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ABSTRACT  
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nonlinear evolution equations. 

Keywords 
The exp ((−𝜑(𝜉))-expansion method; The space-time nonlinear 

fractional PKP equation; The space-time nonlinear fractional 

SRLW equation; The space-time nonlinear fractional STO 

equation; The space-time nonlinear fractional KPP equation; 

Traveling wave solutions; Solitary wave solutions; Kink-

antikink shaped. 

AMS Subject Classifications 
35A05, 35A20, 65K99, 65Z05, 76R50, 70K70 

1. INTRODUCTION 
The nonlinear partial differential equations of mathematical 

physics are major subjects in physical science [1]. Exact 

solutions for these equations play an important role in many 

phenomena in physics such as fluid mechanics, hydrodynamics, 

Optics, Plasma physics and so on. Recently many new 

approaches for finding these solutions have been proposed, for 

example, tanh - seen method [2]-[4], extended tanh - method 

[5]-[7], sine - cosine method [8]-[10], homogeneous balance 

method [11, 12],F-expansion method [13]-[15], exp-function 

method [16, 17], trigonometric function series method [18], 

(
𝐺′

𝐺
)— expansion method [19]-[22], Jacobi elliptic function 

method [23]-[26] and so on. 

The objective of this article is to apply The exp((−𝜑(𝜉))-

expansion method for finding the exact traveling wave solution 

of the space-time nonlinear fractional PKP equation, the space-

time nonlinear fractional SRLW equation, the space-time 

nonlinear fractional STO equation and the space-time nonlinear 

fractional KPP equation mathematical physics. 

The rest of this paper is organized as follows: In Section 2, we 

give the description of The exp((−𝜑(𝜉))-expansion method In 

Section 3, we use this method to find the exact solutions of the 

nonlinear evolution equations pointed out above. In Section 4, 

conclusions are given. 

2. DESCRIPTION OF METHOD 
Suppose that we have the following nonlinear fractional partial 

differential equation: 

𝑓(𝑢, 𝐷𝑡
𝛼 , 𝐷𝓍

𝛼𝑢,… . ) = 0,     0 < 𝛼 ≤ 1,  (2.1) 

where 𝐷𝑡
𝛼𝑢, 𝐷𝒳

𝛼𝑢 are the modified Riemann-Liouville 

derivatives, and F is a polynomial in u(x, t) and its partial 

fractional derivatives, in which the highest order derivatives and 

the nonlinear terms are involved. In the following we give the 

main steps of this method.  

Step 1. Using the nonlinear fractional complex transformation 

𝑢 𝓍, 𝑡 = 𝑢 𝜉 ,     𝜉 =
𝐾𝓍𝛼

Γ(1 + 𝛼)
+

𝑐𝑡𝛼

Γ(1 + 𝛼)
+ 𝜉0 

where k, c, 𝜉0 are constants with k, c ≠ 0, to reduce Eq.(2.1) to 

the following ordinary differential equation (ODE) with integer 

order: 

𝑃(𝑢, 𝑢′ , 𝑢′′ , 𝑢′′′  ,….)= 0,   (2.2)  

where P is a polynomial in u(𝜉) and its total derivatives,while ' 

= 
𝑑 ′

𝑑𝜉
. 

Step 2. Suppose that the solution of ODE(2.2) can be expressed 

by a polynomial in exp (−𝜑(𝜉)) 

as follows 

𝑢(𝜉) = 𝑎𝑚 (𝑒𝓍𝑝 −𝜑 𝜉  )𝑚 + ⋯,   𝑎𝑚 ≠ 0, (2.3) 

where 𝜑 𝜉  satisfies the ODE in the form 

𝜑′(𝜉) =  𝑒𝓍𝑝(−𝜑 𝜉 + 𝜇𝑒𝓍𝑝(𝜑 𝜉 + 𝜆 (2.4) 

the solutions of ODE (2.4) are 

i. when 𝜆2 - 4𝜇 > 0, 𝜇 ≠ 0, 

𝜑(𝜉) = 𝑙𝑛

 

 
 
− 𝜆2−4𝜇 𝑡𝑎𝑛 ℎ 

 𝜆2−4𝜇 (𝜉+𝐶1

2
 −𝜆

2𝜇

 

 
 

