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ABSTRACT 

Irreducible Polynomials over GF(pm) and the multiplicative 

inverses under it are important in cryptography. Presently the 

method of deriving irreducible polynomials of a particular 

prime modulus is very primitive and time consuming. In this 

paper, in order to find all irreducible polynomials, be it monic 

or non-monic, of all prime moduli p with all its order m, a fast 

deterministic computer algorithm based on an algebraic 

method producing a (m×m) matrix is proposed. The 

maximum number of terms in each column of the matrix is 2j 

where j is the column index.   
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1. INTRODUCTION 
A basic polynomial B(x) over finite field or Galois Field 

GF(pm) is expressed as,  

B(x) = am x
m + am-1x

m-1 + - - - + a1x + a0 

B(x) has (m+1) terms, where am is non-zero and is termed as 

the leading coefficient [1]. A polynomial is monic if am is 

unity, else it is non-monic. A finite field GF(pm) is called 

Extension field if m>1. The algorithm presented in this paper 

is true for Extension field.  

The GF(pm) have (pm – p) elemental polynomials, b(x) 

ranging from p to (pm – 1) each of whose representation 

involves m terms with leading coefficient am–1. The 

expression of b(x) is written as, 

b(x) = am-1x
m-1 + - - - + a1x + a0  

where a1 to am-1 are not simultaneously zero.                            

Many of the B(x), which has an elemental polynomial, b(x) as 

a factor under GF(pm), are termed as reducible. Those of the 

B(x) that have no factors are termed as irreducible 

polynomials I(x) and is expressed as [1], [2], 

I(x) = am x
m + am-1x

m-1 + - - - + a1x + a0 , where am ≠ 0. 

Under GF(pm), the basic polynomials of degree m vary from 

pm  to (pm+1 – 1) while the elemental polynomials are those 

varying from p to (pm – 1). Some of the basic polynomials are 

irreducible, since it has no elemental polynomial as a factor. 

The conventional method to look for an irreducible 

polynomial is to systematically multiply two or more 

elemental polynomials under GF(pm) and the composite 

product polynomials belonging to the list of basic polynomials 

are cancelled leaving behind the irreducible polynomials [1]. 

The task involves a tedious effort, happens to be severely time 

consuming and becomes herculean in nature with increasing 

values of p and m. Following the said method the monic 

irreducible polynomials for few values of p = 2, 3, 5 and 7 are 

listed in literatures [1], [2] where maximum values of m are 

taken respectively as 11, 7, 5 and 4.  

It is mentioned in [3] that following Inclusion-Exclusion 

principle of Galois Field, a non-monic irreducible polynomial 

is computed by multiplying a monic irreducible polynomial 

by α where α GF(p) and assumes values from 2 to (p – 1). 

In literatures, to the best knowledge of the present authors, 

there is no mention of a paper in which the composite 

polynomial method is translated into an algorithm and in turn 

into a computer program.   

Since 1967 researchers took algorithmic initiatives, followed 

by computational time-complexity analysis, to factorize basic 

polynomials on GF(pm) with a view to get irreducible 

polynomials, many of them are probabilistic [4], [5], [6], [7] 

in nature and few of them are deterministic [8], [9]. One may 

note that the deterministic algorithms are able to find all 

irreducible polynomials, while the probabilistic ones are able 

to find many, but not all. However, the composite polynomial 

approach is a straightforward deterministic method, although 

time-consuming.     

The irreducible polynomial over GF(28) was first used in 

cryptography for designing an invertible S-Box of AES [10], 

[11], [12]. The technique involves finding all multiplicative 

inverses under an irreducible polynomial is available in [13], 

[14], [15], [16].     

In this paper we propose a computer algorithm based on an 

algebraic method which searches irreducible polynomials 

among basic polynomials over GF(pm). The algorithm is 

deterministic since it is able to find all the irreducible 

polynomials over GF(pm) in a short time.         

For convenient understanding, the proposed algebraic method 

is presented in Sec. 2 for any value of p with m=3. The 

method can find all monic and non-monic irreducible 

polynomials I(x) of all B(x) over GF(pm). In Sec. 3 it is 

demonstrated that the proposed searching algorithm actually 

searches much less number of elemental polynomials to find 

all the irreducible polynomials over GF(pm). The conclusion is 

in Sec. 4. 

