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ABSTRACT 

The growth of wireless communication technologies and its 

applications leads to many security issues. Malicious node 

detection is one among the major security issues. Adoption of 

cognition can detect and Prevent malicious activities in the 

wireless networks. To achieve cognition into wireless 

networks, we are using reinforcement learning techniques. By 

using the existing reinforcement techniques, we have 

proposed GreedyQ cognitive (GQC) and SoftSARSA 

cognitive (SSC) algorithms for malicious node detection and 

the performances among these algorithms are evaluated and 

the result shows SSC algorithm is best algorithm. The 

proposed algorithms perform better in malicious node 

detection as compared to the existing algorithms. 
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1. INTRODUCTION 
In Recent days, lots of developments are happening in 

wireless networks. Since wireless environments reduces the 

infrastructure and easy to adopt for all the applications, 

popularity is increasing rapidly. But it is more vulnerable for 

the security threats. Malicious node detection is one of the 

major security issues. To detect the malicious activities in the 

network, we are adopting cognition to the wireless networks. 

So that the wireless networks becomes intelligent. To impart 

the cognition to the wireless networks; machine learning 

algorithms are used.  

There are different types of machine learning algorithms 

namely, unsupervised learning, supervised learning and 

reinforcement learning. Here, reinforcement learning 

algorithms are used for learning. In reinforcement learning, 

there are different learning techniques are existing [1]. 

Namely,  Softmax, SARSA, Greedy and Q-learning 

techniques. Among these techniques; combination of Softmax 

and SARSA technique performs better than the combination 

of Greedy and Q learning techniques with respect to malicious 

node detection in wireless networks. Again this performance 

can be further increased with the concept of cognition. 

Cognition mainly works on the concept of Observe, Orient, 

Decide and Act (OODA) loop. If the cognition is achieved for 

the existing wireless networks then, that network will become 

smart network. 

In reinforcement learning; depending on the interactions 

carried out in the environment, computational approach is 

used for learning. Reinforcement learning algorithm enables 

all their participants to undergo learning process to improve 

their performance by evaluating the reactions on their past 

actions. 

1.1 What is Cognitive Network? 
Cognitive Networks can be defined as an intelligent network 

encompassing the cognitive process which can perform a goal 

of achieving current network circumstances, planning, taking 

certain decision, acting on those perceived conditions, 

extracting or learning from the consequences of its previous 

or current actions, all while following end-to-end goals.  

The conception of cognitive networks has been vigorous 

around the cooperative consciousness of the wireless and 

networking researching societies for a while. In order to 

achieve the seamless adaptation of radio link parameters, 

opportunistic use of underutilized spectrum, to get the higher 

flexibility in modulation and waveform Selection, the 

scientific or research society has seen an extraordinary 

progress in system or network development by implementing 

cognitive techniques. Cognitive networks are the best solution 

to attain the above mentioned requirements.  

The important component of cognitive networks is its 

Cognition Loop that senses the circumstances, plans the 

actions to be taken and even according to input from sensors 

and network policies. It decides which solution or decision 

might be most effective for achieving end-to-end purpose.  

These characteristics facilitates the network systems to learn 

from the past about the situations, plans, decisions, actions 

and  then using experiences for improving the decision in 

future.  A number of researchers have presented their 

optimistic view about cognitive networks in near future.  

Mitola [2] summarizes how his cognitive radios could 

communicate in the circumstance of system-level scope of a 

Cognitive Network. Saracco [3] indicates towards as the 

future of information technology. It postulates that the 

convergence of network intelligence from scheming resources 

to perceptive user requirements would assist “flatten” the 

network by moving network intelligence further out towards 

the edges of the network. Some other discusses cognitive 

network in optimistic way and with respect to future mobile 

Internet Protocol networks, arguing that the context sensitivity 

of these networks could have as interesting an application to 

networks as cognitive radios had to software defined radios. 