 (2.5) 

ii. when λ2 - 4μ > 0, μ = 0, 

𝜑(𝜉) = 𝑙𝑛  
𝜆

𝑒𝑥𝑝  𝜆 𝜉+𝐶1  −1
    (2.6) 

iii. when λ2 - 4μ = 0, μ ≠ 0, λ ≠ 0, 

𝜑(𝜉) = 𝑙𝑛  
2(𝜆 𝜉+𝐶1 +2

𝜆2(𝜉+𝐶1)
    (2.7) 

iv. when λ2 - 4μ = 0, μ = 0, λ = 0, 

𝜑 𝜉 = 𝑙𝑛 𝜉 + 𝐶1 ,    (2.8) 

v. when λ2 - 4μ < 0, 

𝜑 𝜉 = 𝑙𝑛

 

 
 
 4𝜇−𝜆2  𝑡𝑎𝑛  

 4𝜇−𝜆2(𝜉+𝐶1

2
 −𝜆

2𝜇

 

 
 

                (2.9) 
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where am, ...., 𝜆, n are constants to be determined later, 

Step 3. Substitute Eq.(2.3) along Eq.(2.4) into Eq.(2.2) and 

collecting all the terms of the same power exp (-m𝜑(𝜉)),𝑚 = 0, 

1, 2, 3, .... and equating them to zero, we obtain a system of 

algebraic equations, which can be solved by Maple or 

Mathematica to get the values of ai.  

Step 4. Substituting these values and the solutions of Eq.(2.4) 

into Eq.(2.2) we obtain the exact solutions of Eq.(2.2). 

3. APPLICATION 
In this section we construct the exact solutions of the following 

four nonlinear fractional PDEs using the proposed method of 

Sec. 2 as following 

3.1-Example 1: The Space-Time Nonlinear 

Fractional PKP Equation 
This equation is well-known [27] and has the form: 

1

4
𝐷𝑥

4𝛼𝑢 +
3

2
𝐷𝑥
𝛼𝑢𝐷𝑥

2𝛼𝑢 +
3

4
𝐷𝑦

2𝛼𝑢 + 𝐷𝑡
𝛼(𝐷𝑡

𝛼𝑢) = 0        (3.1) 

where 0 < 𝛼 < 1. Eq.(3.1) has been investigated in [27] using 

the fractional sub-equation method. Let us now solve Eq.(3.1) 

using the proposed method of Sec. 2. To this end, we use the 

nonlinear fractional complex transformation u(x,y,t) = u(𝜉), 

𝜉 =
𝑘1𝑥

𝛼

Γ(1 + 𝛼)
+

𝑘2𝑦
𝛼

Γ(1 + 𝛼)
+

𝑐𝑡𝛼

Γ(1 + 𝛼)
+ 𝜉0, 

where k1,k2,c, 𝜉o are constants, to reduce Eq.(3.1) to the 

following ODE with integer order: 

𝑘1
4𝑢′′′ + 3𝑘1

3𝑢′2 + (3𝑘2
2 + 4𝑐𝑘1)𝑢′ = 0.  (3.2) 

Balancing u'" with u'2 ⇒ N + 3 = 2 (N + 1) ⇒ N = 1. 

Consequently, Eq.(3.2) has the formal solutions: 

u = a0 + a1exp(-𝜑(𝜉)),   (3.3) 

where a0, a1 are constants to be determined later, such that, a1 ≠ 

0. It is easy to see that 

𝑢′′ = 2
𝑎1

(𝑒𝜙 𝜉 )3 + 2
𝑎1𝑢

𝑒𝜙 𝜉 
+ 3

𝑎1𝜆

(𝑒𝜙 𝜉 )2 + 𝑎1𝜆𝜇 +
𝑎1𝜆

2

𝑒𝜙 𝜉 
      (3.4)  

Substituting (3.3) along (3.4) into (3.2), collecting all the terms 

of the same order exp (-𝑖𝜑(𝜉)), 

i = 0,l, 2,.. and setting each coefficient to zero, we have the 

following set of algebraic equation: 

−6𝑘1
4𝑎1 + 3𝑘1

3𝑎1
2 = 0,    

(3.5) 

−12𝑘1
4𝑎1𝜆 + 6𝑘1

3𝑎1
2𝜆 = 0,   

 (3.6) 

