
International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 14, January 2015

1

Conceptual Software Reliability Model using Neural

Network

Meenu
Ph.D. Scholar

Mewar University
Chittorgarh, Rajasthan,India

 Sumeet
Research Guide

Mewar University Chittorgarh, Rajasthan,India

ABSTRACT

Reliability is the one of the most important attribute of the

software for customer satisfaction. It is big challenge for the

software development organizations to achieve the reliability

of the software. Since research on software reliability is being

carried out for last three decades and various software

reliability models have been developed. These models

calculate the reliability of the software and help to take

decision to deploy the software or continue the testing process

to meet the reliability objective. The models used so far,

worked on the basis of some conventions which must be made

before the beginning of the project like software development

environment, the nature of software failures, the probability of

individual failures. Recent research in the field of the Neural

Network can also be applied to calculate the software

reliability. The best thing to use Neural Network is to

calculate the reliability without making any basic

assumptions. In this paper, a conceptual model is proposed to

develop the software reliability model using the approach of

Neural Network.

Keywords

Software Reliability, Software Reliability Growth Models,

Neural Network.

1. INTRODUCTION
Software reliability is defined as probability of failure free

operation for a specified period of time in a specified

environment. [ANSI 91][1]. A failure is the departure of the

external results of system operation from user needs and is

dynamic in nature. It relates to the behavior of the system. A

fault in software is the defect in the program which when

executed under particular conditions causes a failure. Failures

may be caused by the different set of failures. A fault can

cause more than one failure. Fault is a property of program

rather than the property of its execution or behavior. Software

fault is a defect, missing instruction or extra instructions or set

of related instructions that can cause one or more actual. [2]

 Reliability of software is measured in terms of failures which

are a departure of program operation from program

requirements. The software reliability is characterized as a

function of failures experienced [3]. Software reliability is

one of the important factor been considered while ensuring

the software quality. Software reliability deals with the

failure or faults that exist in the system. [7]

The process of finding and removing faults to improve the

software reliability can be described by a mathematical

relationship called a Software Reliability Growth Model

(SRGM). [4]Software Reliability Model is used to determine

whether the reliability of the software meets with the desired

reliability as per the demand of the user by utilizing the

software failure data or software testing data. By using

Software Reliability Model, we can easily measure & predict

the software reliability and can plot the software reliability

growth charts. The charts of software reliability growth depict

the trends that are used to forecast software failures as a

function of calendar time. Besides, the charts can also us to

determine the additional time needed to meet the reliability

requirements and the associated costs. [5] The ability to

predict the reliability of a software system would enable

project management to better perform product assurance and

assess reliability for release. [14]

These models on the basis of test data predict the software

reliability. These models try to show a relationship between

test data and mathematical functions. [6] SRGM shows how

software reliability improves as the faults are detected and

repaired. SRGM can be used to predict when a particular level

of reliability is to be attained. Thus SRGM is used to

determine when to stop testing to attain a given reliability

level. There are many software reliability growth models like

GO model, JM model, S- Shaped model etc. [9]

Existing models are based on the some assumptions about

development environments, the nature of software failures,

and the probability of individual failures occurring. All these

assumptions must be made before the project begins so

selecting an appropriate model in a particular environment

may be a complicated and challenging task. Using Neural

Network, a software reliability model can be developed

without making any prior assumptions. This model can use

the failure history as input data and will utilize the failure

history to predict the future failures, so will help to estimate

software reliability and can be applied in any environment.

[8]

2. PROPOSED MODEL

2.1 Basic Architecture
The proposed Software Reliability model is based upon the

architecture of Neural Network. The neural networks are

made up of layers of neurons connected with each other. One

layer receives input from the preceding layer of neurons and

passes the output on to the subsequent layer. Input Layer,

Output Layer & Hidden Layer are the basic layers in the

architecture of the model. Input Layer accepts the input from

the external world and passes the input to next layer without

performing any useful calculations. Each unit in the input

layer acts as a distribution point for the external inputs.

Output layer presents the output or response to the external

world. The units that output the network‟s response to the

external world constitute the output layer. Hidden layers are

the intermediate layers i.e. their existence is between the input

and output layers. These layers have no direct communication

with the external world. The number of layers in a network

may vary from a lower limit of two (one input & one output

layer) to any higher positive integer. In single layer

architecture, there is no hidden layer i.e. the network is

constituted with the help of input and output layers only. In

Multilayer architecture, there are one or more hidden layers

with Input and output layers. [10, 12]

International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 14, January 2015

2

Fig 1: Neural Network

Basically Neural Network Provides the two types of

connectivity options. Feed Forward Network and recurrent

Network. In this proposed model, Feed forward Network will

be used which either can be single Layer Network or

Multilayer. The basic property of feed forward network is to

propagate activations only in the forward directions.