2. ALGEBRAIC METHOD TO FIND 

IRREDUCIBLE POLYNOMIALS OVER 

GF(p
m

) 
The basic idea of the algebraic method is to form a k-matrix 

of order (m×m) involving coefficients of b(x) and B(x) based 

on an assumption that the multiplicative inverses of an 

elemental polynomial b(x) under a basic polynomial B(x) over 

GF(pm) exists. If the determinant of the k-matrix, i.e. det(k), is 

non-zero for all the b(x), one can conclude that the 

polynomial B(x) is an irreducible polynomial I(x). In the 
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event the det(k) is zero at least for one b(x), the concerned 

B(x) is reducible. For better clarity of understanding, the 

generalized algebraic method for any value of p is worked out 

in Sec. 2.1 with m=3. The formation of k-matrix of order 

(3×3) is presented in Sec. 2.2 for m=3. One can also refer [17] 

for understanding of k-matrix. It is interesting to note that 

column-wise elements of the k-matrix have a generalized 

similar pattern for m – the patterns are presented in Sec.2.3 

for 2 ≤ m ≤ 5. 

2.1 Algebraic Method to find Irreducible 

Polynomials over GF(p
m

) with m=3 
Here B(x) = (a3x

3 + a2x
2 + a1x + a0) is a polynomial over 

GF(73) and b(x) = (b2x
2 + b1x + b0 ) is an elemental 

polynomial under B(x). If c(x) = (c2x
2 + c1x + c0) is the 

multiplicative inverse of the polynomial b(x), one can write, 

[b(x) c(x)] mod B(x) = 1 

    or, [( b2x
2 + b1x + b0) (c2x

2 + c1x + c0)] mod (a3 x
3 + a2x

2  

                          + a1x + a0)  = 1                        (1) 

Here, one can get the values for c0, c1 and c2 by solving eq.(1) 

as follows: 

    [b2c2x
4 + (b1c2 + b2c1)x

3 + (b0c2 + b1c1 + b2c0)x
2 + (b0c1 + 

                         b1c0)x + b0c0] mod (a3x
3 + a2x

2 + a1x + a0) = 1 

or, [a3
-1b2c2x(a3x

3 + a2x
2 + a1x + a0) + (b1c2 + b2c1 –               

a3
-1a2b2c2)x

3 + (b0c2 + b1c1 + b2c0 – a3
-1a1b2c2)x

2 + 

 (b0c1 + b1c0 – a3
-1a0b2c2)x + b0c0] mod (a3x

3 + a2x
2 + 

a1x+a0) = 1 

or, [a3
-1 (b1c2 + b2c1 – a3

-1a2b2c2) (a3x
3 + a2x

2 + a1x + a0) + 

 (b0c2 + b1c1 + b2c0 – a3
-1a1b2c2 – a3

-1a2b1c2 – a3
-1a2b2c1 

+ a3
-2a2

2b2c2)x
2 + (b0c1 + b1c0 – a3

-1a0b2c2 – a3
-1a1b1c2 – 

a3
-1a1b2c1 + a3

-2a1a2b2c2)x + (b0c0 – a3
-1a0b1c2 – 

a3
-1a0b2c1 + a3

-2a0a2b2c2)] mod (a3x
3 + a2x

2 + a1x +  

a0) = 1 

or, [{(a3
-2a2

2 b2 – a3
-1a1b2 – a3

-1a2b1 + b0)c2 + (b1 –  

a3
-1a2b2)c1 + b2c0}x2 + {(a3

-2a1a2b2 – a3
-1a0b2 –  

a3
-1a1b1)c2 + (b0 – a3

-1a1b2)c1 + b1c0}x + {(a3
-2a0a2b2 –  

a3
-1a0b1)c2 – a3

-1a0b2c1 + b0c0}] mod (a3x
3 + a2x

2 +  

a1x + a0) = 1                                                                (2) 

From eq.(2) it is evident that the dividend is smaller than the 

divisor. Hence to satisfy the required condition, i.e., the 

remainder = 1, in this equation the following properties must 

hold.  

(i) The constant part ≡ 1 mod p. 

(ii) The coefficients of x ≡ 0 mod p. 

(iii) The coefficients of x2 ≡ 0 mod p.  

