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ABSTRACT 
This study discusses the influences of economic, energy and 

environment indicators in the prediction of energy demand for 

Tanzania applying support vector machine for regression 

(SVR).  Economic, energy and environment indicators were 

applied to formulate models based on time series data. The 

experimental results showed the supremacy of the 

polynomial-SVR kernel function and the energy indicators 

model in providing the transformation, which achieved more 

accurate prediction values. The energy indicators model had a 

correlation coefficient (CC) of 0.999 as equated to 0.9975 and 

0.9952 with PUKF-SVR kernels for economic and 

environment indicators model. The energy indicators model 

closeness of predicted values as compared to actual values 

was the best as compared to economic and environment 

indicators models. Furthermore, root mean squared error 

(RMSE), mean absolute error (MAE), root relative squared 

error (RRSE) and relative absolute error (RAE) of energy 

indicators model were the lowest. Long-run sustainable 

development of the energy sector can be achieved with the use 

of SVR-algorithm as prediction tool of future energy demand. 
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1. INTRODUCTION 
Notwithstanding its extremely vivacious importance to all 

human activities and life in general, energy prediction studies 

using the machine learning approach in the developing 

countries like Tanzania has not been done deeply. In addition, 

the energy availability and the concern to its scarcity due to 

the depletion threat of fossil fuel resources, has made the 

analysis of energy demand to be of great interest to 

researchers. In fact, energy is important to all human activities 

and thus a socio-economic development catalytic agent for 

individual and nations in general. The energy analysis using 

various approaches for different applications has assisted 

individuals and countries to plan for their energy demands 

ahead of time. Tanzania is among the developing countries 

where intensive investments are taking up in all sectors of the 

economy. The country energy demand is expected to grow [1] 

as new investments floods in due to economic sectors 

expansions and liberalization especially in gas, minerals and 

agriculture. To facilitate and assist energy policy makers in 

decision-making, this study adopts support vector machine for 

regression (SVR) to analyze the influence of economic, 

energy and environment indicators in the prediction of energy 

demand of Tanzania. The choice of SVR is due to its strong 

computational capabilities. SVR has previously used for a 

number of applications such as electricity load forecasting [2, 

3]; predicting crude oil price [4]; wind speed estimation [5]; 

classification [6, 7]; among many others. Expectations are the 

study results to presents an effective tool for the prediction of 

long-term energy demand based on time series data. 

2. SUPPORT VECTOR MACHINE  
The support vector machines (SVMs) in machine learning are 

supervised learning models with associated learning 

algorithms that analyze data and recognize patterns [8]. SVMs 

are applicable for classification and regression analysis. When 

SVMs are used for classification they involves identifying to 

which of a set of categories  a new observation belongs, on 

the basis of a training set of data containing observations 

whose category membership is known [9]. SVM for 

regression applies a loss function to solve various regression 

problems; and it has contributed to a broad range of problems 

arising in various fields. It is a training algorithm for learning 

regression rules from data which can be used to learn linear-

SVR, polynomial-SVR, RBF-SVR and PUKF-SVR [10]. 

PUKF-SVR has been demonstrated to work well with 

approximation of the linear, polynomial-SVR or RBF-SVR 

feature space. It has further been shown to really act like 

linear, polynomial-SVR or RBF-SVR [10]. The detailed 

theory of SVM is well given in [8, 11-14] and the theory of 

kernels in [15]. An overview concept of SVR and PUKF-SVR 

function is as presented in this paper.  

2.1 Support Vector Machine for 

Regression (SVR) 

Support vector regression (SVR) is an SVM version for 

regression [8, 16]. The scholars Schölkopf, et al. [13] and 

Üstün, et al. [10] approach SVR by considering a data set 

[(x1 , y1),… . . , (xn , yn)] (d-dimensional input space) and y in 

R space, basically arguing that, SVR tries to find the 

function f(x), which relates the measured input object (say, 

for this case energy indicators) to the desired output property 

of this object (say, predicted energy demand value in MTOE) 

as represented  in equation 1. The variables W and b 

represents the slope and offset of the regression function. The 

solution for this regression problem is solved by minimizing 

equation 2. 