For the conceptual Software Reliability Model, we can use

Multilayer Model. The Network have one Input, one Output

and Number of hidden layers. For the input layer, Cumulative

execution time will be considered as the Input Data and

Cumulative faults may be considered as output from the

output layer or Target Layer. Hidden Layers may have n

number of neurons. The output of Input Layer serves as the

input of the Hidden Layer & the output of Hidden Layer is

passed to the output Layer.

Further, to reduce the complexity of the network i.e. if

initially we don‟t want to declare the number of hidden layers

then Cascade - Correlation Network may be used. In this type

of Network first we take only Input & Output layer is network

and then the network dynamically creates the hidden layers

according to the requirement.

2.2 Learning Algorithm
To solve a problem using neural network, the network must

first be taught solutions using a set of typical instances of

input-output pairs known as training set. The procedure by

which the network is taught is known as Learning Algorithm.

During the training or learning phase, the strength of the

interconnection links of the network are adjusted to reduce the

residual error resulting from the training set.

There are various learning algorithms. To train the conceptual

model, Back Propagation Learning method will be adopted.

Back Propagation Learning Algorithm – This algorithm is

a class of supervised learning algorithm in which network

weights are iteratively adapted using errors propagated back

from the output layer.

1. Initialization Phase - Initialize the network weights with a

set of random values. A set of random values drawn from a

small interval is used and even the network weights can be

initialized with a set of values from a known distribution.

2. Weight Adjustment Phase – adjust the network weights

incrementally over several iterations. For each iteration, adjust

the weights in the direction of steepest decreasing gradient of

the error surface i.e. the surface formed by the sum of the

square of the error between the desired output & the actual

output for all patterns in the training set. This iterative

adjustment continues until either a minimum is reached in

which the error is less than a pre-specified tolerance limit or

until a set number of iterations has been reached. During each

epoch, the algorithm presents the network with a sequence of

training pairs.

The algorithm then calculates a sum squared error between

the desired outputs and the network„s actual outputs. It uses

the gradient of the sum squared error (with respect to weights)

to adapt the network weights so that the error measure is

smaller in future epochs. Training terminates when the sum

squared error is below a specified tolerance limit. [10-13]

2.3 Training Data
The network is trained with the help of training data which

may be collected during the testing.During training, each

input it at time t is associated with the corresponding output

Ot. Thus the network learns to model the actual functionality

between the independent (or input) variable and the dependent

(or output) variable.

List of cumulative execution times (e1,…ek) belongs to Ek(t)

and the corresponding observed accumulated faults (f1, ..., fk)

belongs to Fk(t) up to the present time t, and the cumulative

execution time at the end of a future test session

k+h,,ek+h(t+d) predict the corresponding cumulative faults

Fk+h(t+d). [11]

Table 1. Data Set of Project Failure

Hour

Cumulative

Faults Hour

Cumulative

Faults Hour

Cumulative

Faults

1 27 10 93 19 128

2 43 11 97 20 129

3 54 12 104 21 131

4 64 13 106 22 132

5 75 14 111 23 134

6 82 15 116 24 135

7 84 16 122 25 136

8 89 17 122

9 92 18 127

Fig 2: Training States

10
-5

10
0

10
5

g
ra

d
ie

n
t

Gradient = 0.65325, at epoch 8

10
-10

10
0

10
10

m
u

Mu = 1e-06, at epoch 8

0 1 2 3 4 5 6 7 8
0

5

10

v
a
l
fa

il

8 Epochs

Validation Checks = 6, at epoch 8

International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 14, January 2015

3

Fig 3: Best Validation Performance

2.4 Neural Network Software Reliability

Growth Model
The Predictive capabilities of Neural Network depends upon

the failure data, the input and output data given to the model

and the sequence in which the input & output values are

presented to the network during training and the complexity

of the Network. Software Reliability growth prediction can be

expressed in terms of neural network mapping as:

 This reliability-prediction problem can be stated in terms of a

neural network mapping:

P: {(Ek(t), Fk(t)), ek+h(t+d))} -> Fk+h(t+d)

where (Ek(t),Fk(t)) represents the failure history of the

software system at time t used in training the network and

Fk+h(t+d) is the network‟s prediction.

For the prediction horizon h=1, the prediction is called the

next-step prediction (also known as short-term prediction),

and for h=n (> 2) consecutive test intervals, it is known as the

n-step-ahead prediction, or long-term prediction. A type of

long-term prediction is endpoint prediction which involves

predicting an output for some future fixed point in time.