Therefore, 

{(a3
-2a0a2b2 – a3

-1a0b1)c2 – a3
-1a0b2c1 + b0c0} mod p = 1  (3a) 

{(a3
-2a1a2b2 – a3

-1a0b2 – a3
-1a1b1)c2 + (b0 – a3

-1a1b2)c1 +  

b1c0} mod p = 0                                                     (3b) 

{(a3
-2a2

2 b2 – a3
-1a1b2 – a3

-1a2b1 + b0)c2 +  

(b1 – a3
-1a2b2)c1 + b2c0} mod p = 0                            (3c) 

Rearranging terms as coefficients of c0, c1 and c2, the eq. (3) 

becomes as follows after considering the fact that –1 is 

equivalent to (p – 1) in modular arithmetic with modulus p, 

since the algebra is being worked out in GF(p3):  

[b0c0  + {0  + (p – 1)a3
-1a0b2}c1  +{  0      +   0             +  

(p – 1)a3
-1a0b1 + a3

-2a0a2b2}c2] mod p = 1                 (4a) 

[b1c0 + {b0 + (p – 1)a3
-1a1b2}c1 + { 0 + (p – 1)a3

-1a0b2 +  

(p – 1)a3
-1a1b1 + a3

-2a1a2b2}c2] mod p = 0                 (4b) 

[b2c0 + {b1 + (p – 1)a3
-1a2b2}c1 + {b0 + (p – 1)a3

-1a1b2 +  

(p – 1)a3
-1a2b1 + a3

-2a2a2b2}c2] mod p = 0                 (4c) 

2.2 Formation of (mm) K-Matrix for m=3 
In order to form k-matrix, the above eq.(4) can be written as,  

(k00c0 + k01c1 + k02c2) mod p = 1                     (5a) 

(k10c0 + k11c1 + k12c2) mod p = 0                     (5b) 

(k20c0 + k21c1 + k22c2) mod p = 0                     (5c) 

where k-values are known and these are equal to, 

k00 = (b0) mod p 

                            k01 = ( (p – 1)a3
-1a0b2) mod p                  (6a) 

k02 = ( (p – 1)a3
-1a0b1 + a3

-2a0a2b2) mod p 

k10 = (b1) mod p 

                        k11 = (b0 + (p – 1)a3
-1a1b2) mod p               (6b) 

k12 = ( (p – 1)a3
-1a0b2 + (p – 1)a3

-1a1b1 +  

a3
-2a1a2b2) mod p 

k20 = (b2) mod p 

                        k21 = (b1 + (p – 1)a3
-1a2b2) mod p                (6c) 

k22 = (b0 + (p – 1)a3
-1a1b2 + (p – 1)a3

-1a2b1 +  

a3
-2a2a2b2) mod p 

The eq.(5) , i.e., (k  c ) mod p = V can be solved by using 

matrix method as, 

                                  c = (k –1  V) mod p                            (7) 

where, 

1                 k00     k01     k02 

V   =      0    ,     k  =    k10     k11     k12                    (8a) 

0                 k20     k21     k22  

ik00    ik01    ik02                c0            ik00  

k–1 =    ik10    ik11    ik12     ,  c  =    c1    =     ik10              (8b) 

ik20    ik21    ik22                c2            ik20  

 

While calculating k–1 from k-matrix, one has to ensure that the 

determinant det(k) is non-zero. In the event det(k) = 0, the 

B(x) is a reducible polynomial and the multiplicative inverses 

of its elements does not exist. If det(k) is non-zero for all the 

elements, the B(x) is irreducible and the multiplicative 

inverses of elements exist. By calculating k–1 from k-matrix 
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given in eq.(8), one can get solution for c0, c1 and c2.  In such 

a case one can write, 

(b2 x
2 + b1 x + b0)

–1 = (c2 x
2 + c1 x + c0) mod (a3x

3 +  

                                        a2 x
2 + a1 x + a0) 

2.3 Generalized Column-Wise Patterns of 

K-Matrix Elements 
Following the workouts of the algebraic method for 2 ≤ m ≤ 5 

for the purpose of forming (m×m) k-matrix, if kij terms are 

organized in m columns with 0 ≤ both(i,j) ≤ (m-1), one notices 

algebraic similarities up to (m-1)th columns and a new term 

emerges in the mth column. The kij terms for m = 5 are shown 

below,   

1st column (j=0):   

kij = bi-0.  