𝑓 𝑥 −𝑊𝑋 + 𝑏           𝑊,𝑋 ∈ 𝑅𝑑 …………………… . (1) 

1

2
  𝑊  

2
+ 𝐶 𝐿ε

𝑛

𝑖=1

 𝑓 𝑥𝑖 , 𝑦𝑖 ………………………… 2      

   Where      𝐶 > 0  and    

𝐿휀 𝑓 𝑥𝑖 , 𝑦𝑖 = 0 if   𝑦𝑖 − 𝑓 𝑥𝑖  ≤ 휀 and  𝐿휀 𝑓 𝑥𝑖 , 𝑦𝑖 =
 𝑦𝑖 − 𝑓 𝑥𝑖  − 휀  otherwise ……………………… . . .…   (3)  
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| W |2 as given in equation 2, is the term characterizing the 

model complexity (flatness) whereas C is the regularization 

constant which determines the trade-off between the model 

complexity f(x) and the amount up to which deviations larger 

than ε are tolerated [11-14]. Large values of C favor solutions 

with few errors and small values denote preference towards 

low-complexity. The reformulation of equation 2 by 

introduction of the slack variable  ξiand ξi
∗ gives the primal 

equation 4 which refers to the formulation of the regression 

problem in the original data space [17].  

The primal formulation of the problem is suitable in case the 

number of objects is (much) larger than the number of 

involved variables; otherwise, the so-called dual is used. The 

slack variables ξiand ξi
∗ are introduced in the situation that the 

target value (property of the input object) exceeds the 

numerical limits of the ϵ tube. The points outside the ϵ tube 

are named support vectors and in fact are the vectors 

supporting the actual regression model  [10]. The support 

vectors machine contribute only to building the regression 

function whereas the rest of the input data in the space are not 

important and can be rejected after the regression model is 

built. This is termed as sparsely of the solution where only a 

few data from the input space are actually taken into account 

in building the regression function. Therefore we get at the 

formulation of the approximation function as stated in [18]. 

Minimize  

1

2
| 𝑊 |2 + 𝐶   (𝜉𝑖 + 𝜉𝑖

∗)𝑛
𝑖=1 subject to 𝑦𝑖 −  𝑤, 𝑥𝑖 − 𝑏 ≤

휀 + 𝜉𝑖    𝑤, 𝑥𝑖 + 𝑏 − 𝑦𝑖 ≤ 휀 + 𝜉𝑖
∗and 휀,  𝜉𝑖 , 𝜉𝑖

∗ ≥ 0…… (4)  

Finally, intuitively taking into consideration of the non-linear 

regression by including the mapping to the feature space, 

equation 1 can be re-constructed into equation 5 by 

introducing the Lagrange multipliers. 

 𝑓 𝑥 −   𝛼𝑖 − 𝛼𝑖
∗ 𝑛

𝑖=1  ∅ 𝑥𝑖 ,∅ 𝑥   𝑏………………… (5) 

In equation 5, the model parameters αi  and αi
∗ represent the 

Lagrange multipliers satisfying the constraint 0 < αi ,αi
∗ < 𝐶. 

These parameters can be obtained by maximizing the dual 

formulation, which can be derived from equation 4. 

Maximize  −
1

2
  αi − αi

∗  αj − αj
∗  ∅ xi .∅ x  

n
i,j=1 +

 (αi − αi
∗n

i )yi −  ε (αi − αi
∗n

i )      …………………. (6) 

Subject to  (𝛼𝑖 − 𝛼𝑖
∗𝑛

𝑖 ) = 0 and 𝛼𝑖 − 𝛼𝑖  
∗ ∈  0,𝐶 … .… (7)  

According to Cristianini and Shawe-Taylor [14], with the 

Karush–Kuhn–Tucker conditions, it is only a small number of 

coefficients  αi and αi
∗ will be nonzero, and the data points 

associated with these parameters are referred to the support 

vectors of the model. The vector inner product  ∅ xi .∅ x   
in equations 5 and 6 represent the mapping function from the 

input space to feature space. These can be replaced by the 

generic kernel function K(xi , x). The kernel function 

represents the underlying relationship between the input data 

and the output property (desired output) to be modeled. 

