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ABSTRACT 

The shortest path problem in graphs is a fundamental 

optimization problem which has stimulated research for 

several decades. Numerous real-world applications are 

modeled as graphs and shortest path computation is a frequent 

operation performed on them. Many graphs happen to be very 

large like road networks or routing networks. Shortest path 

computation on them is a challenge because of the low 

performance due to its large nature. Already existing graph 

algorithms are not suitable for large graphs.   

In this paper, an attempt is made to solve the problem of 

finding an efficient point-to-point shortest path algorithm for 

graphs of larger sizes. First  run the A * algorithm with binary 

heap implementation from both the directions. The nodes 

extracted from both directions are saved and then genetic 

algorithm is used to find the shortest path. The bi-directional 

strategy reduces the search space and the genetic algorithm 

optimizes the search problem to give best result. The final 

results illustrates that this novel approach with the 

optimization strategies achieves high scalability and 

performance. 

1. INTRODUCTION 
Shortest path problems are one of the most fundamental 

combinatorial optimization problems with many applications. 

In graph theory, the shortest path problem is the problem of 

finding a path between two vertices (or nodes) in a graph such 

that the sum of the weights of its constituent edges is 

minimized.  

Several real world applications use graphs, some of which are 

very large. An example of a large graph is road network 

which contains thousands of nodes and millions of links. 

Conventional methods of least cost path discovery gives poor 

performance in such large graphs. Hence, the requirement is 

to design and implement an efficient point-to-point shortest 

path algorithm for large graphs. 

2. BACKGROUND 

2.1 Min Heaps 
A min heap is a left complete binary tree which satisfies the 

property key (parent)  key (child) for all the nodes. Due to 

this property, the node with the lowest key will always be 

present at the root of the tree. Hence, extraction of minimum 

key node is an O (1) operation. After the extraction of root 

node, the tree may not satisfy the min-heap property for which  

the non-leaf nodes would have to undergo percolate down 

operation. This operation is an O (n) operation.    

2.2 Dijkstra’s Algorithm 
Dijkstra’s algorithm is a solution to the single-source shortest 

path problem in graph theory. Here, all edges must have 

nonnegative weights. Input is a weighted graph G= {E, V} 

and source vertex vɛV, such that all edge weights are 

nonnegative. Output is the lengths of shortest paths (or the 

shortest paths themselves) from a given source vertex vɛV to 

all other vertices. 

distance[source] ←0                      

for all vertex v ɛV–{source} 

        do  distance[v] ←∞  

SET←ɸ  (S, the set of visited vertices is initially empty)  

QUEUE←V  (Q, the queue initially contains all vertices) 

               

while QUEUE ≠ ɸ   

do   u ← min distance(QUEUE,dist) 

      SET←SETʊ{u}     

       for all vertex, v ɛ neighbors[u]    

              do  if   distance[v] > distance[u] + weight(u, v)  

                then      distance[v] ←distance[u] + weight(u, v)       

return distance[ ]. 

The simplest implementation is to store vertices in an array or 

linked list. This will produce a running time of O (|V|^2).The 

adjacency list with a binary heap or priority queue 

implementation will produce a running time of O (|E| log |V|). 

2.3 A* Algorithm 
A* algorithm is a most popular algorithm for path finding as it 

is like Dijkstra’s algorithm in finding the shortest path and 

like greedy best first search in using  a heuristic to guide 

itself. It favours vertices that are close to starting point (like 

Dijkstra’s algorithm) as well as vertices that are close to the 

goal (like greedy best first search). If g(n) represents the exact 

cost of path from starting point to any vertex n, and h(n) 

represents the heuristic estimated cost from vertex n to the 

goal, then A* algorithm examines the vertex n that has the 

lowest f(n)= g(n) + h(n).  

2.4 Genetic Algorithms 
Genetic algorithms aim to develop solutions to optimization 

problems using techniques which are inspired by natural 

evolution. This involves inheritance, mutation, selection, and 

crossover. 

Algorithm is initialized with a set of solutions called 

population. Solutions from one population are taken and used 

to form a new population. It is expected to get a new 

population which will be better than the old one. Population 

which is selected to form new population (offspring) is 

selected based on its fitness. A fitness function is developed to 

calculate the fitness value. 

This is repeated until some condition (for example number of 

populations or improvement of the best solution) is satisfied. 
Genetic Algorithm Operators:  

1. Encoding of a chromosome  

The chromosome represents the information about solution. 

The widely used encoding is a binary string.  
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2. Crossover  

Crossover selects parent individuals and creates a new 

offspring. The simplest way how to do this is to choose 

randomly some crossover point and everything before this 

point copy from a first parent and then everything after a 

crossover point copy from the second parent. 

3. Mutation  

After a crossover is performed, mutation takes place. 

Mutation changes randomly the new offspring. 

Genetic Algorithm Pseudocode 

Create initial population 

Calculate the fitness value of each individual in the population  

Do 

1. Select individuals with high fitness values to 

reproduce 

2. New generation is formed through crossover and 

mutation to get offspring. 

3. Calculate the fitness value of the offspring  

4. Replace  the individuals with least fitness value  of 

population with newly generated offspring  

While the condition is satisfied. 

           

Fig 1: Flowchart of Genetic Algorithm 

3. PROPOSED ALGORITHM 
Since, the graph under consideration is a large one run the 

goal directed shortest path algorithm from both the directions 

(i.e. source and target). The following algorithm is run in each 

of the directions. 

FUNCTION weight (u, v)  

BEGIN. 

1. new_weight = actual weight (u,v) + Heuristic value 

2. return new_weight 

END. 

FUNCTION sp_algorithm( HEAP , SET) 

BEGIN. 