2nd column (j=1):  

kij = bi-1 + (-am
-1) [ai-0bm-1].  

3rd column (j=2):  

kij = bi-2 + (-am
-1) [ai-1bm-1+ai-0bm-2 ] +  

                 (-am
-1)2[ai-0am-1bm-1]. 

4th column (j=3):  

kij = bi-3 + (-am
-1)[ai-2bm-1+ai-1bm-2+ ai-0bm-3] +  

                 (-am
-1)2 [bm-1{ai-1am-1+ai-0am-2} + ai-0am-1bm-2] +  

                 (-am
-1)3[ai-0am-1am-1bm-1]. 

5th column (j=4):  

ki4 = bi-4 + (-am
-1) [ai-3bm-1 + ai-2bm-2 + ai-1bm-3+ ai-0bm-4] +  

                 (-am
-1)2 [bm-1(ai-2am-1+ ai-1am-2+ai-0am-3) +  

                                 bm-2(ai-1am-1+ ai-0am-2) + aiam-1bm-3] +  

                 (-am
-1)3

 [am-1bm-1(ai-1am-1+ai-0am-2) +  

                                            aiam-1(am-2bm-1+ am-1bm-2}] +  

                 (-am
-1)4 [ai-0 am-1am-1am-1bm-1]. 

The similarities of kij expressions indicate, (1) First and 

second columns are respectively for 1st and 2nd  columns for 2≤ 

m ≤ 5, (2) Third column is the same for 3 ≤ m ≤ 5, (3) Fourth 

column is also the same for 4 ≤ m ≤ 5 and (4) Fifth column is 

for m = 5 only. 

Notes:  

(1)  If suffix of any term in jth column is negative, the  

      concerned term is zero. 

(2)  In k-matrix, maximum number of terms in jth column of  

      (m-1)th row is 2j. 

3. IRREDUCIBLE POLYNOMIALS 

OVER GF(p
m

): A SEARCHING 

ALGORITHM  
From the algebraic method presented in Sec. 2, it is evident 

that one has to check the det(k) of the k-matrix for all the 

elemental polynomials b(x) for a particular B(x). It is 

interesting to note that in actual computation, one can serve 

the purpose by having necessary checks much lesser in 

number. The rationality of adopting reduced number of 

checks is presented in Sec. 3.1. The related pseudo-code of 

the program algorithm is described in Sec. 3.2.The results of 

computation of irreducible polynomials for first six prime 

moduli are given in Sec. 3.3. 

3.1 Reduced Number of Checks over 

Elemental Polynomials 
For B(x) over GF(73), there are 336 elemental polynomials 

from 7 to 342 out of which 7 to (72 – 1), i.e. 42 are linear and 

72 to (73 – 1), i.e. 294 are quadratic, while the basic 

polynomials have 73 to (74 - 1), i.e. there are 2058 cubic 

polynomials. The reducible B(x) of degree 3 must be 

composed either of a product of a linear and a quadratic 

polynomial or of a product of three linear polynomials. 

Hence, it is sufficient if det(k) is checked for 42 times over 

linear elemental polynomials only. The B(x) over GF(74) are 

4-degree polynomials and reducible B(x) must be composed 

of a product either of a linear and a cubic polynomials or of 

two quadratic polynomials or of four linear polynomials. 

Hence its reducibility checks can be limited only to linear and 

quadratic elemental polynomials. Considering the said feature, 

one can define a parameter r as, 

1
2











m
r

 

and keep the checks from p to (pr – 1). It may be noted that for 

a particular B(x), b(x) is searched (pr – p) number of times, 

instead of (pm – p) and that the maximum degree of the 

factoring elemental polynomial b(x) to be checked is 









2

m . 

3.2 Pseudo-Code of the Program 

Algorithm 
A new algorithm is proposed in this paper to find the 

irreducible polynomials over GF(pm) where p is a prime 

modulus and index m is an integer. The pseudo-code of the 

algorithm is given below. 

Pseudo-code of proposed algorithm:  

Inputs: p and m. 

1
2











m
r

 

For Bx = pm to pm+1 – 1  

Convert Bx into its equivalent p-base number and 

store them in an array a[ ] defined in eq.(1) where a0 is 

the least significant digit. 

