
International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 13, January 2015

27

Shortest Path Computation in Large Graphs using

Bidirectional Strategy and Genetic Algorithms

Shom C. Abraham
Manipal Institute of Technology

Girish Dutt Shukla
Manipal Institute of Technology

ABSTRACT

The shortest path problem in graphs is a fundamental

optimization problem which has stimulated research for

several decades. Numerous real-world applications are

modeled as graphs and shortest path computation is a frequent

operation performed on them. Many graphs happen to be very

large like road networks or routing networks. Shortest path

computation on them is a challenge because of the low

performance due to its large nature. Already existing graph

algorithms are not suitable for large graphs.

In this paper, an attempt is made to solve the problem of

finding an efficient point-to-point shortest path algorithm for

graphs of larger sizes. First run the A * algorithm with binary

heap implementation from both the directions. The nodes

extracted from both directions are saved and then genetic

algorithm is used to find the shortest path. The bi-directional

strategy reduces the search space and the genetic algorithm

optimizes the search problem to give best result. The final

results illustrates that this novel approach with the

optimization strategies achieves high scalability and

performance.

1. INTRODUCTION
Shortest path problems are one of the most fundamental

combinatorial optimization problems with many applications.

In graph theory, the shortest path problem is the problem of

finding a path between two vertices (or nodes) in a graph such

that the sum of the weights of its constituent edges is

minimized.

Several real world applications use graphs, some of which are

very large. An example of a large graph is road network

which contains thousands of nodes and millions of links.

Conventional methods of least cost path discovery gives poor

performance in such large graphs. Hence, the requirement is

to design and implement an efficient point-to-point shortest

path algorithm for large graphs.

2. BACKGROUND

2.1 Min Heaps
A min heap is a left complete binary tree which satisfies the

property key (parent)  key (child) for all the nodes. Due to

this property, the node with the lowest key will always be

present at the root of the tree. Hence, extraction of minimum

key node is an O (1) operation. After the extraction of root

node, the tree may not satisfy the min-heap property for which

the non-leaf nodes would have to undergo percolate down

operation. This operation is an O (n) operation.

2.2 Dijkstra’s Algorithm
Dijkstra’s algorithm is a solution to the single-source shortest

path problem in graph theory. Here, all edges must have

nonnegative weights. Input is a weighted graph G= {E, V}

and source vertex vɛV, such that all edge weights are

nonnegative. Output is the lengths of shortest paths (or the

shortest paths themselves) from a given source vertex vɛV to

all other vertices.

distance[source] ←0

for all vertex v ɛV–{source}

 do distance[v] ←∞

SET←ɸ (S, the set of visited vertices is initially empty)

QUEUE←V (Q, the queue initially contains all vertices)

while QUEUE ≠ ɸ

do u ← min distance(QUEUE,dist)

 SET←SETʊ{u}

 for all vertex, v ɛ neighbors[u]

 do if distance[v] > distance[u] + weight(u, v)

 then distance[v] ←distance[u] + weight(u, v)

return distance[].

The simplest implementation is to store vertices in an array or

linked list. This will produce a running time of O (|V|^2).The

adjacency list with a binary heap or priority queue

implementation will produce a running time of O (|E| log |V|).

2.3 A* Algorithm
A* algorithm is a most popular algorithm for path finding as it

is like Dijkstra’s algorithm in finding the shortest path and

like greedy best first search in using a heuristic to guide

itself. It favours vertices that are close to starting point (like

Dijkstra’s algorithm) as well as vertices that are close to the

goal (like greedy best first search). If g(n) represents the exact

cost of path from starting point to any vertex n, and h(n)

represents the heuristic estimated cost from vertex n to the

goal, then A* algorithm examines the vertex n that has the

lowest f(n)= g(n) + h(n).

2.4 Genetic Algorithms
Genetic algorithms aim to develop solutions to optimization

problems using techniques which are inspired by natural

evolution. This involves inheritance, mutation, selection, and

crossover.

Algorithm is initialized with a set of solutions called

population. Solutions from one population are taken and used

to form a new population. It is expected to get a new

population which will be better than the old one. Population

which is selected to form new population (offspring) is

selected based on its fitness. A fitness function is developed to

calculate the fitness value.