1.2 Cognition Cycle – OODA Loop 
OODA Loop (Observe, Orient, Decide, and Act) is a model 

that was developed by 𝑈𝑆 Air Force. The implementation of 

the assessment making process may be viewed as involving 

the cycling through four individual but mutually reliant 

stages: Observation, Orientation, Decision and Action, these 

stages have come together to be known as OODA loop. 

Now a day OODA (Observe-Orient-Decide-Act) loop is a 

main model of command and control. In a challenge to clarify 

why American fighter pilots were more successful than their 
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adversaries in the Korean War [4] the OODA loop was first 

developed and its work was to provide military leaders with a 

method for making decisions and estimating their impact. 

OODA Loop is represented in Figure 1. 

 

Figure 1: The Cognition Cycle / OODA Loop 

Observe: When a venture is engaged in disagreement like 

they have differences in determining how to lead, or respond 

to a competitive change then the first action is to observe the 

situation i.e. to take the unprocessed data concerning its own 

status, its marketplace, operational environment, its 

competitors and its customers. Sometimes a venture keenly 

seeks that information ("pulls" information), sometimes that 

information is forced ("pushed") upon it. Experience plays a 

great role in what we observe and our conclusions regarding 

our environment.  

Orient: After observing the situation, the venture now orients 

itself i.e. performs certain investigation and makes certain 

estimation, hypothesis and verdict about the situation in order 

to generate a solid model or image of the total environment. In 

simple terms we can say that the venture makes an effort to 

determine what the changing situation means to it and how it 

will be impacted. The orientation stage of any decision cycle 

is the key player in decision making as it involves collecting, 

mixing, and processing all the information available and data 

to determine truth.  

Decide: The venture next decides what to do; which is based 

on the orientation. Despite that decision is autonomous or 

involves others, which include customers, partners, regulators, 

suppliers or even competitors and whether that decision takes 

the shape of an instant action or involves the formation of a 

planned plan and response which is delayed. The decision part 

of the loop is where the leadership is proved up, not by 

keeping all the answers but by leading the organization. 

Act: Finally, the decision is put into action. This includes 

spread the decision, to manage its execution, and observing 

the results of the action through the feedback. Action is more 

than doing something it is about doing something with 

keeping the result in mind. It is about monitoring the result 

and making an evaluation about whether you accomplished 

the proposed result or not, if not then what are the things that 

go wrong and how to conquer them.  

This completes one OODA cycle, and makes the venture 

again to returns to the observation phase. 

1.3 Design challenges of Cognitive 

Networks 
Network Complexity: When the wireless link is introduced 

in the network it just increases the complexity of the network 

as the total no of nodes as well the alternate routes and the 

number of protocols, the communication mediums. Radio 

signals frequently get fade with signal interference but the 

wireless links above the radio channels and the nodes joins the 

network in ad hoc manner so that mesh type architecture can 

be developed. Mobility in the wireless networks allows them 

to change their point of contact, location, affecting the path 

location and make it difficult to attain stability in a limited 

timeframe. Therefore, the network optimization must be 

added as functionality for healing itself in cognitive network. 

Sensing the Environment: The cognitive controller must be 

able to get the sensorial information of the surrounding 

environment and nodes under communication. This 

information is likely to be existing in the form of 

measurement which includes different types such as noise 

measurement, traffic information and the time and location 

coordinates. 

Understanding the Network Status: It is the duty of 

network controller to detect the status of the network and what 

is the effect of different types of configuration settings on the 

performance of the network. It is possible to provide the 

controller with this knowledge by simply hard coding the 

actions to be taken with respect to the different network 

condition.  Though a cognitive controller must have the ability 

to learn such dependencies and relieving the effort to provide 

the knowledge needed to the controller. 

Prediction: Knowledge about the past and current status of 

the network can be provided by the environmental 

measurement; though, the network configuration must be 

selected so that it is best in comparison to the status of the 

network in future. To determine the future status of the 

network is not an easy task, since there are many outside 

factors like variation in the network load generated by the 

user, outside interference, etc. also play key role in the 

determination of future status of the network. Due to this there 

must be some prediction strategies which must be adopted. 