Prediction of the number of accumulated faults can be done

after some specified amount of testing. From the predicted

accumulated faults, both the current reliability and how much

testing may be needed to meet the particular reliability

criterion. [1, 15]

Fig 4: Regression

3. CONCLUSION
Thesteps of developing a neural network for reliability

prediction are specifying suitable network architecture,

choosing the training data, and training the network. Neural

Network models require only failure history data as input with

no prior assumptions. Using input, the neural-network model

automatically develops its own internal model of the failure

process and predicts future failures. Because it adjusts model

complexity to match the complexity of the failure history, it

can be more accurate than some commonly used analytical

models.

4. REFERENCES
[1] Lyu, M. R.,Handbook of Software Reliability

Engineering.

[2] Musa, John D., Software Reliability Engineering: More

Reliable Software Faster and Cheaper, 2nd Edition.

[3] Rita G. Al gargoor, Nada N. Saleem , Software

Reliability Prediction Using Artificial Techniques, IJCSI

International Journal of Computer Science Issues, Vol.

10, Issue 4, No 2, July 2013

[4] Almering V., Genuchten M. V, and Cloudt G., “Using

Software Reliability Growth Models in Practice” IEEE

computer society, 2007, pp. 82 – 88.

[5] Changjie Ma, Guochang Gu, Jing Zhao, Improved

Neural Network based on Dynamic Predication Model of

Software Reliability, Journal of Convergence

Information Technology, Volume6, Number7, July 2011.

[6] Al-Rahamneh Z., Reyalat M. Sheta A. F., Bani-Ahmad

S., and Al-Oqeili S., “A New Software Reliability

Growth Model: Genetic-Programming-Based Approach”

, Journal ofSoftware Engineering and Applications,

2011, pp. 476-481

[7] Haque F., and Bansal, S. “Software Reliability

estimationModels: A Comparative Analysis” ,

InternationalJournal of Computer Applications, Vol.

43,2012, pp. 27 – 31

0 1 2 3 4 5 6 7 8
10

-4

10
-2

10
0

10
2

Best Validation Performance is 3.1271 at epoch 2

M
e

a
n

 S
q

u
a

r
e

d
 E

r
r
o

r

(
m

s
e

)

8 Epochs

Train

Validation

Test

Best
40 60 80 100 120

40

60

80

100

120

Target

O
u

tp
u

t
~

=
 0

.9
6

*T
a

rg
e

t
+

 4
.7

Training: R=0.99426

Data

Fit

Y = T

40 60 80 100 120

40

60

80

100

120

Target

O
u

tp
u

t
~

=
 1

*T
a

rg
e

t
+

 0
.6

1

Validation: R=0.99784

Data

Fit

Y = T

40 60 80 100 120

40

60

80

100

120

Target

O
u

tp
u

t
~

=
 1

*T
a

rg
e

t
+

 -
2

.6

Test: R=0.99774

Data

Fit

Y = T

40 60 80 100 120

40

60

80

100

120

Target

O
u

tp
u

t
~

=
 0

.9
8

*T
a

rg
e

t
+

 2
.4

All: R=0.99487

Data

Fit

Y = T

International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 14, January 2015

4

[8] Karunanithi, N., Whitley, D., & Malaiya, Y. K. (1992a),

Using neural networks in reliability prediction.IEEE

Software, 9, 53–59.

[9] Quadri S. M., Ahmad N. ,and Farooq S. U. “

SoftwareReliability Growth Modeling With

GeneralizedExponential Testing –Effort And Optimal

Software ReleasePolicy” , Global Journal of Computer

Science andTechnology , 2011, pp.27 – 42.

[10] Lyu, M. R.,Handbook of Software Reliability

Engineering.

[11] Karunanithi, N., Whitley, D., & Malaiya, Y. K. (1992a),

Using neural networks in reliability prediction. IEEE

Software, 9, 53–59.

[12] Karunanithi, N, et al., “Prediction of software reliability

using neural networks,” Proceedings IEEE International

Sym. Software Reliability Engineering, pp. 124-130,

1991.

[13] Karunanithi, N., Whitley, D., & Malaiya, Y. K. (1992b).

Prediction of software reliability using connectionist

models, IEEE Transactions on Software Engineering, 18,

563–574.

[14] Khalaf Khatatneh, Thaer Mustafa, Software Reliability

Modeling using Soft Computing Technique, European

Journal of Scientific Research, Vol 26 No 1(2009), pp

154-160.

[15] Karunanithi, N, et al., “Prediction of software reliability

using neural networks,” Proceedings IEEE International

Sym. Software Reliability Engineering, pp. 124-130,

1991

IJCATM : www.ijcaonline.org

