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ABSTRACT 
The paper presents a new Cyber Physical Stream algorithm for 

selecting a predominant item from very large collections of 

data. The algorithm effectively works for frequencies of the 

predominant items starting from about 2%. The algorithm is 

focused on querying massive data in Software-Defined Storage 

combined with Fuzzy indexing method. Experiment results 

show that Cyber Physical Stream algorithm improves the 

accuracy and efficiency over previous efforts. 
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1.    INTRODUCTION 
Software-Defined Storage (SDS) is a data storage 

infrastructure that allows software plays a significant role 

instead of merely relying on storage hardware. Nowadays, the 

increasing data amount and complexity propose challenges for 

Data Storage Center. The widely used Software-Based Storage 

can deal with most of demands [1]. In the Software-Defined 

Storage, the software would not only take the responsibility of 

Data Allocation, Data Management, Data Maintenance and 

etc., by a series of computing, Software-Defined Storage also 

creates a more automatic system. In the end, Software-Defined 

Storage will provide more efficient, flexible and intelligent 

storage services. The Software-Defined Storage is still in the 

stage of developing. The Software-Defined Storage has 

features including API support, data visualization and hybrid 

cloud storage [2]. Software-Defined Storage can improve the 

usage of existing storage assets so that fewer new devices need 

to be purchased. The idea is to create a single pool of logical 

storage from a number of devices. Storage administrators can 

then provision that pool of storage as needed, thereby improving 

the use of storage arrays and making the whole affair easier to 

manage[3]. This new model of Software-Defined Storage is cost 

effective that facilitates large datacentre customers to acquire 

high performance storage at lower costs than when using 

traditional storage vendors [4].  

In this paper, we emphasize on the role of stream processing in 

a specific Software-Defined Storge that is introduced by work 

[5]. In section 2, we give a short overview of the suggested 

Software-Defiend Storage. In section 3, we intrduce a novel 

stream algorithm called Cyber-Physical Stream (CPS) that 

selects the predominant item from very large collections of 

data. Moreover, we introduce the algorithm of CPS and 

physical design that holds CPS. Section 3.2 covers the role of 

CPS and other majority algorithm presented in previous work 

[6]. In section 4, we present the results of our experiments on 

CPS with input of stream data in random uniform distribution 

and stream data follows Zipf’s law distribution.    

2.    AN INTELLIGENT SOFTWARE 

DEFINED STORAGE  
The Big Data situation requires a qualitatively different type of 

information processing.  This problem brings in a new type of a 

computational model that explicitly works only with a 

relatively small portion of the available data, while the rest of 

the data just implicitly affects selection of the given working 

portion [7].  The unavoidable restrictions on the operations 

with overabundant data translate into the design of the brain in 

accordance with the fundamental Freud’s idea of 

unconsciousness. This design is contemplated in our paper [8].  

Diversified information in overwhelming amounts appears 

ambiguous, volatile, and unreliable. So, the contents of Big 

Data systems cannot be treated with confidence as in 

traditional searching and data mining. Instead, Big Data should 

be utilized essentially through what can be seen as  “knowledge 

formation”.  In other words, processing of Big Data must be 

performed by what can be considered as “scientific method”. 

Namely, besides simple extraction of references as from 

regular information systems the full exploitation of Big Data 

necessitates formulating testable hypotheses and creating 

prediction models. A classical illustration presents usage of the 

observational data of Tycho Brahe through transformation of 

Kepler’s laws into Newton’s model of “Universal Gravitation”.  

Thus, employing Big Data falls into the realm of Artificial 

Intelligence. As a matter of fact, the intelligence facilities of 

the brain can be considered as a necessary condition to deal 

with the Big Data challenge. A special type of holographic 

memory is a pivot point in the realization of these facilities [8].  