1.   u ← min distance(HEAP) 

  SET ←SET ʊ{u}     

   for all vertex, v ɛ neighbors[u]    

         do  if   distance[v] > distance[u] + weight(u, v)  

         then     distance[v] ←distance[u] +weight(u, v) 

2. return SET. 

END. 

In the following function ‘main’ maintain two min-heaps, A 

and B for the two directions sorted by distances from source 

and target respectively. The nodes extracted from the min-

heaps during the run of above algorithm are stored in sets A’ 

and B’ respectively. The process is not stopped until a 

common vertex v is found in both sets. 

FUNCTION main 

BEGIN. 

1. Fill vertices in min-heap A sorted by distance from 

source.  

a. distance[source] ←0                      

b. for all vertex v ɛV–{source} 

        do  distance[v] ←∞  

c. A ←V  (A, the min-heap initially contains all 

vertices according to the min-heap property) 

2. Similarly, fill vertices in min-heap B sorted by 

distance from target.  

a. distance[target] ←0                      

b. for all vertex v ɛV–{target} 

        do  distance[target] ←∞  

c. B ←V  (A, the min-heap initially contains all 

vertices according to the min-heap property) 

3. Let A’ and B’ be the sets to hold the extracted nodes 

from the run of sp_algorithm. It is initially 

maintained to be empty. 

a. A’←ɸ 

b. ,B’←ɸ 

4. REPEAT   

a. Call function sp_algorithm(A, A’). 

b. Call function sp_algorithm(B, B’). 

                UNTIL (Ǝv AND vɛA’ AND v ɛB’) 

5. Call function genetic_algorithm(A’, B’). 

END. 

The shortest path from source, s to target, t does not 

necessarily run through the vertex v. It goes from something 

in A’ to something in B’. Hence apply step 5 of the main 

function where the genetic algorithm is used to find the 

shortest path. The following section discusses the construction 

of genetic algorithm to achieve the purpose. 

The chromosome is encoded by a string of positive integers 

that represent the IDs of nodes through which the path passes. 

Each position of the string represents an order of a vertex. 

Create an initial set of population with the chromosomes 

containing the vertices extracted in sets A’ and B’ as genes.  

Create x number of chromosomes randomly by selecting the 

genes from A’ and B’ as the shortest path from source to 

target will be a permutation of the vertices in sets A’ and B’ 

such that the cost function is minimized. 
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From the population randomly choose individuals for mating. 

Apply single point crossover to produce offspring from the 

parents which is best explained by the image below. 

 

Fig.2 Single point crossover operation 

If the offspring produced are having greater fitness value, then 

they replace the parents in the population. For mutation, wjust 

swap two genes, to ensure the genetic diversity in the 

population. This process of choosing parents for crossover, 

mutation and replacement with new children are continued 

until a chromosome containing genes which decodes to a path 

from source to destination is obtained. The following pseudo 

code summarizes the genetic algorithm applied to the above 

problem. 

FUNCTION genetic_algorithm( SET A’, SET B’ ) 

BEGIN. 

1. Randomly pick vertices from A’ and B’ to generate 

x number of chromosomes. 

2. do 

a. Pick two parents for mating. 

b. Apply single point crossover function. 

c. Compute the fitness value   of children . 

d. If children have greater fitness value, replace 

the the chromosomes having lower fitness 

value in the population with them. 

While there exists a gene sequence from source to 

destination with the intermediate nodes connecting 

them. 

END. 

4. ANALYSIS AND RESULTS 

 

Fig.2 Graph example 

Let’s say the problem is to find shortest path from source 

vertex, 0 to a destination vertex, 4. On running sp_algorithm 

on the above graph, from both forward and backward 

directions  the vertex sets A’ and B’ are obtained as below. 

A’= [0, 1, 7, 6, 5] 

B’= [4, 3, 5, 2, 6] 

At the 5th iteration, the algorithm stops as it finds a vertex (5) 

as the condition Ǝv AND vɛA’ AND v ɛB’ is satisfied. Ignore 

all the vertices after the common vertex (5) in B’ and create a 

random population out of the vertices 0, 1, 7, 6, 5 and 4, 3, 5 

with 0 as the starting gene and 4 as the ending gene of the 

chromosome. Let’s say the following two chromosomes 

represent a part of population. 

Parent 1= [7, 0, 6, 5, 4, 3, 1]      

Parent 2= [0, 7, 6, 5, 1, 3, 4]      

Let’s say, the algorithm chooses 6 as the crossover point, then 

the offspring created are 

Child 1= [7, 0, 6, 5, 1, 3, 4] 

Child 2= [0, 7, 6, 5, 4, 3, 1] 

As the fitness value of Child 2 will be greater than those in the 

population (there exists a path sequence from source to 

target), the least promising individual will be replaced by 

child 2 in the population and that will be the final result. 

Hence, the shortest path is of distance 21 from 0-7-6-5-4. 

As shown above, the genetic algorithm is guaranteed to find 

an optimal solution in some generation as it is inspired by the 

natural process of evolution. 

5. CONCLUSION 
This paper proposes an efficient point to point shortest path 

algorithm for large undirected graphs. The problem 

requirements have been met using modified version of 

Dijkstra’s algorithm running it bi-directionally and using 

naturally inspired genetic algorithms for further steps. The 

speed factor is taken into account by using heap for the 

shortest path algorithm implementation. Experimental results 

ascertains that the proposed technique outperform commonly 

used Dijkstra’s algorithm with adjacency matrix 

implementation qualitatively and quantitatively. 

The work can be extended in future by replacing the current 

genetic algorithm strategy with much efficient crossover and 

mutation procedures to get optimal results. 
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