−𝑘1
4 8𝛼1𝜇 + 7𝛼1𝜆

2 + 3𝑘1
3𝑎1

2 𝜆2 + 2𝜇 − 𝛼1(3𝑘2
2 + 4𝑐𝑘1) =

0,  (3.7) 

−𝑘1
4 8𝛼1𝜇𝜆 + 7𝛼1𝜆

3 + 6𝑘1
3𝑎1

2𝜆𝜇 − 𝜆𝛼1(3𝑘2
2 + 4𝑐𝑘1) = 0, 

(3.8) 

−𝑘1
4 𝛼1𝜇𝜆

2 + 2𝛼1𝜇
2 + 3𝑘1

3𝑎1
2𝜇2 − 𝜇𝛼1(3𝑘2

2 + 4𝑐𝑘1) = 0, 

(3.9) 

On solving these algebraic equation with aid of Maple or 

Mathematica we have 

𝑎0 = 𝑎0,     , 𝑎1 = 2𝑘1 ,     𝑐 =
4𝑘1

4𝜇 − 𝑘1
4𝜆2 − 3𝑘2

2

4𝑘1
 

So that the solution of Eq.(3.2) 

𝑢 = 𝑎0 + 2𝑘1 exp −𝜑 𝜉  ,   

 (3.10) 

The solutions of ODE (3.2) are 

I. when 𝜆 2 - 4 𝜇 > 0, 𝜇 ≠ 0, 

𝑢 = 𝑎0 +

 

  
 

4𝑘1𝜇

− 𝜆2−4𝜇 𝑡𝑎𝑛 ℎ 
 𝜆2−4𝜇

2
 𝜉+𝐶1  −𝜆

 

  
 

  

 (3.11) 

II. when 𝜆 2 - 4 𝜇 > 0, 𝜇 = 0, 

𝑢 = 𝑎0 −  
4𝑘1𝜆

𝑒𝑥𝑝⁡(𝜆 𝜉+𝐶1 )−1
    

 (3.12) 

III. when 𝜆 2 - 4 𝜇 = 0, 𝜇 ≠ 0, 𝜆 ≠ 0, 

𝑢 = 𝑎0 +  
2𝑘1𝜆

2(𝜉+𝐶1)

2 𝜆 𝜉+𝐶1  +2
     

 (3.13) 

IV. when 𝜆 2 - 4 𝜇 = 0, 𝜇 = 0, 𝜆 = 0,  

𝑢 = 𝑎0 +  
2𝑘1

𝜉+𝐶1
     

 (3.14) 

V. when 𝜆 2 - 4 𝜇 < 

0,𝑢 = 𝑎0 +

 

  
 

4𝑘1𝜇

− 4𝜇−𝜆2 tan  
 4𝜇−𝜆2

2
 𝜉+𝐶1  −𝜆

 

  
 

  

  

(3.15) 

 

Figure 1: solution of Eqs. (3.11)-(3.15) 
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3.2- Example 2: The Space-Time Nonlinear 

Fractional SRLW Equation 
This equation is well-known [27] and has the form: 

𝐷𝑡
2𝛼𝑢 + 𝐷𝑥

2𝛼𝑢 + 𝑢𝐷𝑡
𝛼 𝐷𝑥

𝛼𝑢 + 𝐷𝑡
𝛼𝑢𝐷𝑡

𝛼𝑢 + 𝐷𝑡
2𝛼(𝐷𝑥

2𝛼𝑢) = 0,
  (3.16) 

where 0 < a ≤ I. Eq.(3.16) has been investigated in [27] using 

the fractional sub-equation method. Let us now solve Eq.(3.16) 

using the proposed method of Sec. 2. To this end, we use the 

nonlinear fractional complex transformation u(x,y,t) = u(𝜉), 

𝜉 =
𝑘𝑥𝛼

Γ(1 + 𝛼)
+

𝑐𝑡𝛼

Γ(1 + 𝛼)
+ 𝜉0, 

where k,c, 𝜉o are constants, to reduce Eq.(3.16) to the following 

ODE with integer order: 

𝑘2𝑐2𝑢′′ +  𝑘2 + 𝑐2 𝑢 +
𝑘𝑐

2
𝑢2 = 0.  (3.17)   

Balancing u" with u2 ⇒ N + 2 = 2N ⇒ N = 2.   Consequently, 

Eq.(3.17) has the formal solutions: 