To implement such kind of Big Data processing facilities in 

practice we introduce a particular construction of intelligent 

Software-Defined Storage (SDS). Software-Defined Storage is 

the term for data storage technology that separates the 

hardware storage from the software that manages the storage 

infrastructure. This way the storage infrastructure resources can 

be automatically and efficiently be allocated and managed to 

fulfill the enterprise’s need. The construction of the suggested 

Software-Defined Storage emulates the basic features of the 

suggested memory organization of the brain: multi-attribute 

cortical map, content-addressable access, and stream resolution 

of multiple responses. The envisioned Software-Defined 

Storage incorporates two developments: memory device for 

multi-attribute items that can be accessed by any combinations 

of attributes using FuzzyFind procedures [9] and massive 

distributed streaming for resolution of multiple responses [6]. 

The suggested storage accumulates various information items 

from outside at arbitrary rates. Each item contains number of 

attributes. Attributes of information items are characterized by 

23-bit metaknowledge templates [7], thus the organized items 

will have less number of attributes. The enterprise’s request is 

a set of some number of specified attributes. Access to storage 

issues a request from different component. Content-addressable 

access is arranged by inverted files for each type of attribute 

using the FuzzyFind Dictionary (FFD) with Pigeonhole search 



International Journal of Computer Applications (0975 – 8887)  

Volume 109 – No. 5, January 2015 

22 

algorithm introduced in[9]. The result of this request marks a 

large subset of various data items. Accessing these items with 

individual attributes, we will get a lot of responses (multiple 

responses), especially if we access approximately with the 

suggested Pigeonhole method using FuzzyFind Dictionaries in 

[9]. A stream algorithm is used for the resolution of muiltiple 

responses. Appling that to the marked data items, does the 

selection of appropriate items. We will formulate certain 

common criterion for retrieval, and perform the extraction of 

an element in a stream fashion. This paper focuses in the used 

stream algorithm; therefore, the next sections will include more 

details about it. 

Generally speaking, we have a lot of attributes, and to make 

inverted FuzzyFind dictionaries for each attribute is expensive. 

For these attributes, Search is more rare and can be done by 

sequential streaming of the whole storage. Therefore, We have 

used parts of the attributes only to access in our design, and 

this is based on the newly discovered switch in the brain 

consciousness [10]. This will substantially simplify the 

construction. In our design, we select Primary attributes on 

which we will perform access search, and this where we use 

the FuzzyFind Dictionary for access.  The Secondary attributes, 

at which only the selection of the retrieved attributes is to be 

performed, and this where we use the stream algorithm.  

3. CYBER-PHYSICAL STREAM   

ALGORITHM 
In the field of computer science, stream algorithms are being 

designed for processing data streams with limitations of 

processing time and memory. In 1999, streaming algorithms 

were introduced [11][12], and used in most fields of computer 

science such as; networking [13], machine learning [14], 

information security [15], web application, manufacturing, 

financial applications, telecommunications data management, 

and much more. Using traditional database systems by simply 

inserting the incoming stream data, and process them locally is 

not a feasible solution and it is not a best practice solution. 

Traditional database management systems are not structured for 

continuous queries that are typical of data stream applications 

[16].  

Finding the most frequent item is considered one of the most 

heavily studied problems since 1980s[17], and it is one the 

major problems in data stream processing [18][19]. Also, many 

domains of computer science such as computer networks, data 

mining and database would benefit from finding the most 

frequent item [20] [21] [22]. In section 3.1 we first introduce a 

novel Cyber-Physical Stream (CPS) algorithm that has very 

high probabilities of selecting the most frequent item of 

frequencies as low as 2%. Moreover, we introduce a design of 

an analog physical device that holds the CPS algorithm that 

extracts prevalent items from streams of big data. In section 3.2 

we show the major role of the CPS algorithm and Multi-Buffer 

Based algorithm [6] in the suggested structure of Software-

Defined Storage [5] in more details.  