Decision Making: As soon as the controller gets a better 

functional understanding of inter-dependencies between the 

status of the network and the performance with respect to 

various network settings and configurations and thus it is 

facilitated with certain robust and proper way for predicting 

the evolution of network or communication environment, then 

while it needs to execute its decisions. Here it has been 

intended to express that in spite of various facilitations the 

cognitive networks needs to choose the most beneficial 

network configurations. Based on the network configuration 

and its complexity and even depending on the characteristics 

of the provided solution space of the enhancement or 

optimization problem suffered by the network controller, 

some effective and robust strategy must be adopted for 

facilitating a practical decision making process.  

Network Heterogeneity: The applications like internet 

employs various combinations of transmission technologies, 

their applications and transmission protocols and the internet 

protocols doesn‟t accounts for layer in transmission protocols 

for having network heterogeneity. In order to improve the 

performance of the network, the connectivity is divided into 

certain segments and each segment is optimized for a specific 

domain. The optimization in performance needs an effective 

awareness of underlined technologies for transmission 

between transmitter and receiver nodes over the entire 

communication path. Across multiple domains, the 

enhancement technologies or optimization techniques must be 

distributed in nature and it must have achieved the goal that 

has been defined at the connecting nodes. 

Quality of service (QoS): In order to facilitate QoS 

requirements made by a number of applications as well as 
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users, it is required to have a provisioning of limited delay 

bonds and meanwhile the bandwidth unavailability needs the 

implementation of reservation control mechanism (RCM).  

1.4 Motivation 
Wireless networks are more vulnerable to security issues 

hence lot of research is required to provide better security. 

Malicious node detection is one of the major security issues.  

To detect the malicious activities, the proposed concept 

utilizes reinforcement learning techniques to train the wireless 

networks and to achieve the cognition. There are different 

reinforcement learning techniques are existing and these 

techniques are evaluating with respect to malicious node 

detection; with and without cognition. We are proposing new 

GreedyQ Cognitive (GQC) algorithm and SoftSARSA 

cognitive (SSC) algorithm to detect malicious node and to 

evaluate among these algorithms to show the better 

performance than the existing algorithms. 

1.5 Organization 
The next section of this paper explains the Literature survey, 

and System model is explained in section III and section IV 

gives the Implementation, result analysis is explained in 

section V, conclusions are given in the next section. 

2. LITERATURE SURVEY  
In [2] a cross-layer altruistic differentiated service protocol 

(ADSP) for dynamic cognitive radio networks was employed, 

similar to [3] for quality of service provisioning in CRNs with 

selfish node coexistence. It could not address the issues of 

diverse communication environment like in Ad hoc network 

but it was successfully delivered by COOPON. Authors 

utilized the advantages of Ad hoc network like its autonomous 

and cooperative characteristics for better detection 

reliabilities. Their work exhibited tremendous enhancement in 

the detection accuracy of selfish attack detection and it was 

found to be more than 97 percent.  

Yongkun Li et al., [6] proposed an optimized strewn detection 

framework that could be executed by incorporating legitimate 

network nodes in highly interactive network for identifying 

the malicious neighboring nodes and attacks like pollution 

attacks. The authors have employed the developed system for 

the applications like P2P streaming networks, WMNs and 

OSNs, and performed well for detecting malicious nodes. This 

approach was of course an indispensable tool for maintaining 

the viability of interactive networks but it could not deliver 

the secure DTN routing towards efficient trust establishment. 

To overcome these limitations, authors [7] have introduced an 

approach iTrust, that encompasses the Trusted Authority (TA) 

for judging the behaviour of nodes on the basis of collected 

routing evidences as well as probabilistically checking. They 

used the game theoretical analysis for ensuring the security of 

DTN routing at a reduced cost. Similarly, in [8] authors have 

used parallel fusion sensing architecture. By considering these 

architectures and analyzing them, results shows optimized and 

reduced transmission overhead incurred by misbehavior 

detection and detects the malicious nodes effectively. 