𝑈 = 𝑎0 + 𝑎1exp⁡(−𝜑 𝜉 + 𝑎2 exp −2𝜑 𝜉  , (3.18) 

where ao, a1,a2 are constants to be determined later, such that, a2 

≠ 0. It is easy to see that 

𝑢′′ = 2
𝑎1

 𝑒𝜙 𝜉  3
+ 2

𝑎1𝜇

𝑒𝜙 𝜉 
+ 3

𝑎1𝜆

 𝑒𝜙 𝜉  2
+ 𝑎1𝜆𝜇 +

𝑎1𝜆
2

𝑒𝜙 𝜉 

+ 6
𝑎2

 𝑒𝜙 𝜉  4
+ 8

𝑎2𝜇

 𝑒𝜙 𝜉  2
 

+10
𝑎2𝜆

(𝑒𝜙 𝜉 )3 + 𝑎2𝜇
2 + 6

𝑎2𝜇𝜆

𝑒𝜙 𝜉 
+ 4

𝑎2𝜆
2

(𝑒𝜙 𝜉 )2 (3.19) 

Substituting (3.18) along (3.19) into (3.17), collecting all the 

terms of the same order exp(-𝑖𝜑(𝜉)) 

, i = 0, 1, 2, .. and setting each coefficient to zero, we have the 

following set of algebraic equation: 

6 k2c2 a2 + 
1

2
kc a2

2 = 0,   (3.20) 

  𝑘2𝑐2 2𝑎1 + 10𝑎2𝜆 + 𝑘𝑐 𝑎1 𝑎2 = 0, (3.21) 

𝑘2𝑐2 8𝑎2𝜇 + 3𝑎1𝜆 + 4𝑎2𝜆
2 +

1

2
𝑘𝑐 𝑎1

2 + 2𝑎0𝑎2 + 𝑎2(𝑘2 +

𝑐2) = 0,            (3.22) 

𝑘2𝑐2 2𝑎1𝜇 + 𝑎1𝜆
2 + 6𝑎2𝜆𝜇 + 𝑘𝑐 𝑎0𝑎1 + 𝑎1(𝑘2 + 𝑐2) = 0, 

  (3.23) 

𝑘2𝑐2𝑎1𝜆𝜇 + 2𝑘2𝑐2  𝑎2𝜇
2 +

1

2
𝑘𝑐 𝑎0

2 + 𝑎0(𝑘2 + 𝑐2) = 0, 

 (3.24) 

On solving these algebraic equation with aid of Maple or 

Mathematica we have 

𝑎0 =
𝑐

𝑘
+
𝑘

𝑐
− 3𝑘𝑐𝜆2,   , 𝑎1 = −12𝑘𝑐𝜆,   𝑎2 = −12𝑘𝑐, 

So that the solution of Eq.(3.2) 

𝑢 =
𝑐

𝑘
+
𝑘

𝑐
− 3𝑘𝑐𝜆2 − 12𝑘𝑐𝜆 𝑒𝑥𝑝 −𝜑 𝜉  − 12𝑘𝑐 𝑒𝑥𝑝 −2𝜑 𝜉  ,

     (3.25) 

the solutions of ODE (3.2) are 

i. when 𝜆 2 - 4𝜇 > 0, 𝜇 ≠ 0, 

𝑢      

=
𝑐

𝑘
+
𝑘

𝑐
− 3𝑘𝑐𝜆2

− 3𝑘𝑐

 

 
 2𝜇

− 𝜆2 − 4𝜇 𝑡𝑎𝑛ℎ 
 𝜆2−4𝜇

2
(𝜉 + 𝐶1) − 𝜆

 

 
 

 

−12𝑘𝑐  
2𝜇

− 𝜆2−4𝜇 𝑡𝑎𝑛 ℎ 
 𝜆2−4𝜇

2
(𝜉+𝐶1 −𝜆

 