3.1 The Design of CPS Algorithm. 
Cyber-Physical Stream (CPS) algorithm is a novel algorithm 

that in very high probabilities, it extracts the item of most 

frequent occurrence of frequencies as low as 2%. The CPS 

algorithm was inspired by the possibility of its usage in the 

model of the brain as considered in [8]. The algorithm is 

structured as a physical process that can be illustrated in Figure 

.1. 

Cyber-Physical Stream algorithm is stated as the following: 

initially assign the value 1 to Weight (T), and the value 0 to 

Voltage Control (v). For every coming stream slice do the 

following: store the new arrival of the stream slice and set 

Voltage Control (v) to 1. Keep comparing the incoming stream 

slice with previously stored item. If they are same, and Voltage 

Control is greater than or equal to 1, increase the Voltage 

Control (v) by the result value of 
T

v
, and increase the Weight 

(T) by 1. However, if not the same, and Voltage Control (v) is 

greater than 1, decrease the Voltage Control (v) by a decrement 

rate known by “α”. Otherwise, next new arrival of stream slice 

will replace the previous stored item and set Voltage Control to 

1. When the last slice of the stream has processed, the stored 

item is prevalent item. Cyber-Physical Stream algorithm is 

described as follows:  

%% Initial values  

T = 1; 

v = 0; 

%% Stream started 

REPEAT 

get next item 

If (v >= 1 and item == top): 

 v = v + ( T / v ) 

 T = T + 1 

Else_if (v > 1 and item ≠ top): 

 v = v * α 

Else: 

 v = 1 

 top = item 

UNTIL more items 

%% Stream finished 

Figure. 1, presents a physical design for an analog device that 

holds the CPS algorithm that extracts the prevalent item from 

streams of big data. In more detail, at the time of new slice of 

stream arrived to the Reception Management, it sends a signal 

to voltage management. If the new incoming item is the same 

as the one in reception register, voltage control increases 

voltage. If not the same, it does nothing, and voltage decreases 

exponentially. 

 

Figure 1. Illustration of the scheme for extracting the 

prevalent item from a stream 
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3.2 The Functionality of CPS and Multi-

Buffer Based Algorithms in intelligent 

Software-Defined Storage 
In previous work [6], we introduced Multi-Buffer Based 

algorithm that has the ability of retrieving the top k most 

frequent items in big data stream in leaner time O(n) with very 

limited space and memory requirements. In this paper we 

introduced the CPS that also has the time complexity of O(n), 

and limited space and memory requirement to extract the most 

frequent item over a stream of big data.  

Following the suggested structure of the intelligent Software 

Defined Storage, using stream processing represents the second 

half of the organization. Either the CPS or Multi-Buffer Based 

algorithms represent stream processing in our case. The stream 

algorithms are used for the resolution of multiple responses 

that are the outputs of using inverted FuzzyFind Dictionaries as 

mentioned previously. By accessing multi-attribute items using 

any combination of attributes, it produces a vast amount of data 

to be processed in stream processing fashion to select the most 

appropriate items based on their occurrence frequencies.   

4.     CPS EXPERIMENTS/RESULTS 

4.1 Setup 
Experiments are divided into two main parts: Firstly, 

performing Cyber-physical algorithm using streams of uniform 

random numbers. Secondly, performing the CPS algorithm 

using streams follow zipf's law distribution. For every single 

stream with predefined element frequency we created many 

iterations using The Fisher-Yates shuffle algorithm [23][24]. 

Generating uniform random numbers was performed using 

both generator functions in Python’s library Lib/random.py and 

the random number libraries in C that takes variable seeds such 

as: current system time to generate uniform random numbers. 

For generating numbers followed Zip’f Law, we first use the 

same shuffle algorithm to generate uniform random data. 