Nicola Baldo et al., [9] came up with a highly robust and 

distributed cognitive network access approach having goal for 

facilitating the best QoS factor with both radio link as well as 

core network performances. In their work, they have 

developed a framework, a modular design was demonstrated 

with generic a technology independent system approach based 

on fuzzy logic. The system shows significantly better results 

for cognitive access approach as compared to state of arts 

techniques [10] [11] [12] and [13] that do emphasizes and 

considers the 802.11 specific matrices, in terms of both 

overall performance and fairness. Still these approaches could 

not deliver the ultimate solution for CRN optimization with 

other communication factors and circumstances of 

communication in radio network. 

Ryan W Thomas et al., [14] identified three dominant factors 

which are required to be considered for forming a cognitive 

network. These factors are the characteristics of the decision-

making elements, the details of computational state accessible 

to those entities, and the extent of control they posses for 

estimating the consequences of its design tradeoffs, the author 

have developed a metric known as “price of a feature.” This 

network metric quantifies the influence of those 

characteristics on the CNs having the objectives of optimizing 

the lifetime of a multicast flow in a wireless environment. The 

results obtained presented that despite of the count of 

receivers, the expected price of partial control increased as the 

total of cognitive control is reduced. According to it the 

cognitive control and cognitive process could not enhance the 

multicast trees unless the network is having higher than 20% 

cognitive control.  

G Sunilkumar et al., [15] presented a research work that not 

only Monitors activity of user node but also performs an 

effective function of taking preventive measures if user node 

transactions are found to be malicious. In this research work 

the intelligence in cognitive engine has been realized using 

self-organizing maps (CSOM). In order to realize the CSOMs 

Gaussian and Mexican Hat neighbor learning functions have 

been evaluated. The research simulation made in this work, 

proves the efficiency of Gaussian Learning function is better 

for cognition engine. The cognition engine being considered 

in this research work is evaluated for malicious node detection 

in dynamic networks. In this work the implemented concept 

results in higher Intrusion detection rate as compared to other 

similar approaches. 

3. SYSTEM MODEL 
The proposed System model is shown in Figure 2. In the 

proposed system model, the wireless sensor network is 

considered. Initially the wireless sensor network is not trained 

hence the percentage of intrusion detection is less. Here, in the 

proposed system two cognitive Reinforcement learning 

algorithms are used to train the wireless sensor network to get 

better percentage of intrusion detection. Namely, SoftSARSA 

Cognitive (SSC) algorithm and GreedyQ Cognitive (GQC) 

algorithm. During training phase, the network gets trained 

with the reinforcement learning parameters and pre-defined 

transactions. Once the wireless sensor network got trained, it 

becomes intelligent; this intelligent network is called as 

cognitive wireless sensor network (CWSN). The trained 

features are stored in the network repository of the CWSN.  If 

the node transactions are done after the training phase, then 

the new transactions gets monitored by the CWSN and 

comparison with the predefined transactions and the new 

transactions will be calculated to detect the percentage of 

orientation. If the orientation is more than the threshold, then 

it will be considered as malicious else it is normal transaction. 

This decision will be taken by the CWSN. Depending on the 

decision made by the CWSN, the necessary action will be 

taken by the action methods on malicious node. Here, action 

methods are implemented using greedy and softmax methods. 

This updated status for the new transactions is given to the 

cognitive learning algorithms to train the CWSN again. This 

process is called as OODA Loop concept and it is repeated 

continuously to detect the malicious node. 
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Figure 2: System Model 

4. IMPLEMENTATION 

4.1 GreedyQ Cognitive (GQC) Algorithm 
In GQC Algorithm the inputs are the set of WSN nodes states 

set (𝑋 = 𝑥1, 𝑥2, … . 𝑥𝑛) and set of Actions (𝑌 =
𝑦1, 𝑦2, … . . 𝑦𝑛). The output will be “an estimated best 

node cooperation RL approach in Cognitive WSN”.  First we 

need to initialize the function M(X, Y) and calculate the 

greediest probability as explained in the step 3, the obtained 

states from step 3 will be reinitialized and repeat for each 

iteration and initialize the new values to X. This iteration will 

be repeat for choosing Y and assigning the Action to the Y 

and observe the reward R, and also the new states say X‟. 