2

, (3.26) 

ii. when 𝜆 2 - 4𝜇 > 0, 𝜇 = 0, 

𝑢 =
𝑐

𝑘
+
𝑘

𝑐
− 3𝑘𝑐𝜆2 − 3𝑘𝑐  

𝜆

𝑒𝑥𝑝⁡(𝜆 𝜉+𝐶1 −1
 − 12𝑘𝑐  

𝜆

𝑒𝑥𝑝⁡(𝜆 𝜉+𝐶1 −1
 

2

  (3.27) 

iii. when 𝜆 2 - 4𝜇 = 0, 𝜇 ≠ 0, 𝜆 ≠ 0, 

𝑢 =
𝑐

𝑘
+
𝑘

𝑐
− 3𝑘𝑐𝜆2 − 3𝑘𝑐  

𝜆2(𝜉+𝐶1)

2 𝜆 𝜉+𝐶1 +2 
 − 12𝑘𝑐  

𝜆2(𝜉+𝐶1)

2 𝜆 𝜉+𝐶1 +2 
 

2

  (3.28) 

iv. when 𝜆 2 - 4𝜇 = 0, 𝜇 = 0, 𝜆 = 0, 

𝑢 =
𝑐

𝑘
+
𝑘

𝑐
− 3𝑘𝑐𝜆2 −

3𝑘𝑐𝜆

𝜉+𝐶1
−  

12𝑘𝑐

𝜉+𝐶1
 

2
,  (3.29) 

when 𝜆 2 - 4𝜇 < 0,  

𝑢

=
𝑐

𝑘
+
𝑘

𝑐
− 3𝑘𝑐𝜆2

− 3𝑘𝑐𝜆

 

 
 2𝜇

 4𝜇 − 𝜆2 𝑡𝑎𝑛  
 4𝜇 − 𝜆2

2
(𝜉 + 𝐶1) − 𝜆

 

 
 

 

−12𝑘𝑐

 

 
 2𝜇

 4𝜇−𝜆2 𝑡𝑎𝑛  
 4𝜇−𝜆2

2
(𝜉+𝐶1 −𝜆

 

 
 

2

 (3.30) 
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3.3-Example 3: The Space-Time Nonlinear 

Fractional STO Equation 
This equation is well-known [28] and has the form: 

𝐷𝑡
𝛼𝑢 + 3𝛽 𝐷𝑥

𝛼𝑢 2 + 3𝛽𝑢2𝐷𝑥
𝛼𝑢 + 3𝛽𝑢𝐷𝑥

2𝛼𝑢
+ 𝛽𝐷𝑥

2𝛼𝑢 = 0, 

(3.31) 

where 0 < a ≤ 1. Eq.(3.31) has been investigated in [28] using 

the fractional sub-equation method. Let us now solve Eq.(3.31) 

using the proposed method of Sec. 2. To this end, we use the 

nonlinear fractional complex transformation u(x,y,t) = u(𝜉), 

𝜉 =
𝑘𝑥𝛼

Γ(1 + 𝛼)
+

𝑐𝑡𝛼

Γ(1 + 𝛼)
+ 𝜉0, 

where k,c,£o are constants, to reduce Eq.(3.31) to the following 

ODE with integer order: 

𝑐𝑢 + 3𝛽𝑘2𝑢𝑢′ + 𝛽𝑘𝑢3 + 𝛽𝑘3𝑢′′ = 0,  

 (3.32) 

Balancing u" with u3 ⟹ N + 2 = 3N ⟹ N = I.   Consequently, 

Eq.(3.32) has the formal solutions: 

𝑢 = 𝑎0 + 𝑎1 exp −𝜑 𝜉  ,   

 (3.33) 

where a0, a1 are constants to be determined later, such that, a1 ≠ 

0. It is easy to see that 

u′′ = 2
𝑎1

 𝑒𝜙(𝜉) 
3 + 2

𝑎1𝜇

𝑒𝜙(𝜉) + 3
𝑎1𝜆

 𝑒𝜙(𝜉) 
2 + 𝑎1𝜆𝜇 +

𝑎1𝜆
2

𝑒𝜙 𝜉 
, 

   (3.34) 

Substituting (3.33) along (3.34) into (3.32), collecting all the 

terms of the same order 

, i = 0,1,2,.. and setting each coefficient to zero, we have the 

following set of algebraic equation: 

2𝛽𝑘3𝑎1 + 𝛽𝑘𝑎1
3 − 3𝛽𝑘2𝑎1

2 = 0,   

 (3.35) 

3𝛽𝑘3𝜆𝑎1 + 3𝛽𝑘𝑎0𝑎1
2 − 3𝛽𝑘2𝑎0𝑎1 − 3𝛽𝑘2𝜆𝑎1

2 = 0, 
 (3.36) 