Therefore modifying equation 6 by introducing the kernel 

function it becomes equation 8. 

𝑓 𝑥 −  𝛼𝑖 − 𝛼𝑖
∗ 

𝑛

𝑖=1

𝐾 𝑥𝑖 , 𝑥 + 𝑏……………………… (8) 

As a result, the kernel function transforms the nonlinear input 

space into a high dimensional feature space in which the 

solution of the problem can be represented as being a straight 

linear problem.  

2.2 Kernel Idea 
Kernel-based algorithms operation idea is to transform the 

data in the input space into a high dimensional Hilbert space 

[10, 19, 20].That is to say, a space spanned by inner-product 

or distance based functions of real-valued vectors representing 

physical entities which is referred to as the corresponding 

feature space [10]. In this way, it becomes possible to solve 

the problem as if the feature space was linear separable. Over 

these two decades intensive kernels based methods for SVR 

have been studied, proposed and the field is now in its 

maturity stage [17, 21]. The linear, polynomial-SVR and 

RBF-SVR represented in equations 9-11 respectively, are well 

implemented and tested in the SVR. Furthermore, the kernel 

based on PUKF-SVR has been implemented and tested.  A 

detailed explanation of the PUKF-SVR is well covered in [10] 

and the following section gives a brief discussion. 

K xi , xj =   xi , xj + 1 ………………………………… (9)  

K xi , xj = ( xi , xj + 1)d , 𝑑 = 2 Poly _1.… .… . (10) 

𝐾 𝑥𝑖 , 𝑥𝑗  = e(
−||𝑥𝑖 ,𝑥𝑗 ||2

2𝛿
) …   …………………… . .… . . (11) 

    when 𝛿 = 3 the equation is polynomial− SVR 2 (Poly_2)  

                                                𝛿 = 8 Poly_3 

                                                 𝛿 = 0.5 RBF-SVR_1 

𝛿 = 2 RBF-SVR_2 

2.3 Pearson VII Universal Kernel (PUKF-

SVR) 
PUKF-SVR was proposed by Karl Pearson in 1895 and it is a 

special case of Type IV (symmetrical) of the families of 

distribution he proposed after noting that not all distribution 

had distributions that resembled the normal distribution [22]. 

The general form of the Pearson VII function for curve fitting 

purposes is as given in equation 12 [10]. 

f x =      
𝐻

 
 
 
 
1+ 

2 𝑥−𝑥0 
 2

1
𝑤 −1

𝛿
 

2

 
 
 
 
𝑤 ……………… .… (12)  

From equation 12, H  is the peak height at the centre  x0  of the 

peak, and  x represents the independent variable. The 

parameters δ and w control the half-width (also known as 

Pearson width) and the tailing factor of the peak. The main 

reason to use the Pearson VII function for curve fitting is its 

flexibility to change, by varying the parameter w, from a 

Gaussian shape (when w approximates infinity) towards a 

Lorentzian shape (w equal to 1) as depicted in Fig. 1 [10]. The 

function was nominated to be used as the kernel because of its 

flexibility to vary between a Gaussian and a Lorentzian shape 

and beyond. This property makes it able to serve as a kind of 

universal kernel which can replace (by selecting the 

appropriate parameter setting) the set of commonly applied 

kernel functions, such as the linear, polynomial-SVR and 

RBF-SVR kernels. The PUKF-SVR function is tested to be a 

valid kernel functions because its matrices belongs to the class 

of the symmetric and positive semi-definite matrix, which is a 

requirement for any function to be a kernel. The Pearson 

function in equation 12 is modified to suit the kernel in 

equation 13. 
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Fig 1: Pearson VII peak shapes [10] 

As the Pearson width x =1, it resembles a Lorentzian and as it 

approaches infinity, it becomes equal to a Gaussian peak 

shape. Moreover, a Pearson peak with x =0.5 is shown in Fig. 