Using the previously observed values we need to calculate the 

updated state and action function M(X, Y) using the step 7 

equation. This repeats until it reaches the maximum action.  

This is off-policy algorithm for Temporal Difference 

Learning. The method is still has an effect in that it 

determines which state-action pairs are visited and updated. 

However, all that is required for correct convergence is that 

all pairs continue to be updated. This algorithm is proved that 

the given sufficient training using the ε-greedy action method, 

the algorithm concludes with probability 1 to a close 

approximation of the action-value function for an arbitrary 

target method. The GQC handles or take care of all the 

problems of node transactions, rewards without any additional 

adoption. The GQC Algorithm learns the optimal methods 

even when the actions were random methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 SoftSARSA Cognitive (SSC) Algorithm 

 

This algorithm uses the same input, that is the set of WSN 

nodes states set (𝑋 = 𝑥1, 𝑥2, … . 𝑥𝑛) and set of Actions 

(𝑌 = 𝑦1, 𝑦2, … . . 𝑦𝑛). The output will be “an estimated 

best node cooperation RL approach in Cognitive WSN”.  First 

we need to initialize the function M(X, Y), calculate the least 

probability that is (1 − 𝜖), reinitialize the function M(X, Y) 

for each action assign the ranks or weight to each action as 

stated in the step 3. Using the ranks we need to initialize the 

function 𝑀(𝜁, 𝑌) arbitrarily, this iteration will be repeat, 

initialize the X from ranks obtain and choose the action Y 

from newly chosen states X. Take the new action Y, observe 

the rewards R and new states X‟ from new state X‟ again we 

need to choose the action Y. Finally compute the resultant 

function M(X,Y) using the step 7. This process will be repeat 

until X reaches the maximum actions.  

The SSC Algorithm is an on-policy TD Algorithm. The main 

difference between GQC and this algorithm is the maximum 

reward points are not necessarily used for updating the RL 

values. Instead, a new action, and the reward, is selected using 

the same method that determined the original action. The 

convergence properties of the SSC algorithm depend on the 

nature of the method's dependence on GQC, SSC converges 

with probability 1 to an optimal method and action-value 

function as long as all state-action pairs are visited an infinite 

number of times and the method converges in the limit to the 

greedy method and Proven that this algorithm is much better 

than the GQC algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GreedyQ Cognitive (GQC) Algorithm: 

Input: In the WSN, the set of nodes states „X‟ and set of 

nodes Actions „Y‟ 

Output: An Estimated Best node Cooperation in Cognitive 

WSN 

Step 1:   Begin 

Step 2:   Initialize the function 𝑀(𝑋, 𝑌) 

Step 3:   𝑋𝑛 + 1 =  𝑘𝑋𝑛 + 𝑏 𝑚𝑜𝑑 𝑧 

                 𝜖 ← 𝑋𝑛 + 1 

Step 4:  Re-Initialize set 𝑀(𝑋, 𝑌) arbitrarily Where 𝑋 

from Step 3 

Step 5:    Repeat for each Iteration 

                 Initialize 𝑋 

Step 6:    Repeat for each Iteration 

                 Choose 𝑌 from 𝑋 using the step 5 

                 Take action𝑌, observe𝑅, and  𝑋′ 
/*---Calculation for new function M(X, Y) ----*/ 

Step7:   𝑀 𝑋, 𝑌 ← 𝑀 𝑋, 𝑌 + 𝑘[𝑅 +
𝛿𝑀𝑎𝑥 𝑘 ,𝑀 𝑋′,𝑌′ − 𝑀 𝑋, 𝑌 ] 

               𝑋 ← 𝑋′;      

                    Repeat until 𝑋 reaches maximum action 

Step 8: end. 

