
International Journal of Computer Applications (0975 – 8887)  

Volume 109 – No. 17, January 2015 

35 

Applying Stochastic Approximation Method with 

Delayed Observations in Exponential Distribution Case 

 
R. A. Atwa 

Department of Mathematics 
Faculty of science 
Zagazig University 

Zagazig, Egypt 

 

 
 

 

ABSTRACT 

The main purpose of this work is investigated a loss system, 

which can serve as a model of modified Robbins-Monro 

stochastic approximation in the presence of delayed 

observations. Here we confine ourselves to the case of 

exponential distribution The results achieved for the loss 

system enable to conclude about the efficiency of the 

procedure and to give a hint for the choice of the number of 

servers in the modified loss system.   
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1. INTRODUCTION 
Stochastic approximation is a sequential method, one will be 

interested to know an optimum stopping rule for a given 

situation. A modeling and analysis of stochastic  

approximation procedure has become an important field of 

performance analysis  ¬(cf. [1], [3], [5], [7], [8], [10], [11], 

[12], [14], [18], [21], [22]). Typically, in stochastic 

procedures, the observations of an experiment follow each 

other after fixed time-intervals; the point of the next 

observation is corrected according to the result of the 

preceding one. However, in some situations, as in biological 

or lifetime experiments, the result of an observation becomes 

known only after a random time delay. 

The Robbins-Monro stochastic approximation procedure is an 

iterative algorithm to find zeros of functions, which cannot be 

computed directly, but only estimated with estimation subject 

to random error. This method is significant in many fields 

such as biological, medical and lifetime experiments. 

 Kiefer and Wolfowitz [12], considered the Robbins-Monro 

method as their point of departure, they  gave a method of 

determining the location of maximum of regression function ( 

if it exist) and established asymptotic properties of the 

procedure. 

There is another sequential method the so called up-and-down 

method. This method is used in many fields where it is 

desirable to estimate a critical measurements for some 

response. It has merits and demerits which indicate situations 

where stochastic approximation can be exploited with 

advantage are appended [20].  

Newton-Raphson method is an iterative technique of 

numerical analysis, where this technique is frequently 

employed in problem such  that  locating a point, where a 

given function behaves in finding the roots of equation, or 

locating a point of maximum of a function [20]. 

Loss system is a service system which no queuing is allowed 

and so arriving customers will be lost when all servers are 

busy. 

Erlang loss system is queuing model which customers arrive 

according to a poisson process and are served individually by 

one of n servers, each of which has an identical general 

distribution of service time. 

Many papers dealt with loss system to investigate its 

properties such as [17], which deals with discrete- time 

analysis of the general three-server loss system, and it focuses 

on determining the proportion of the customers that will be 

lost in the long run.  

In addition the Equilibrium results for the M/G/K group-

arrival loss system are studied by [4], they considered this loss 

system, under statistical equilibrium and two cases of 

acceptance policy. In the first case, the system works under 

the partial acceptance policy. In the second case, the system 

works under the all-or-nothing acceptance policy. In both 

cases customer depart individually, while the joint service 

time distribution of the accepted members of a group may 

depend both on its initial and accepted size plus an additional 

condition.   

Jonckheere and Leskelä [9],  developed  stochastic 

comparison and coupling techniques to study how multiclass 

loss system with two layers of servers, where each server at 

the first layer dedicate to a certain customer class, and the 

servers at the second layer can handle all customer classes, is 

affected by packing of customers. Arriving customers are 

preferentially directed to the first layer. Altered service rate, 

and altered server configurations. This analysis leads to easily 

computable upper and lower bounds for the performance of 

the system. 

Recently, the Robbins-Monro stochastic approximation was 

employed in clinical applications to find the optimal dose [2]. 

It is meaningful to ask, whether and how stochastic 

approximation can be applied. Mahmoud and Rasha [5], 

applied Robbins and Monoro stochastic approximation 

procedure [19] in the presence of compound delayed 

observations. They partitioned experiments (or observations) 

into parts, where each part is treated as a sub-experiment. 

Some of those parts or sub-experiments are lost due to the 

delay of the preceding part during the time interval between 

any two consecutive parts or compound observations. Thus, 

Bernolli and Binomial delay distributions of parts and 

compound observations were assumed.  

At the beginning, all series are open, all  's equal to 1, all 

  
   

's equal to the same constant. At time  , an experiment is 
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made at point   
   

. The  th series is then closed at the same 

point   
   

, till time             , when it opens at point 

    
   

   
   

        
   
                 

   
    

Here     is a function whose zero point   is to be found, 

         is the observational error corresponding to an 

observation of   made at point   and becoming known 

during the interval            
   

 is the current 

approximation to   at time    ;      N, is a zero sequence 

of positive constants, typically    
 

    
    is non-negative; 

     is [the integer part of] the delay of the result of an 

experiment made at time  . 

If there is no series open at time    , no experiment is made 

at time   and a time-loss is thus incurred. If   is the steady 

state probability of such time-loss, then its complement 

       is called the efficiency of the procedure. 

For finding    the average of current approximations over all 

series,     
 

 
   

    
     has been chosen as a global 

approximation to    at time      . Under usual assumptions 

on function     and errors       , not repeated here, and 

under independence of delays     , the normed 

approximation  
 

        are asymptotically normally 

distributed, with parameters 0 and     , where    is the 

asymptotic variance of the same normed approximation in a 

procedure with no delays. Hence   is also the relative 

asymptotic efficiency of     as a statistical estimator. 

2. DESCRIPTIVE OF THE SYSTEM 
At the beginning, assume that an experiment starts its service 

at time    . If a customer is served without delay, then  it will 

leave before time    the unit time,  where the next one arrives 

at time   and starts its service without  delay. If a customer is 

served with delay, then it will leave after time  , where the 

service is delayed such that the time delay starts from the 

arrival of  the next part. 