1. Note: the region close to zero can be imagined to compare 

to RBF-SVR and higher order polynomial-SVR function 

shapes. The region between 0.25 – 0.75 represents a linear 

function. Extremely, the full range between 0 – 3 becomes 

more or less comparable to a sigmoid function, which is 

widely used in neural network modeling. 

K 𝑥𝑖 ,𝑥𝑗  =
1

 1 +  
2 ||𝑥𝑖−𝑥𝑗 ||

2  2
1
𝑤 −1

𝛿
 

2

 

𝑤 …… . (13) 

As can be envisaged, the single variable x in equation 12 is 

replaced by two vector arguments and the Euclidean distance 

measure between these vectors has been introduced. The peak 

offset term  x0 is removed and the peak height 𝐻 is simply 

replaced by 1, this without loss of generality. 

3. METHODOLOGY 

3.1 Data Collection and Preprocessing 
Data used were from National Bureau of Statistics (NBS), 

World Development Indicators, International Energy Agency 

(IEA), Bank of Tanzania (BoT) and Tanzania Electric Supply 

Company Limited (TANESCO). The dataset had the historical 

annual data over the period from 1990 to 2011. The dataset 

included population, gross domestic product (GDP), per 

capita energy use, total primary energy supply, gross national 

income per capita, electricity generation and CO2 emissions. 

The pre-processing of the data to fit in the models was done. 

The three models based on the indicators of study were 

economic, energy and environment. The models were 

developed with the objectives of determining the influence of 

indicators in the prediction of energy demand. 

3.2 Experimental Setup 
In the experiment, SVR was used for the study. The training 

to build the regression model used for evaluation involved the 

polynomial-SVR, normalized polynomial-SVR, RBF-SVR 

and the PUKF-SVR kernels. Data for all the experiments were 

cross-validated using 𝑘-folds cross-validation (CV). The idea 

was to split the data into 𝑘 disjoint and equally sized subsets. 

The validation was done on a single subset and training was 

done using the union of the remaining 𝑘−1 subsets. This 

procedure was repeated 𝑘 times, each time with a different 

subset for validation. The intention was to allow for the large 

data in the dataset to be used for training and all cases appear 

for the validation cases (testing). For this case, the true errors 

were estimated as the average error rate. 

 3.3 Performance Evaluation 
The models’ performances in both approaches were compared 

and evaluated using an appropriate choice of the following 

statistical parameters: correlation coefficient (CC) [23], root 

mean squared error (RMSE), mean absolute error (MAE), root 

relative squared error (RRSE) and relative absolute error 

(RAE). The values of statistical indices were derived from 

statistical calculation of observation in the models output 

predictions and are given in Armstrong and Collopy [24] and 

Chattefuee and Hadi [25]. Selection of the appropriate kernel 

and the accurate model for prediction of energy demand was 

done by considering the combination of higher CC and the 

lowest RRSE, RMSE; MAE and RAE values. 

4. RESULT AND DISCUSSION 
To demonstrate the SVR capability on energy prediction, 

three experiments were conducted using the cross-validation 

with 10 folds for the training data. The first experiment 

involved the economic, the second energy and the last one 

environmental indicator.  The value for  𝑘 was experimentally 

chosen to be 10 folds; and thus the union of 9 folds were used 

for the training and the remaining subset for validation set 

(testing) in each cycle of one experiment.  

4.1 Analysis of the Kernels Performance 
The results of the kernels performance analysis regarding the 

economic indicators model as shown in Table 1 and Fig. 2 

suggests PUKF-SVR kernel performed excellently in 

comparison to its counterparts. It had the highest CC value of 

0.9975 while the RBF-SVR kernel had the lowest CC value in 

that case. The PUKF-SVR kernel had the lowest MAE and 

RMSE values of 0.1934 and 0.2589 respectively. 

Furthermore, the lowest RAE and RRSE characterize PUKF-

SVR kernel in relation to the other kernels. The error value 

findings as depicted in Fig. 2 provide the comparison of errors 

for the various kernels involved. The two algorithms maps 

achieved by the Polynomial-SVR and   PUKF-SVR appeared 

to be slightly close in most of the years with the PUKF-SVR 

attaining the lower value in most cases. 