This is repeated until some condition (for example number of

populations or improvement of the best solution) is satisfied.
Genetic Algorithm Operators:

1. Encoding of a chromosome

The chromosome represents the information about solution.

The widely used encoding is a binary string.

International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 13, January 2015

28

2. Crossover

Crossover selects parent individuals and creates a new

offspring. The simplest way how to do this is to choose

randomly some crossover point and everything before this

point copy from a first parent and then everything after a

crossover point copy from the second parent.

3. Mutation

After a crossover is performed, mutation takes place.

Mutation changes randomly the new offspring.

Genetic Algorithm Pseudocode

Create initial population

Calculate the fitness value of each individual in the population

Do

1. Select individuals with high fitness values to

reproduce

2. New generation is formed through crossover and

mutation to get offspring.

3. Calculate the fitness value of the offspring

4. Replace the individuals with least fitness value of

population with newly generated offspring

While the condition is satisfied.

Fig 1: Flowchart of Genetic Algorithm

3. PROPOSED ALGORITHM
Since, the graph under consideration is a large one run the

goal directed shortest path algorithm from both the directions

(i.e. source and target). The following algorithm is run in each

of the directions.

FUNCTION weight (u, v)

BEGIN.

1. new_weight = actual weight (u,v) + Heuristic value

2. return new_weight

END.

FUNCTION sp_algorithm(HEAP , SET)

BEGIN.

1. u ← min distance(HEAP)

 SET ←SET ʊ{u}

 for all vertex, v ɛ neighbors[u]

 do if distance[v] > distance[u] + weight(u, v)

 then distance[v] ←distance[u] +weight(u, v)

2. return SET.

END.

In the following function ‘main’ maintain two min-heaps, A

and B for the two directions sorted by distances from source

and target respectively. The nodes extracted from the min-

heaps during the run of above algorithm are stored in sets A’

and B’ respectively. The process is not stopped until a

common vertex v is found in both sets.

FUNCTION main

BEGIN.

1. Fill vertices in min-heap A sorted by distance from

source.

a. distance[source] ←0

b. for all vertex v ɛV–{source}

 do distance[v] ←∞

c. A ←V (A, the min-heap initially contains all

vertices according to the min-heap property)

2. Similarly, fill vertices in min-heap B sorted by

distance from target.

a. distance[target] ←0

b. for all vertex v ɛV–{target}

 do distance[target] ←∞

c. B ←V (A, the min-heap initially contains all

vertices according to the min-heap property)

3. Let A’ and B’ be the sets to hold the extracted nodes

from the run of sp_algorithm. It is initially

maintained to be empty.

a. A’←ɸ

b. ,B’←ɸ

4. REPEAT

a. Call function sp_algorithm(A, A’).

b. Call function sp_algorithm(B, B’).

 UNTIL (Ǝv AND vɛA’ AND v ɛB’)

5. Call function genetic_algorithm(A’, B’).

END.

The shortest path from source, s to target, t does not

necessarily run through the vertex v. It goes from something

in A’ to something in B’. Hence apply step 5 of the main

function where the genetic algorithm is used to find the

shortest path. The following section discusses the construction

of genetic algorithm to achieve the purpose.

The chromosome is encoded by a string of positive integers

that represent the IDs of nodes through which the path passes.

Each position of the string represents an order of a vertex.

Create an initial set of population with the chromosomes

containing the vertices extracted in sets A’ and B’ as genes.

Create x number of chromosomes randomly by selecting the

genes from A’ and B’ as the shortest path from source to

target will be a permutation of the vertices in sets A’ and B’

such that the cost function is minimized.

International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 13, January 2015

29

From the population randomly choose individuals for mating.

Apply single point crossover to produce offspring from the

parents which is best explained by the image below.

Fig.2 Single point crossover operation

If the offspring produced are having greater fitness value, then

they replace the parents in the population. For mutation, wjust

swap two genes, to ensure the genetic diversity in the

population. This process of choosing parents for crossover,

mutation and replacement with new children are continued

until a chromosome containing genes which decodes to a path

from source to destination is obtained. The following pseudo

code summarizes the genetic algorithm applied to the above

problem.

FUNCTION genetic_algorithm(SET A’, SET B’)

BEGIN.

1. Randomly pick vertices from A’ and B’ to generate

x number of chromosomes.