For bx = p to pr – 1 

Convert the bx into its equivalent p-base number 

and store them in an array b[ ] defined in eq.(1) 

where b0 is the least significant digit. 

From arrays a[ ] and b[ ] form the (m×m)           

k-matrix described in eq.(8). 

Calculate determinant of the k-matrix det(k). 

If det(k) = 0 

Current Bx is reducible. 

Break. 

Else  

If bx = pr – 1  
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Current Bx is irreducible. 

End of bx 

End of Bx 

3.3 Results of Computation 
The computation is undertaken for monic as well as non-

monic irreducible polynomials for the first six prime moduli 

with m = 2, 3 and 4. It is observed that the results of monic 

irreducible polynomials for first four prime moduli are 

identical to what is given in [1], [2]. It is also observed that all 

the non-monic polynomials are in conformity with what is 

stated in [3]. For prime moduli 11 and 13, there is no mention 

of irreducible polynomials in literatures. The monic 

irreducible polynomials for p = 11 and 13 with m = 2, 3 and 4 

are obtained and their results for p = 11 and 13 with m = 2 and 

3 are given in Appendix A while the whole list are uploaded 

in [18]. Their non-monic polynomials are also found to be in 

conformity with what is stated in [3]. 

4. CONCLUSION 
The proposed computer algorithm searching all irreducible 

polynomials over GF(pm) is fast. The computation of 7098 

monic irreducible polynomials from among 28561 basic 

monic polynomials over GF(134) is undertaken practically in 

no time in the computing system available to the authors 

(Pentium(R) 4 CPU, 2.00GHz, 768 MB of RAM, Windows 

XP Service Pack 2, Compiler Turbo C 3.0).  

At present, for all irreducible polynomials with p=2, one can 

find multiplicative inverses of all elemental polynomials for 

all values of m following Extended Euclidean Algorithm 

(EEA). It is observed that for irreducible polynomials with 

p>2 one cannot find multiplicative inverses of all elemental 

polynomials using EEA [17]. With little modification, the 

proposed algorithm can find multiplicative inverses of all 

irreducible polynomials for p > 2 with any value of m.   

In Sec. 2.3 the kij expressions are presented in five columns 

for m=5. Looking at the algebraic expression of the mth 

column of a particular m and comparing it with that of the (m-

1)th column of the previous m, it might be possible to predict 

the algebraic expression of the (m+1)th column for the next m, 

based on some induction rule. This requires further futuristic 

initiatives.  
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Appendix A 
Irreducible polynomials over GF(11

2
), GF(11

3
), 

GF(13
2
) and GF(13

3
) 

1. In GF(112): Total number of irreducible polynomial is 55 

101, 103, 104, 105, 109, 111, 114, 116, 117, 118, 122, 124, 

125, 126, 12A, 133, 136, 138, 139, 13A, 142, 145, 147, 148, 

149, 151, 152, 153, 157, 15A, 161, 162, 163, 167, 16A, 172, 

175, 177, 178, 179, 183, 186, 188, 189, 18A, 192, 194, 195, 

196, 19A, 1A1, 1A4, 1A6, 1A7, 1A8.  