Table 1: Kernels statistical performance comparison-

economic indicators model 

 Normalized 

Polynomial 

SVR 

Polynomial 

SVR 
RBF-SVR PUKF-SVR 

CC 0.9904 0.9912 0.4383 0.9975 

MAE 0.461 0.406 2.9243 0.1934 

RMSE 0.5989 0.4941 3.3271 02589 

RAE 13.59% 11.97% 86.20% 5.70% 

RRSE 15.79% 13.03% 87.73% 6.83% 

The results of the kernels performance analysis on the energy 

indicators model for the prediction of energy demand using 

the normalized polynomial-SVR, polynomial-SVR, RBF-SVR 

and the PUKF-SVR are depicted in Table 2. The polynomial-

SVR kernel had the greatest predictive ability with the 

correlation coefficient of 0.999. The RBF-SVR and the 

normalized polynomial-SVR kernels had the least CC value 

with the RBF-SVR having the smallest CC value of 0.4961. 

The MAE and RMSE values of polynomial-SVR are shown to 

be 0.1448 and 0.1629 respectively outperforming the other 

kernels. The polynomial-SVR further exhibits the lowest RAE 

and root relative square error vindicating it to be the better 

estimating or predictor of energy of energy demand under 

energy indicators model. These can as well be spotted in Fig. 
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3. Even though PUKF-SVR and Polynomial-SVR appears to 

have similar values over the considerable range, the predictive 

capability went down beyond the year 2010 making the 

polynomial-SVR a better approach for the prediction of 

energy demand for this case.  

Table 2: Kernels statistical performance comparison-

energy indicators model 

 Normalized 

Polynomial 

SVR 

Polynomial 

SVR 
RBF-SVR PUKF-SVR 

CC 0.6411 0.999 0.4961 0.9977 

MAE 2.544 0.1448 2.7927 0.1465 

RMSE 2.8269 0.1629 3.1987 0.2552 

RAE 74.99% 4.27% 82.32% 4.32% 

RRSE 74.54% 4.30% 84.34% 6.73% 

The last experiment was evaluating the effect of the kernels in 

the use of environment indicators model for the energy 

demand prediction. Table 3 shows that the greatest predictive 

validity algorithm was PUKF-SVR, which had the CC value 

of 0.9952. It is as well noted to have the lowest values for 

MAE and RMSE of 0.233 1 and 0.3686 respectively. The 

RAE was 6.872% and the RRSE is 9.72. The RBF-SVR 

kernel had again the least CC value. The absolute errors 

comparison between predicted and actual values for both 

algorithms is illustrated in Fig. 4. The PUKF-SVR and the 

polynomial-SVR had slightly closer results although in most 

cases again PUKF- SVR values were the lowest. This puts the 

PUKF-SVR to be a better kernel for energy prediction using 

the environment indicators model. 

Table 3: Kernels statistical performance comparison-

environment indicators model 

 Normalized 

Polynomial 

SVR 

Polynomial 

SVR 
RBF-SVR PUKF-SVR 

CC 0.8120 0.9934 0.4375 0.9952 

MAE 1.5012 0.3323 2.8991 0.2331 

RMSE 2.1296 0.4282 3.3048 0.3686 

RAE 44.25% 9.79% 85.46% 6.87% 

RRSE 56.15% 11.29% 87.14% 9.72% 

4.2 Models Performance Comparison  
Two visible plausible conclusions can be drawn here. The first 

one involves the best performing indicators model on energy 

demand prediction based on time series data and the second 

the overall better performing kernel regardless of the models. 

This section begins with the best performing indicators model 

for energy prediction. Although it is noted, the PUKF-SVR 

kernel had a better performance over its counterparts in both 

the economic and environment indicators models, thorough 

analysis in the energy indicators model results shows the 

polynomial-SVR kernel had the greatest performance over the 

PUKF-SVR kernel. Comparison of kernels in Table 4 shows 

that the polynomial-SVR has the highest correlation 

coefficient of 0.999 with the energy indicators model while in 

the economic and environment indicators models, the 

correlation coefficients are 0.9975 and 0.9952 respectively. 