𝛽𝑘3𝜆2𝑎1 + 2𝛽𝑘3𝜇𝑎1 − 3𝛽𝑘𝑎0
2𝑎1 − 3𝛽𝑘2𝜆𝑎0𝑎1 − 3𝛽𝑘2𝜇𝑎1

2 +
𝑎1𝑐 = 0,  (3.37) 

𝛽𝑘3𝑎1𝜆𝜇 + 𝛽𝑘𝑎0
3 − 3𝛽𝑘2𝑎0𝑎1𝜇 + 𝑎0𝑐 = 0, 

 (3.38) 

On solving these algebraic equation with aid of Maple or 

Mathematical we have 

𝑎0 = 𝜆𝑘,        𝑎1 = 2𝑘, 

So that the solution of Eq.(3.2) 

𝑢 = 𝜆𝑘 + 2𝑘 𝑒𝑥𝑝 −𝜑 𝜉  ,   

 (3.39) 

the solutions of ODE (3.2) are  

i. when 𝜆2 − 4𝜇 > 0, 𝜇 ≠ 0, 

𝑢 = 𝜆𝑘 +

 

 
 4𝑘𝜇

− 𝜆2−4𝜇 𝑡𝑎𝑛 ℎ 
 𝜆2−4𝜇

2
(𝜉+𝐶1) −𝜆

 

 
 

  

 (3.40) 

ii. when 𝜆2 − 4𝜇 > 0, 𝜇 = 0, 

𝑢 = 𝜆𝑘 −  
4𝑘𝜆

𝑒𝑥𝑝  𝜆 𝜉+𝐶1  −1
 ,   (3.41) 

iii. when 𝜆2 − 4𝜇 = 0, 𝜇 ≠ 0, 𝜆 ≠ 0, 

𝑢 = 𝜆𝑘 +  −
2𝜆2(𝜉+𝐶1)

2 𝜆 𝜉+𝐶1  +2
 ,   

 (3.42) 

iv. when λ2 − 4μ = 0, μ = 0, λ = 0, 

𝑢 = 𝜆𝑘 +
2

𝜉+𝐶1
,    

 (3.43) 

v. when λ2 − 4μ < 0,   

𝑢 = 𝜆𝑘 +

 

 
 4𝜇

 4𝜇−𝜆2 𝑡𝑎𝑛  
 4𝜇−𝜆2

2
(𝜉+𝐶1) −𝜆

 

 
 

  

  (3.44) 

 

3.4-Example 4: The Space-Time Nonlinear 

Fractional KPP Equation 
This equation is well-known [29] and has the form: 

𝐷𝑡
𝛼𝑢 − 𝐷𝑥

2𝛼𝑢 + 𝜇1𝑢 + 𝛾𝑢2 + 𝛿𝑢3 = 0, 
     (3.45) 

where 0 < a < 1. Eq.(3.45) has been investigated in [29] using 

the fractional sub-equation method. Let us now solve Eq.(3.45) 

using the proposed method of Sec. 2. To this end, we use the 

nonlinear fractional complex transformation u(x,y,t) = u(𝜉), 

𝜉 =
𝑘𝑥𝛼

Γ(1 + 𝛼)
+

𝑐𝑡𝛼

Γ(1 + 𝛼)
+ 𝜉0, 

where k,c, 𝜉o are constants, To reduce Eq.(3.16) to the 

following ODE with integer order: 

𝑘2𝑐2𝑢′′ +  𝑘2 + 𝑐2 𝑢 +
𝑘𝑐

2
𝑢2 = 0.   

 (3.46) 
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Balancing u" with u3 ⟹𝑁 + 2 = 3𝑁 ⟹ 𝑁 = 1. Consequently, 

Eq.(3.17) has the formal 

solutions: 

𝑢 = 𝑎0 + 𝑎1exp⁡(−𝜑 𝜉 ).   

 (3.47) 

where ao, a1 are constants to be determined later, such that, a1 ≠ 

0. It is easy to see that 

𝑢′′ = 2
𝑎1

(𝑒𝜙 𝜉 )3
+ 2

𝑎1𝜇

𝑒𝜙 𝜉 
+ 3

𝑎1𝜆

(𝑒𝜙 𝜉 )2
+ 𝑎1𝜆𝜇 +

𝑎1𝜆2

𝑒𝜙 𝜉 
. 