2. In GF(113): Total number of irreducible polynomial is 440 

1014, 1015, 1016, 1017, 1022, 1024, 1027, 1029, 1032, 1035, 

1036, 1039, 1041, 1044, 1047, 104A, 1051, 1053, 1058, 

105A, 1063, 1065, 1066, 1068, 1071, 1072, 1079, 107A, 

1081, 1085, 1086, 108A, 1092, 1093, 1098, 1099, 10A3, 

10A4, 10A7, 10A8, 1102, 1103, 1105, 1106, 1112, 1113, 

1117, 1119, 1123, 1124, 1129, 112A, 1131, 1132, 1138, 1139, 

1156, 1157, 1158, 1159, 1162, 1164, 1168, 116A, 1171, 1174, 

1175, 1178, 1182, 1184, 1187, 118A, 1194, 1196, 1198, 

119A, 11A3, 11A5, 11A6, 11A8, 1202, 1204, 1205, 1207, 

1215, 1216, 1218, 1219, 1223, 1225, 1229, 122A, 1233, 1234, 

1239, 123A, 1241, 1242, 1245, 1246, 1267, 1268, 1269, 

126A, 1272, 1274, 1277, 1279, 1282, 1283, 1286, 128A, 

1291, 1294, 1296, 1299, 12A1, 12A3, 12A5, 12AA, 1303, 

1304, 1308, 130A, 1311, 1312, 1317, 1318, 1323, 1324, 1327, 

1328, 1346, 1347, 1348, 1349, 1351, 1355, 1357, 135A, 1362, 

1366, 1369, 136A, 1371, 1374, 1376, 1379, 1383, 1385, 1387, 

1389, 1391, 1392, 1394, 139A, 13A6, 13A7, 13A9, 13AA, 

1401, 1405, 1407, 140A, 1412, 1413, 1416, 141A, 1421, 

1423, 1426, 1429, 1434, 1436, 1438, 143A, 1444, 1446, 1447, 

1449, 1454, 1455, 1457, 1458, 1461, 1465, 1466, 146A, 1472, 

1473, 1477, 1478, 1482, 1483, 1486, 1487, 14A2, 14A3, 

14A4, 14A5, 1501, 1502, 1508, 1509, 1525, 1526, 1527, 

1528, 1531, 1533, 1536, 1538, 1542, 1543, 1546, 154A, 1552, 

1555, 1557, 155A, 1561, 1563, 1565, 1567, 1575, 1577, 1578, 

157A, 1581, 1582, 1589, 158A, 1593, 1594, 1598, 159A, 

15A4, 15A5, 15A9, 15AA, 1602, 1603, 1609, 160A, 1623, 

1624, 1625, 1626, 1633, 1635, 1638, 163A, 1641, 1645, 1648, 

1649, 1651, 1654, 1656, 1659, 1664, 1666, 1668, 166A, 1671, 

1673, 1674, 1676, 1681, 1682, 1689, 168A, 1691, 1693, 1697, 

1698, 16A1, 16A2, 16A6, 16A7, 1701, 1704, 1706, 170A, 

1711, 1715, 1718, 1719, 1722, 1725, 1728, 172A, 1731, 1733, 

1735, 1737, 1742, 1744, 1745, 1747, 1753, 1754, 1756, 1757, 

1761, 1765, 1766, 176A, 1773, 1774, 1778, 1779, 1784, 1785, 

1788, 1789, 17A6, 17A7, 17A8, 17A9, 1801, 1803, 1807, 

1808, 1813, 1814, 1819, 181A, 1823, 1824, 1827, 1828, 1842, 

1843, 1844, 1845, 1851, 1854, 1856, 185A, 1861, 1862, 1865, 

1869, 1872, 1875, 1877, 187A, 1882, 1884, 1886, 1888, 1891, 

1897, 1899, 189A, 18A1, 18A2, 18A4, 18A5, 1904, 1906, 

1907, 1909, 1912, 1913, 1915, 1916, 1921, 1922, 1926, 1928, 

1931, 1932, 1937, 1938, 1945, 1946, 1949, 194A, 1961, 1962, 

1963, 1964, 1972, 1974, 1977, 1979, 1981, 1985, 1988, 1989, 

1992, 1995, 1997, 199A, 19A1, 19A6, 19A8, 19AA, 1A05, 

1A06, 1A08, 1A09, 1A12, 1A14, 1A18, 1A19, 1A21, 1A22, 

1A27, 1A28, 1A32, 1A33, 1A39, 1A3A, 1A52, 1A53, 1A54, 

1A55, 1A61, 1A63, 1A67, 1A69, 1A73, 1A76, 1A77, 1A7A, 

1A81, 1A84, 1A87, 1A89, 1A91, 1A93, 1A95, 1A97, 1AA3, 

1AA5, 1AA6, 1AA8.  

3. In GF(132): Total number of irreducible polynomial is 78 

102, 105, 106, 107, 108, 10B, 112, 113, 114, 115, 118, 11C, 

123, 126, 127, 128, 129, 12C, 131, 134, 135, 136, 137, 13A, 

142, 146, 149, 14A, 14B, 14C, 151, 155, 158, 159, 15A, 15B, 

161, 162, 163, 164, 167, 16B, 171, 172, 173, 174, 177, 17B, 

181, 185, 188, 189, 18A, 18B, 192, 196, 199, 19A, 19B, 19C, 

1A1, 1A4, 1A5, 1A6, 1A7, 1AA, 1B3, 1B6, 1B7, 1B8, 1B9, 

1BC, 1C2, 1C3, 1C4, 1C5, 1C8, 1CC.  

