage

combined with Fuzzy indexing method. Experiment results

show that Cyber Physical Stream algorithm improves the

accuracy and efficiency over previous efforts.

Keywords
Big Data processing; Stream Algorithms; Software-Defined

Storage; Majority algorithm; Fuzzy search; Database

Management Systems; Pigeonhole principle.

1. INTRODUCTION
Software-Defined Storage (SDS) is a data storage

infrastructure that allows software plays a significant role

instead of merely relying on storage hardware. Nowadays, the

increasing data amount and complexity propose challenges for

Data Storage Center. The widely used Software-Based Storage

can deal with most of demands [1]. In the Software-Defined

Storage, the software would not only take the responsibility of

Data Allocation, Data Management, Data Maintenance and

etc., by a series of computing, Software-Defined Storage also

creates a more automatic system. In the end, Software-Defined

Storage will provide more efficient, flexible and intelligent

storage services. The Software-Defined Storage is still in the

stage of developing. The Software-Defined Storage has

features including API support, data visualization and hybrid

cloud storage [2]. Software-Defined Storage can improve the

usage of existing storage assets so that fewer new devices need

to be purchased. The idea is to create a single pool of logical

storage from a number of devices. Storage administrators can

then provision that pool of storage as needed, thereby improving

the use of storage arrays and making the whole affair easier to

manage[3]. This new model of Software-Defined Storage is cost

effective that facilitates large datacentre customers to acquire

high performance storage at lower costs than when using

traditional storage vendors [4].

In this paper, we emphasize on the role of stream processing in

a specific Software-Defined Storge that is introduced by work

[5]. In section 2, we give a short overview of the suggested

Software-Defiend Storage. In section 3, we intrduce a novel

stream algorithm called Cyber-Physical Stream (CPS) that

selects the predominant item from very large collections of

data. Moreover, we introduce the algorithm of CPS and

physical design that holds CPS. Section 3.2 covers the role of

CPS and other majority algorithm presented in previous work

[6]. In section 4, we present the results of our experiments on

CPS with input of stream data in random uniform distribution

and stream data follows Zipf’s law distribution.

2. AN INTELLIGENT SOFTWARE

DEFINED STORAGE
The Big Data situation requires a qualitatively different type of

information processing. This problem brings in a new type of a

computational model that explicitly works only with a

relatively small portion of the available data, while the rest of

the data just implicitly affects selection of the given working

portion [7]. The unavoidable restrictions on the operations

with overabundant data translate into the design of the brain in

accordance with the fundamental Freud’s idea of

unconsciousness. This design is contemplated in our paper [8].

Diversified information in overwhelming amounts appears

ambiguous, volatile, and unreliable. So, the contents of Big

Data systems cannot be treated with confidence as in

traditional searching and data mining. Instead, Big Data should

be utilized essentially through what can be seen as “knowledge

formation”. In other words, processing of Big Data must be

performed by what can be considered as “scientific method”.

Namely, besides simple extraction of references as from

regular information systems the full exploitation of Big Data

necessitates formulating testable hypotheses and creating

prediction models. A classical illustration presents usage of the

observational data of Tycho Brahe through transformation of

Kepler’s laws into Newton’s model of “Universal Gravitation”.

Thus, employing Big Data falls into the realm of Artificial

Intelligence. As a matter of fact, the intelligence facilities of

the brain can be considered as a necessary condition to deal

with the Big Data challenge. A special type of holographic

memory is a pivot point in the realization of these facilities [8].

To implement such kind of Big Data processing facilities in

practice we introduce a particular construction of intelligent

Software-Defined Storage (SDS). Software-Defined Storage is

the term for data storage technology that separates the

hardware storage from the software that manages the storage

infrastructure. This way the storage infrastructure resources can

be automatically and efficiently be allocated and managed to

fulfill the enterprise’s need. The construction of the suggested

Software-Defined Storage emulates the basic features of the

suggested memory organization of the brain: multi-attribute

cortical map, content-addressable access, and stream resolution

of multiple responses. The envisioned Software-Defined

Storage incorporates two developments: memory device for

multi-attribute items that can be accessed by any combinations

of attributes using FuzzyFind procedures [9] and massive

distributed streaming for resolution of multiple responses [6].