Here we applied stochastic approximation with delayed 

observations in exponential distribution case, i.e. 

                                                                      (1) 

It is shown that the stationary transition probabilities      of 

the compound Markov chain with states               are 

given by: 

 

    

 
 

   
 
              

   
                                                                        

                                                                                                                               

      
     

                    
   

                                     

                                                     (2)

From the formed system, we can eliminate from the system as 

successive transitions from state to state and occur 

deterministically, with probability 1. The resulting matrix of 

transition probabilities is called the reduced transition matrix.  

From the reduced transition matrix we find the following: 

i All states are irreducible closed sets; therefore they 

contain persistent non-null states. 

ii All states have period 1 because 

.0)1( jp jj                                                                (3) 

From the previous conditions (see [8]) all states are ergodic 

and there is a unique stationary distribution that can be 

calculated by solving the system of equations: 

, TP                                                (4) 

Together with the added requirement: 

,11 T
 

where T denotes the transpose of the matrix, π is the 

stationary distribution matrix of the compound Makov chain; 

and P is the matrix of transition probabilities. 

2.1 Methodology 
To solve the system (4), we apply the following steps: 

i Assume the value K to form the transition matrix P 

and substitute in (4). 

ii One of the remaining equations in (4) can always be 

deleted, another one is to be added, namely the 

requirement 

   

 

   

iii The reduced system is solved for   , using the 

Matlab program. 

iv The solution    is used to compute the efficiency   

of the procedure where    . 

2.2 Results and discussion 
Tables from 1 to 4 are given four different cases for ( ),to 

calculate the asymptotic efficiencies for parameter   
 .1,0.2,0.4,1,2,3,4,5, that is for   2(1)8. The consequent 

recommendation for the choice of  , taking the value of  , in 

consideration seems to be reasonable even for more general 

delay distribution not drastically different from the 

Exponential one.  The headings    , in the tables are then 

made instead of .  
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Table 1. Percentage asymptotic efficiencies of the proposed procedure with    series and Exponintially-distributed delay  , 

with parameter  , at     case 

                                   

0.1 10 0.48 0 0 0 0 0 0 

0.2 5 1.81 0 0 0 0 0 0 

0.4 5/2 6.51 0.2 0 0 0 0 0 

1 1 29.24 12.59 3.08 0.44 0.03 0 0 

2 1/2 65.89 60.04 48.1 36.59 26.1 10.16 17.21 

3 1/3 86.03 85.13 80.21 75.3 70.42 60.79 65.57 

4 1/4 94.65 94.52 92.7 90.87 89.05 85.4 87.23 

5 1/5 98 97.99 97.31 96.64 95.97 94.63 95.3 

 

Table 2. Percentage asymptotic efficiencies of the proposed procedure with    series and Exponintially-distributed delay  , 

with parameter  , at     case 

                                   

0.1 10 1.81 0 0 0 0 0 0 

0.2 5 6.51 0.2 0 0 0 0 0 

0.4 5/2 20.94 5.44 0.69 0.04 0 0 0 

1 1 65.89 60.4 48.1 36.59 26.1 17.21 10.16 

2 1/2 94.65 94.52 92.7 90.87 89.05 87.23 85.4 

3 1/3 99.26 99.26 99.01 98.77 98.52 98.27 98.02 

4 1/4 99.9 99.9 99.87 99.83 99.8 99.77 99.73 

5 1/5 99.99 99.99 99.98 99.98 99.97 99.97 99.96 



International Journal of Computer Applications (0975 – 8887)  

Volume 109 – No. 17, January 2015 

38 

 

Table 3. Percentage asymptotic efficiencies of the proposed procedure with    series and Exponintially-distributed delay  , 

with parameter  , at     case 

                                   

0.1 10 3.86 0.04 0 0 0 0 0 

0.2 5 13.16 1.52 0.08 0 0 0 0 

0.4 5/2 37.56 22.16 8.57 2.27 0.37 0.03 0 

1 1 86.03 85.13 80.21 75.3 70.42 65.57 60.75 

2 1/2 99.26 99.26 99.01 98.77 98.52 98.27 98.02 

3 1/3 99.96 99.96 99.95 99.94 99.93 99.91 99.9 

4 1/4        

5 1/5        

 

Table 4. Percentage asymptotic efficiencies of the proposed procedure with    series and Exponintially-distributed delay  , 

with parameter  , at     case 

                                   

0.1 10 6.51 0.2 0 0 0 0 0 

0.2 5 20.94 5.44 0.69 0.04 0 0 0 

0.4 5/2 53.03 42.95 27.54 15.32 6.92 2.46 0.64 

1 1 94.65 94.52 92.7 90.87 89.05 87.23 85.4 

2 1/2 99.9 99.99 99.87 99.83 99.8 99.77 99.73 

3 1/3        

4 1/4        

5 1/5        

 

Table 5. Precentage asymptotic efficiencies of the proposed procedure with    series and Exponintially-distributed delay  , 

with parameter  , at     case 

                                   

0.1 10 9.65 0.62 0.02 0 0 0 0 

0.2 5 29.24 12.59 3.08 0.44 0.03 0 0 

0.4 5/2 65.89 60.4 48.1 36.59 26.1 17.21 10.16 

1 1 98 97.99 97.31 96.64 95.97 95.3 94.63 

2 1/2 99.99 99.99 99.98 99.98 99.97 99.97 99.96 

3 1/3        

4 1/4        

5 1/5        

 

100.0 in all empty cells. 

IJCATM : www.ijcaonline.org 