2. do

a. Pick two parents for mating.

b. Apply single point crossover function.

c. Compute the fitness value of children .

d. If children have greater fitness value, replace

the the chromosomes having lower fitness

value in the population with them.

While there exists a gene sequence from source to

destination with the intermediate nodes connecting

them.

END.

4. ANALYSIS AND RESULTS

Fig.2 Graph example

Let’s say the problem is to find shortest path from source

vertex, 0 to a destination vertex, 4. On running sp_algorithm

on the above graph, from both forward and backward

directions the vertex sets A’ and B’ are obtained as below.

A’= [0, 1, 7, 6, 5]

B’= [4, 3, 5, 2, 6]

At the 5th iteration, the algorithm stops as it finds a vertex (5)

as the condition Ǝv AND vɛA’ AND v ɛB’ is satisfied. Ignore

all the vertices after the common vertex (5) in B’ and create a

random population out of the vertices 0, 1, 7, 6, 5 and 4, 3, 5

with 0 as the starting gene and 4 as the ending gene of the

chromosome. Let’s say the following two chromosomes

represent a part of population.

Parent 1= [7, 0, 6, 5, 4, 3, 1]

Parent 2= [0, 7, 6, 5, 1, 3, 4]

Let’s say, the algorithm chooses 6 as the crossover point, then

the offspring created are

Child 1= [7, 0, 6, 5, 1, 3, 4]

Child 2= [0, 7, 6, 5, 4, 3, 1]

As the fitness value of Child 2 will be greater than those in the

population (there exists a path sequence from source to

target), the least promising individual will be replaced by

child 2 in the population and that will be the final result.

Hence, the shortest path is of distance 21 from 0-7-6-5-4.

As shown above, the genetic algorithm is guaranteed to find

an optimal solution in some generation as it is inspired by the

natural process of evolution.

5. CONCLUSION
This paper proposes an efficient point to point shortest path

algorithm for large undirected graphs. The problem

requirements have been met using modified version of

Dijkstra’s algorithm running it bi-directionally and using

naturally inspired genetic algorithms for further steps. The

speed factor is taken into account by using heap for the

shortest path algorithm implementation. Experimental results

ascertains that the proposed technique outperform commonly

used Dijkstra’s algorithm with adjacency matrix

implementation qualitatively and quantitatively.

The work can be extended in future by replacing the current

genetic algorithm strategy with much efficient crossover and

mutation procedures to get optimal results.

6. REFERENCES
[1] Dijkstra, E. W. (1959), A Note on Two Problems in

Connexion with Graphs, Numerishe Mathematic 1 , 269-

271

[2] Shom C. Abraham. (2013) Least Cost Path Discovery

over Graphs Defined for Large Volumes of Data

Satisfying Node and Link Constraints. International

Journal of Computer Applications 82(12):15-18.

[3] Bellman, R. (1958), On a Routing Problem, Quart. Appl.

Math. 16, 87-90.

[4] M. Ericsson, M.G.C. Resende, and P.M. Pardalos , A

Genetic Algorithm for the Weight Setting Problem in

OSPF Routing

[5] Goldberg, D. E., Genetic Algorithms in Search

,Optimization, and Machine Learning, Addison-Wesley,

International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 13, January 2015

30

Reading, 1989

[6] Cai, X., Klocks, T. and Wong, C.K. (1997), Time-

Varying Shortest Path Problems with Constraints,

Networks, 29 , 141-149

[7] Dreyfus, S. E. (1969), An Appraisal of Some Shortest-

Path Algorithms, Operations Research, 17, 395-412

[8] Floyd, R.W. (1962), Algorithm 97: shortest path. Comm.

ACM 5345.

[9] Klein, P.N. and Subramanian, S. (1997), A Randomized

Parallel Algorithm for Single-Source Shortest Paths,

Journal of Algorithms, Vol. 25, No. 2, pp. 205-220.

[10] C. W. Ahn and R. S. Ramakrishna, A genetic algorithm

for shortest path routing problem and the sizing of

populations, IEEE Trans. Evol.Comput., vol. 6, no. 6, pp.

566–579, Dec. 2002.

[11] Cherkassky, B. V., Goldberg, A. V. and Radzik, T.

(1996), Shortest path algorithms: Theory and

experimental evaluation, Mathematical Programming 73,

129-174

IJCATM : www.ijcaonline.org