The suggested storage accumulates various information items

from outside at arbitrary rates. Each item contains number of

attributes. Attributes of information items are characterized by

23-bit metaknowledge templates [7], thus the organized items

will have less number of attributes. The enterprise’s request is

a set of some number of specified attributes. Access to storage

issues a request from different component. Content-addressable

access is arranged by inverted files for each type of attribute

using the FuzzyFind Dictionary (FFD) with Pigeonhole search

International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 5, January 2015

22

algorithm introduced in[9]. The result of this request marks a

large subset of various data items. Accessing these items with

individual attributes, we will get a lot of responses (multiple

responses), especially if we access approximately with the

suggested Pigeonhole method using FuzzyFind Dictionaries in

[9]. A stream algorithm is used for the resolution of muiltiple

responses. Appling that to the marked data items, does the

selection of appropriate items. We will formulate certain

common criterion for retrieval, and perform the extraction of

an element in a stream fashion. This paper focuses in the used

stream algorithm; therefore, the next sections will include more

details about it.

Generally speaking, we have a lot of attributes, and to make

inverted FuzzyFind dictionaries for each attribute is expensive.

For these attributes, Search is more rare and can be done by

sequential streaming of the whole storage. Therefore, We have

used parts of the attributes only to access in our design, and

this is based on the newly discovered switch in the brain

consciousness [10]. This will substantially simplify the

construction. In our design, we select Primary attributes on

which we will perform access search, and this where we use

the FuzzyFind Dictionary for access. The Secondary attributes,

at which only the selection of the retrieved attributes is to be

performed, and this where we use the stream algorithm.

3. CYBER-PHYSICAL STREAM

ALGORITHM
In the field of computer science, stream algorithms are being

designed for processing data streams with limitations of

processing time and memory. In 1999, streaming algorithms

were introduced [11][12], and used in most fields of computer

science such as; networking [13], machine learning [14],

information security [15], web application, manufacturing,

financial applications, telecommunications data management,

and much more. Using traditional database systems by simply

inserting the incoming stream data, and process them locally is

not a feasible solution and it is not a best practice solution.

Traditional database management systems are not structured for

continuous queries that are typical of data stream applications

[16].

Finding the most frequent item is considered one of the most

heavily studied problems since 1980s[17], and it is one the

major problems in data stream processing [18][19]. Also, many

domains of computer science such as computer networks, data

mining and database would benefit from finding the most

frequent item [20] [21] [22]. In section 3.1 we first introduce a

novel Cyber-Physical Stream (CPS) algorithm that has very

high probabilities of selecting the most frequent item of

frequencies as low as 2%. Moreover, we introduce a design of

an analog physical device that holds the CPS algorithm that

extracts prevalent items from streams of big data. In section 3.2

we show the major role of the CPS algorithm and Multi-Buffer

Based algorithm [6] in the suggested structure of Software-

Defined Storage [5] in more details.

3.1 The Design of CPS Algorithm.
Cyber-Physical Stream (CPS) algorithm is a novel algorithm

that in very high probabilities, it extracts the item of most

frequent occurrence of frequencies as low as 2%. The CPS

algorithm was inspired by the possibility of its usage in the

model of the brain as considered in [8]. The algorithm is

structured as a physical process that can be illustrated in Figure

.1.