Polynomial-SVR kernel for energy indicators model achieved 

the least values in terms of MAE as compared to the PUKF-

SVR kernel in the economic and environment indicators 

model. The PUKF-SVR kernel had MAE values of 0.1934 

and 0.2331 respectively for economic and environment 

indicators models. These statistical values are greater in 

comparison to the MAE values of 0.1448 for the energy 

indicators model making it the best. 

Table 4: Statistical values performance comparison 

 Economic 

Indicators 

model 

Energy indicators 

model 

Environment 

indicators 

model 

SVR Kernel PUKF-SVR Polynomial SVR PUKF-SVR 

CC 0.9975 0.999 0.9952 

MAE 0.1934 0.1448 0.2331 

RMSE 0.2589 0.1629 0.3686 

RAE 5.7% 4.27% 6.87% 

RRSE 0.07% 4.30% 0.09% 

Similarly, in terms of the RMSE values, the polynomial-SVR 

kernel in the energy indicators model had a lower value of 

0.1629 while the PUKF-SVR kernel for both economic and 

environment indicators model had a higher values of 0.2589 

and 0.3686 respectively. Not only these, but also RAE value 

and RRSE values for economic and environment indicators 

models are similarly higher valued as compared to energy 

indicators model. Furthermore, the absolute errors deviations 

values between actual and predicted energy demand is 

relatively very small for the polynomial-SVR kernel as 

illustrated in Fig. 3. It is further as suggested earlier that the 

polynomial-SVR kernels works well with the energy 

indicators model than is the PUKF-SVR kernel although it 

had shown better results with the economic and environment 

indicators model. These comparisons concludes that the 

energy indicators model were more accurate for the prediction 

of energy demand with the use of polynomial-SVR kernel in 

comparison to the economic and environment indicators 

models using PUKF-SVR kernel.  

 

Fig. 2: Absolute errors comparison between kernels – Economic indicators model 
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Fig. 3: Absolute errors comparison between kernels – Energy indicators model 

 

Fig. 4: Absolute errors comparison between kernels – Environment indicators model 

4.3. Energy Prediction Curve 
Figure 5 depicts the prediction of the energy demand for the 

period between 1990 and 2011 using the energy indicators 

model which emerged as a better predictor with polynomial-

SVR kernel. It can be noted that the curve approximates well 

the energy demand over the period of interest. This curve 

demonstrate the practicability of the support vector machine 

for regression (SVR) in the real time energy demand 

prediction for both short and long term. 

 

 

Fig. 5: Energy demand prediction curve comparison using polynomial-SVR kernel 

5. CONCLUSION 

The application of the support vector machine for regression 

(SVR) with normalized polynomial-SVR, polynomial-SVR, 

RBF-SVR and PUKF-SVR kernels functions in the analysis 

of energy demand was discussed in this paper. The economic, 

energy and environment indicators derived from time series 

data were used to build the energy models. The statistical 

performance indices applied to evaluate the estimating ability 

of these techniques within SVR were correlation coefficient 

(CC), root mean squared error (RMSE), mean absolute error 

(MAE), root relative squared error (RRSE) and relative 

absolute error (RAE). The comparison of the experimental 

results to the kernel functions reveals the possibility of the use 
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of the SVR for the analysis and prediction of the energy 

demand in Tanzania. The analysis of the kernels used show 

that the polynomial-SVR kernel function with the energy 

indicators model provided the transformation, which achieved 

more accurate prediction values with the SVR. The use of 

SVR algorithm in estimating future energy demand will 

endeavor government in decision making on expected energy 

demand for the long-run sustainable development of the 

country. Although SVR has shown good results in the 

prediction of energy demand, intensive study of its 

comparison with other learning algorithm is of future interest. 

The idea is to unveil the best possible algorithm that can be 

implemented for the analysis and prediction of energy demand 

with the consideration of accuracy. 
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