4. In GF(133): Total number of irreducible polynomial is 728 

1002, 1003, 1004, 1006, 1007, 1009, 100A, 100B, 1015, 

1016, 1017, 1018, 1022, 1024, 1029, 102B, 1035, 1036, 1037, 

1038, 1041, 1044, 1049, 104C, 1052, 1054, 1059, 105B, 

1062, 1064, 1069, 106B, 1073, 1076, 1077, 107A, 1083, 

1086, 1087, 108A, 1095, 1096, 1097, 1098, 10A1, 10A4, 

10A9, 10AC, 10B3, 10B6, 10B7, 10BA, 10C1, 10C4, 10C9, 

10CC, 1102, 1107, 110A, 110C, 1113, 1115, 1119, 111B, 

1121, 1125, 1127, 112C, 1132, 1135, 1136, 1139, 1141, 1142, 

1145, 114B, 1159, 115A, 115B, 115C, 1161, 1164, 1169, 

116C, 1172, 1173, 1176, 117C, 1181, 1184, 1186, 1189, 

1193, 1194, 1195, 1197, 1198, 119A, 119B, 119C, 11A2, 

11A3, 11A4, 11A5, 11B2, 11B4, 11B8, 11BA, 11C7, 11C8, 

11C9, 11CA, 1202, 1203, 1204, 1205, 1211, 1213, 1216, 

121B, 1223, 1225, 1229, 122B, 1231, 1233, 1238, 123A, 

1241, 1247, 124A, 124B, 1252, 1253, 1256, 125C, 1266, 

1267, 1268, 1269, 1272, 1275, 1277, 127A, 1281, 1284, 1285, 

1288, 1292, 1294, 1297, 129C, 12A1, 12A2, 12A4, 12A5, 

12A6, 12AA, 12AB, 12AC, 12B5, 12B6, 12B7, 12B8, 12C1, 

12C3, 12C7, 12C9, 1302, 1307, 130A, 130C, 1312, 1315, 

1316, 1319, 1321, 1324, 1329, 132C, 1333, 1334, 1335, 1337, 

1338, 133A, 133B, 133C, 1347, 1348, 1349, 134A, 1351, 

1355, 1357, 135C, 1369, 136A, 136B, 136C, 1371, 1374, 

1376, 1379, 1382, 1384, 1388, 138A, 1393, 1395, 1399, 

139B, 13A1, 13A2, 13A5, 13AB, 13B2, 13B3, 13B6, 13BC, 

13C2, 13C3, 13C4, 13C5, 1401, 1403, 1406, 140B, 1411, 

1412, 1413, 1415, 1416, 1418, 1419, 141A, 1421, 1422, 1423, 

1424, 1432, 1434, 1438, 143A, 1448, 1449, 144A, 144B, 

1451, 1454, 1459, 145C, 1461, 1466, 1468, 146C, 1473, 

1475, 1479, 147B, 1481, 1487, 148A, 148B, 1494, 1497, 

1498, 149B, 14A3, 14A4, 14A5, 14A6, 14B4, 14B7, 14B9, 

14BC, 14C2, 14C8, 14CB, 14CC, 1502, 1503, 1504, 1505, 

1512, 1514, 1517, 151C, 1522, 1523, 1526, 152C, 1531, 

1533, 1536, 153B, 1541, 1542, 1544, 1545, 1546, 154A, 

154B, 154C, 1556, 1557, 1558, 1559, 1563, 1565, 1569, 

156B, 1575, 1576, 1577, 1578, 1582, 1585, 1587, 158A, 

1591, 1593, 1598, 159A, 15A1, 15A3, 15A7, 15A9, 15B1, 

15B4, 15B5, 15B8, 15C1, 15C7, 15CA, 15CB, 1602, 1603, 

1604, 1605, 1611, 1613, 1618, 161A, 1626, 1627, 1628, 1629, 

1632, 1634, 1637, 163C, 1641, 1643, 1647, 1649, 1653, 1655, 

1659, 165B, 1662, 1663, 1666, 166C, 1671, 1674, 1675, 