Cyber-Physical Stream algorithm is stated as the following:

initially assign the value 1 to Weight (T), and the value 0 to

Voltage Control (v). For every coming stream slice do the

following: store the new arrival of the stream slice and set

Voltage Control (v) to 1. Keep comparing the incoming stream

slice with previously stored item. If they are same, and Voltage

Control is greater than or equal to 1, increase the Voltage

Control (v) by the result value of
T

v
, and increase the Weight

(T) by 1. However, if not the same, and Voltage Control (v) is

greater than 1, decrease the Voltage Control (v) by a decrement

rate known by “α”. Otherwise, next new arrival of stream slice

will replace the previous stored item and set Voltage Control to

1. When the last slice of the stream has processed, the stored

item is prevalent item. Cyber-Physical Stream algorithm is

described as follows:

%% Initial values

T = 1;

v = 0;

%% Stream started

REPEAT

get next item

If (v >= 1 and item == top):

 v = v + (T / v)

 T = T + 1

Else_if (v > 1 and item ≠ top):

 v = v * α

Else:

 v = 1

 top = item

UNTIL more items

%% Stream finished

Figure. 1, presents a physical design for an analog device that

holds the CPS algorithm that extracts the prevalent item from

streams of big data. In more detail, at the time of new slice of

stream arrived to the Reception Management, it sends a signal

to voltage management. If the new incoming item is the same

as the one in reception register, voltage control increases

voltage. If not the same, it does nothing, and voltage decreases

exponentially.

Figure 1. Illustration of the scheme for extracting the

prevalent item from a stream

International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 5, January 2015

23

3.2 The Functionality of CPS and Multi-

Buffer Based Algorithms in intelligent

Software-Defined Storage
In previous work [6], we introduced Multi-Buffer Based

algorithm that has the ability of retrieving the top k most

frequent items in big data stream in leaner time O(n) with very

limited space and memory requirements. In this paper we

introduced the CPS that also has the time complexity of O(n),

and limited space and memory requirement to extract the most

frequent item over a stream of big data.

Following the suggested structure of the intelligent Software

Defined Storage, using stream processing represents the second

half of the organization. Either the CPS or Multi-Buffer Based

algorithms represent stream processing in our case. The stream

algorithms are used for the resolution of multiple responses

that are the outputs of using inverted FuzzyFind Dictionaries as

mentioned previously. By accessing multi-attribute items using

any combination of attributes, it produces a vast amount of data

to be processed in stream processing fashion to select the most

appropriate items based on their occurrence frequencies.

4. CPS EXPERIMENTS/RESULTS

4.1 Setup
Experiments are divided into two main parts: Firstly,

performing Cyber-physical algorithm using streams of uniform

random numbers. Secondly, performing the CPS algorithm

using streams follow zipf's law distribution. For every single

stream with predefined element frequency we created many

iterations using The Fisher-Yates shuffle algorithm [23][24].

Generating uniform random numbers was performed using

both generator functions in Python’s library Lib/random.py and

the random number libraries in C that takes variable seeds such

as: current system time to generate uniform random numbers.

For generating numbers followed Zip’f Law, we first use the

same shuffle algorithm to generate uniform random data.

According to Zip’f Law Distribution, we specify a range of

numbers to the most frequent element. Then, according to the

most frequent element, we specify a range of numbers to the

second most frequent element. And the rest are generated by

the frequent of last element. We performed and examined

Cyber physical algorithm using both kinds of streams under a

common implementation framework to test their performance

as accurately as possible. The algorithm was implemented

using both C and Python, and compiled using gcc on Cygwin

1.7.25 for C code, and Python 2.7.5 for python code. We ran

Python experiments on 2.6GHz dual-core Intel Core i5 with

8GB of RAM running OS X 10.9.2. Experiments of algorithms

in C were ran on Intel 4th generation core i5 using 8GB of

RAM running Microsoft Windows Server 2012. We did not

observe noteworthy differences between two compilers.

4.2 Uniform Random Numbers
After many expermints of the CPS using streams of uniform

random numbers and many of its iterations as an input, we

came to the restult that the value of α = 0.99 will get the best

results out of the CPS. Each stream is a size of 1000 items that

contain an item of predefined frequency. Figure. 2. Illustrates

the probabilities of retrieving the prevalent item with various

frequencies in α = 0.99.