SoftSARSA Cognitive(SSC) Algorithm: 

Input: In the WSN, the set of nodes states „𝑋‟ and set of 

nodes Actions „𝑌‟ 

Output: An Estimated Best node Cooperation in 

Cognitive WSN 

Step 1:   Begin 

Step 2:   Initialize the function 𝑀(𝑋, 𝑌) 

Step 3:   𝑋𝑛 + 1 ← (1 − 𝜖) 

                 Initialize𝑀(𝑋, 𝑌); 

                 For each action 𝑌 

                   𝜁 ← 𝑋 

Step 4:  Initialize 𝑀(𝜁, 𝑌) arbitrarily Where 𝜁 from 

Step 3 

Step 5:    Repeat for each Iteration 

                  Initialize𝑋,  𝑋 ← 𝜁 

                   Choose 𝑌 from 𝑋 

Step 6:    Repeat for each Iteration 

                  Take action𝑌, observe𝑅, and X‟ 

                  Choose 𝑌 from 𝑋′ from step 5 

/*---Calculation for new function M(X, Y) ----*/ 

Step7:   𝑀 𝑋, 𝑌 ← 𝑀 𝑋, 𝑌 + 𝑘[𝑅 +
𝛿𝑀 𝑋′, 𝑌′ − 𝑀 𝑋, 𝑌 ] 

                  𝑋 ← 𝑋′;   𝑌 ← 𝑌′;     

        Repeat until 𝑋 reaches maximum actions 

Step 8: end. 
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5. RESULT ANALYSIS 

 

Figure 3: Simulation results generated from simulator 

The performance of the   Greedy and Softmax algorithms are 

generated before achieving cognition and the proposed 

Cognitive GQC and SSC algorithms are shown in Figure 3, 

which is generated by the simulator. From this graph, the 

detection percentage for all the mentioned algorithms can be 

observed. 

 

Figure 4: No. of Training Cycles Vs Detection Percentage 

The variations in detection rate with respect to training cycles 

can be observed in Figure 4. As the number of training cycles 

increases, the malicious node detection rate also increases. 

Here,learning rate and co-ordinate rewards are kept constant. 

For GreedyQ Cognitive algorithm, maximum detection 

percentage is about 52.67 and 82.23 is for SoftSARSA 

cognitive algorithm.  

 

Figure 5: Learning Rate Vs Detection Percentage 

From Figure 5, variations in detection rate with respect to 

learning rate can be observed. As the Learning rate increases, 

the malicious node detection rate also increases. Here, 

Training cycles and co-ordinate rewards are kept constant. For 

GreedyQ Cognitive algorithm, maximum detection percentage 

is about 52 and 83 is for SoftSARSA cognitive algorithm.  

 

Figure 6: Co-ordinate reward points Vs Detection 

Percentage 

From Figure 6, variations in detection rate with respect to Co-

ordinate reward points can be observed. As the Co-ordinate 

reward points increases, the malicious node detection rate also 

increases. Here, Training cycles and Learning rates are kept 

constant. For GreedyQ Cognitive algorithm, maximum 

detection percentage is about 53.67 and 87.33 is for 

SoftSARSA cognitive algorithm. 

6. CONCLUSIONS 
In this paper, different reinforcement learning techniques are 

evaluated with respect to malicious node detection with and 

without cognition. The proposed new GreedyQ cognition 

algorithm and SoftSARSA Cognitive algorithm are also 

evaluated by changing the parameters like learning rate, co-

ordinate reward points and number of training cycles. With 

cognition, the maximum malicious detection rate for proposed 

GreedyQ cognitive algorithm is 53.67% whereas SoftSARSA 

cognitive algorithm is 87.33%. But the same algorithms yields 

lower results without cognition.  
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