According to Zip’f Law Distribution, we specify a range of 

numbers to the most frequent element. Then, according to the 

most frequent element, we specify a range of numbers to the 

second most frequent element. And the rest are generated by 

the frequent of last element. We performed and examined 

Cyber physical algorithm using both kinds of streams under a 

common implementation framework to test their performance 

as accurately as possible. The algorithm was implemented 

using both C and Python, and compiled using gcc on Cygwin 

1.7.25 for C code, and Python 2.7.5 for python code. We ran 

Python experiments on 2.6GHz dual-core Intel Core i5 with 

8GB of RAM running OS X 10.9.2. Experiments of algorithms 

in C were ran on Intel 4th generation core i5 using 8GB of 

RAM running Microsoft Windows Server 2012. We did not 

observe noteworthy differences between two compilers. 

4.2 Uniform Random Numbers 
After many expermints of the CPS using streams of uniform 

random numbers and many of its iterations as an input, we 

came to the restult that the value of α = 0.99 will get the best 

results out of the CPS. Each stream is a size of 1000 items that 

contain an item of predefined frequency. Figure. 2. Illustrates 

the probabilities of retrieving the prevalent item with various 

frequencies in α = 0.99. 

Figure. 3 show the factor of stream size, we performed the CPS 

algorithm using α = 0.99 over three different stream sizes as 

follows: 1,000, 10,000 and 100,000. Frequencies tested are 1%, 

2%, 3%, 4% and 5%.  Therefore, increasing stream size will 

enhance the performance of the CPS algorithm. 

4.3 Zipf’s Law Distribution 
For stream data follows Zipf’s law distribution, it was observed 

that α = 0.8 provides the best performance out of the CPS 

algorithm. In this section, we performed CPS algorithm using α 

= 0.8 and stream input that follows Zipf’s law distribution. 

Figure. 4 illustrate the probabilities of retrieving the first most 

frequent item and the second most frequent item. 

 

Figure 2. Probabilities of retrieving the prevalent item 

 

Figure 3. Probabilities of retrieving the prevalent item in 

various stream sizes 

 

Figure 4. Probabilities of retrieving first and second most 

frequent item 
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For stream data that follows Zipf’s law distribution, Figure. 5 

show the influence of stream size over the CPS algorithm. The 

input size that has 200,000 numbers has better performance 

than the one that has 10,000 elements. However, compared to 

the improvement in random distribution, the improvement here 

is minimal. The reason for this minimal improvement is the 

existence of the second prevalent element in the Zipf’s Law 

Distribution stream. The accumulation impacts would increase 

the influence of the second prevalent element. Even the most 

prevalent element would have more accumulation; however, 

the increasing influence of the second prevalent element would 

offset some accumulation of the prevalent element.  

 

Figure 5. Probabilities of retrieving the prevalent item in 

different stream sizes 

5.    REMARKS/CONCLUSIONS 
The performance of the algorithm is determined by the 

relationship between increment and decrement rates. For 

random distribution determining a certain increment rate, the 

optimal decrement rate turns out to be presented by α = 0.99. In 

Figure. 6, we show the improvement of the CPS algorithm 

compared to previous work [6] Single-Buffer Based algorithm. 

The CPS algorithm performs better at providing very high 

probabilities of selecting the predominant item of frequencies as 

low as 2%. Figure. 7 illustrate the comparison of the CPS 

algorithm and our previous work Single-Buffer Based algorithm 

[6] using data streams follow Zipf’s law distribution. It was 

observed that the new CPS algorithm has better performance of 

providing high probabilities of retrieving the prevalent item of 

low frequencies. For Zipf's law, the decrement rate that is 

optimal for a selection of a single element is α  = 0.8. However, 

Zipf's law is intended for selection of a group of elements. 

Thus, selecting two most frequent elements in accordance with 

Zipf's law using α  = 0.99 may provide more better results if 

applied to pairs of prevalent elements. Anyhow, single Zipf's 

distribution selection does not have to be optimal for α  = 0.99 

as does random distribution selection.  

 

Figure 6. Comparison of Single-Buffer Based and CPS 

Algorithms using streams of uniform random items 

 

Figure 7. Comparison of Single-Buffer Based and CPS 

Algorithm using streams of data follow Zipf's law 

distribution 
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