1678, 1685, 1686, 1687, 1688, 1691, 1693, 1696, 169B, 

16A1, 16A7, 16AA, 16AB, 16B2, 16B5, 16B7, 16BA, 16C1, 

16C2, 16C4, 16C5, 16C6, 16CA, 16CB, 16CC, 1708, 1709, 

170A, 170B, 1713, 1715, 171A, 171C, 1724, 1725, 1726, 

1727, 1731, 1736, 1739, 173B, 1744, 1746, 174A, 174C, 

1752, 1754, 1758, 175A, 1761, 1767, 176A, 176B, 1775, 

1778, 1779, 177C, 1785, 1786, 1787, 1788, 1792, 1797, 

179A, 179C, 17A2, 17A3, 17A6, 17AC, 17B3, 17B6, 17B8, 

17BB, 17C1, 17C2, 17C3, 17C7, 17C8, 17C9, 17CB, 17CC, 

1808, 1809, 180A, 180B, 1811, 1816, 1819, 181B, 1821, 

1827, 182A, 182B, 1832, 1837, 183A, 183C, 1841, 1842, 

1843, 1847, 1848, 1849, 184B, 184C, 1854, 1855, 1856, 

1857, 1862, 1864, 1868, 186A, 1875, 1876, 1877, 1878, 1883, 

1886, 1888, 188B, 1893, 1895, 189A, 189C, 18A4, 18A6, 

18AA, 18AC, 18B5, 18B8, 18B9, 18BC, 18C2, 18C3, 18C6, 

18CC, 1902, 1907, 190A, 190C, 1913, 1914, 1915, 1917, 

1918, 191A, 191B, 191C, 1929, 192A, 192B, 192C, 1933, 

1935, 1939, 193B, 1942, 1943, 1944, 1945, 1951, 1954, 1959, 

195C, 1961, 1965, 1967, 196C, 1972, 1974, 1978, 197A, 

1982, 1983, 1986, 198C, 1992, 1995, 1996, 1999, 19A7, 

19A8, 19A9, 19AA, 19B1, 19B4, 19B6, 19B9, 19C1, 19C2, 

19C5, 19CB, 1A01, 1A03, 1A06, 1A0B, 1A14, 1A17, 1A18, 
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1A1B, 1A21, 1A24, 1A29, 1A2C, 1A31, 1A32, 1A33, 1A35, 

1A36, 1A38, 1A39, 1A3A, 1A43, 1A44, 1A45, 1A46, 1A51, 

1A56, 1A58, 1A5C, 1A61, 1A62, 1A63, 1A64, 1A74, 1A77, 

1A79, 1A7C, 1A83, 1A85, 1A89, 1A8B, 1A92, 1A94, 1A98, 

1A9A, 1AA2, 1AA8, 1AAB, 1AAC, 1AB1, 1AB7, 1ABA, 

1ABB, 1AC8, 1AC9, 1ACA, 1ACB, 1B08, 1B09, 1B0A, 

1B0B, 1B12, 1B17, 1B1A, 1B1C, 1B22, 1B24, 1B28, 1B2A, 

1B33, 1B35, 1B3A, 1B3C, 1B42, 1B43, 1B46, 1B4C, 1B51, 

1B57, 1B5A, 1B5B, 1B64, 1B65, 1B66, 1B67, 1B73, 1B76, 

1B78, 1B7B, 1B85, 1B88, 1B89, 1B8C, 1B91, 1B96, 1B99, 

1B9B, 1BA1, 1BA2, 1BA3, 1BA7, 1BA8, 1BA9, 1BAB, 

1BAC, 1BB5, 1BB6, 1BB7, 1BB8, 1BC4, 1BC6, 1BCA, 

1BCC, 1C01, 1C03, 1C06, 1C0B, 1C12, 1C14, 1C18, 1C1A, 

1C21, 1C26, 1C28, 1C2C, 1C34, 1C37, 1C38, 1C3B, 1C42, 

1C48, 1C4B, 1C4C, 1C51, 1C52, 1C53, 1C54, 1C61, 1C64, 

1C69, 1C6C, 1C71, 1C77, 1C7A, 1C7B, 1C84, 1C87, 1C89, 

1C8C, 1C91, 1C92, 1C93, 1C95, 1C96, 1C98, 1C99, 1C9A, 

1CA8, 1CA9, 1CAA, 1CAB, 1CB3, 1CB5, 1CB9, 1CBB, 

1CC3, 1CC4, 1CC5, 1CC6. 
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