Figure. 3 show the factor of stream size, we performed the CPS

algorithm using α = 0.99 over three different stream sizes as

follows: 1,000, 10,000 and 100,000. Frequencies tested are 1%,

2%, 3%, 4% and 5%. Therefore, increasing stream size will

enhance the performance of the CPS algorithm.

4.3 Zipf’s Law Distribution
For stream data follows Zipf’s law distribution, it was observed

that α = 0.8 provides the best performance out of the CPS

algorithm. In this section, we performed CPS algorithm using α

= 0.8 and stream input that follows Zipf’s law distribution.

Figure. 4 illustrate the probabilities of retrieving the first most

frequent item and the second most frequent item.

Figure 2. Probabilities of retrieving the prevalent item

Figure 3. Probabilities of retrieving the prevalent item in

various stream sizes

Figure 4. Probabilities of retrieving first and second most

frequent item

International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 5, January 2015

24

For stream data that follows Zipf’s law distribution, Figure. 5

show the influence of stream size over the CPS algorithm. The

input size that has 200,000 numbers has better performance

than the one that has 10,000 elements. However, compared to

the improvement in random distribution, the improvement here

is minimal. The reason for this minimal improvement is the

existence of the second prevalent element in the Zipf’s Law

Distribution stream. The accumulation impacts would increase

the influence of the second prevalent element. Even the most

prevalent element would have more accumulation; however,

the increasing influence of the second prevalent element would

offset some accumulation of the prevalent element.

Figure 5. Probabilities of retrieving the prevalent item in

different stream sizes

5. REMARKS/CONCLUSIONS
The performance of the algorithm is determined by the

relationship between increment and decrement rates. For

random distribution determining a certain increment rate, the

optimal decrement rate turns out to be presented by α = 0.99. In

Figure. 6, we show the improvement of the CPS algorithm

compared to previous work [6] Single-Buffer Based algorithm.

The CPS algorithm performs better at providing very high

probabilities of selecting the predominant item of frequencies as

low as 2%. Figure. 7 illustrate the comparison of the CPS

algorithm and our previous work Single-Buffer Based algorithm

[6] using data streams follow Zipf’s law distribution. It was

observed that the new CPS algorithm has better performance of

providing high probabilities of retrieving the prevalent item of

low frequencies. For Zipf's law, the decrement rate that is

optimal for a selection of a single element is α = 0.8. However,

Zipf's law is intended for selection of a group of elements.

Thus, selecting two most frequent elements in accordance with

Zipf's law using α = 0.99 may provide more better results if

applied to pairs of prevalent elements. Anyhow, single Zipf's

distribution selection does not have to be optimal for α = 0.99

as does random distribution selection.

Figure 6. Comparison of Single-Buffer Based and CPS

Algorithms using streams of uniform random items

Figure 7. Comparison of Single-Buffer Based and CPS

Algorithm using streams of data follow Zipf's law

distribution

6. REFRENCES
[1] "Understanding the DNA of Software Defined Storage",

http://www.vmware.com/files/pdf/solutions/Understandin

g-the-DNA-of-Software-Defined-Storage-Tech-trends.

[2] “IBM software defined storage,” http://www-

03.ibm.com/systems/storage/software-defined-storage

[3] Moore, John. "Software-defined Storage Aims for Ease of

Management." Software-defined Storage Aims for Ease of

Management -- FCW. May 23, 2014. Accessed October

12, 2014.

[4] "Australia : SOFTWARE Defined Storage Introduced by

CloudCentral." 2014. MENA Report.

http://search.proquest.com/docview/1516630033?accounti

d=11243

[5] Simon Berkovich, “Intelligent Software Defined Storage”,

in Proceedings of the 5th international Conference on

Computing for Geospatial Research & Application,

Washington, D.C., 2014.COM.Geo

International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 5, January 2015

25

[6] Adi Alhudhaif, Tong Yan and Simon Berkovich. “On the

organization of cluster voting with massive distributed

streams”, in Proceedings of the 5th international

Conference on Computing for Geospatial Research &

Application, Washington, D.C., 2014.COM.Geo

[7] Simon Berkovich, Duoduo Liao, “On clusterization of big

data streams”, COM.Geo '12 Proc. of the 3rd International

Conference on Computing for Geospatial Research and

Applications, ACM, New York, 2012

[8] Simon Berkovich, “”Organization of the Brain in Light of

the Big Data Philosophy”, COM. BigData’ 14 Proc. of the

1st International Summits on Big Data Computing, IEEE,

Washington DC, 2014.

[9] M. Yammahi, K. Kowsari, Chen. Shen and Simon

Berkovich, "An efficient technique for searching very

large files with fuzzy criteria using the Pigeonhole

Principle”, COM. BigData’ 14 Proc. of the 1st

International Summits on Big Data Computing, IEEE,

Washington DC, 2014.

[10] H. Thomason, “ Consciousness on-off switch discovered

deep in brain”, New Scientist. Retrieved from

http://www.newscientist.com/article/mg22329762.700-

consciousness-onoff-switch-discovered-deep-

inbrain.html#.U80nJBbZXdl

[11] Alon, Noga, Yossi Matias, and Mario Szegedy. "The

space complexityof approximating the frequency

moments." Proceedings of the 28thannual ACM

symposium on Theory of computing. ACM, 1996

[12] Babcock, Brian; Babu, Shivnath; Datar, Mayur; Motwani,

Rajeev;Widom, Jennifer (2002), "Models and issues in

data stream systems",Proceedings of the 21st ACM

SIGMOD-SIGACT-SIGART Symposiumon Principles of

Database Systems (PODS 2002), pp. 1–

16,doi:10.1145/543613.543615

[13] Abadi, Daniel J., et al. "The Design of the Borealis Stream

Processing Engine." CIDR. Vol. 5. 2005.

[14] Rosten, Edward, and Tom Drummond. "Machine learning

for highspeed corner detection." Computer Vision–ECCV

2006. Springer Berlin Heidelberg, 2006. 430-443.

[15] N. Gruschka, M. Jensen, L. Iacono, and N. Luttenberger,

“Server-side streaming processing of WS-Security,” IEEE

Transactions on Services Computing, vol. 4, no. 4, pp.

272–285, 2011.

[16] D. Terry, D. Goldberg, D. Nichols, and B. Oki.

Continuous queries over append-only databases. In Proc.

of the 1992 ACM SIGMOD Intl. Conf. on Management of

Data, pages 321–330, June 1992.

[17] Boyer, R.S., Moore, J.S. A fast majority vote algorithm.

Technical Report ICSCA-CMP-32, Institute for Computer

Science, University ofTexas (Feb. 1981)

[18] Noga Alon, Yossi Matias, and Mario Szegedy. The space

complexity of approximating the frequency moments.

Journal of Computer and System Sciences, 58(1):137–

147, 1999.

[19] Monika Henzinger, Prabhakar Raghavan, and Sridhar

Rajagopalan. Computing on data streams. Technical

Report SRC TR 1998-011, DEC, 1998.

[20] M. Fang, N. Shivakumar, H. Garcia-Molina,R. Motwani,

and J. D. Ullman. Computing icebergqueries efficiently.

In Proc. of VLDB, 1998.

[21] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules. In Proc. of VLDB, 1994.

[22] C. Estan and G. Varghese. New directions in

trafficmeasurement and accounting. In Proc. of

ACMSIGCOMM, 2002.

[23] Richard Durstenfeld, Algorithm 235: Random

permutation, Communications of the ACM, v.7 n.7, p.420,

July 1964.

[24] Fisher, Ronald A.; Yates, Frank (1948) [1938]. Statistical

tables for biological, agricultural and medical research

(3rd ed.). London: Oliver & Boyd. pp. 26–27.

IJCATM : www.ijcaonline.org