  (3.48) 

Substituting (3.47) along (3.48) into (3.46), collecting all the 

terms of the same order exp(-i𝜑(𝜉)) 

, i = 0,1,2,.. and setting each coefficient to zero, we have the 

following set of algebraic equation: 

𝛿𝑎1
3 − 2𝑘2𝑎1 = 0.    

 (3.49) 

3𝛿𝑎0𝑎1
2 + 𝛾𝑎1

2 − 3𝑘2𝜆𝑎1 − 𝑐𝑎1 = 0.   

 (3.50) 

3𝛿𝑎0
2𝑎1 + 2𝛾𝑎0𝑎1 + 𝜇𝑎1 − 𝑘

2𝜆2𝑎1 − 2𝑘2𝜇𝑎1 − 𝑐𝜆𝑎1 = 0.
  (3.51) 

𝛿𝑎0
3 + 𝛾𝑎0

2 + 𝜇1𝑎0 − 𝑘
2𝜆𝜇𝑎1 − 𝑐𝜇𝑎1 = 0.  

 (3.52) 

On solving these algebraic equation with aid of Maple or 

Mathematica we have 

𝑎0 =
𝜆𝑎1

2
−
𝛾

2𝛿
,        𝑎1 =

−2𝑐

𝛾
, 

So that the solution of Eq.(3.46) 

𝑢 =
𝜆𝑎1

2
−

𝛾

2𝛿
−

2𝑐

𝛾
exp −𝜑 𝜉  ,  

 (3.52) 

the solutions of ODE (3.46) are 

i. when 𝜆2 − 4𝜇 > 0, 𝜇 ≠ 0, 

𝑢 =
𝜆𝑎1

2
−

𝛾

2𝛿
−
−2𝑐

𝛾

 

 
 𝜇

− 𝜆2−4𝜇 𝑡𝑎𝑛 ℎ 
 𝜆2−4𝜇

2
(𝜉+𝐶1) −𝜆

 

 
 

 

   (3.54) 

ii. when 𝜆2 − 4𝜇 > 0, 𝜇 = 0, 

𝑢 =
𝜆𝑎1

2
−

𝛾

2𝛿
−
−2𝑐

𝛾
 

2𝜆

exp  𝜆 𝜉+𝐶1  −1
 ,   

 (3.55) 

iii. when 𝜆2 − 4𝜇 = 0, 𝜇 ≠ 0, 𝜆 ≠ 0, 

𝑢 =
𝜆𝑎1

2
−

𝛾

2𝛿
−

2𝑐

𝛾
 

2𝜆2(𝜉+𝐶1)

2 𝜆 𝜉+𝐶1  +2
 ,   

 (3.56) 

iv. when 𝜆2 − 4𝜇 = 0, 𝜇 = 0, 𝜆 = 0, 

𝑢 =
𝜆𝑎1

2
+
−2𝑐

𝛾

𝛾

2𝛿
+

2

𝜉+𝐶1
,   

 (3.57) 

v. when λ2 − 4μ < 0, 

𝑢 =
𝜆𝑎1

2
−

𝛾

2𝛿
−

2𝑐

𝛾

 

 
 𝜇

 4𝜇−𝜆2 𝑡𝑎𝑛  
 4𝜇−𝜆2

2
(𝜉+𝐶1) −𝜆

 

 
 

  

 (3.58) 

 

4. CONCLUSION 
We establish exact solutions for the space-time nonlinear 

fractional PKP equation, the space-time nonlinear fractional 

SRLW equation, the space-time nonlinear fractional STO 

equation and the space-time nonlinear fractional KPP equation 

with the exp(-𝜑(𝜉))-expansion method. The exp(-𝜑(𝜉))-

expansion method has been successfully used to find the exact 

traveling wave solutions of some nonlinear evolution equations. 

As an application, the traveling wave solutions the space-time 

nonlinear fractional PKP equation, the space-time nonlinear 

fractional SRLW equation, the space-time nonlinear fractional 

STO equation and the space-time nonlinear fractional KPP 

equation , which have been constructed using The exp(-𝜑(𝜉))-

expansion method. Let us compare between our results obtained 

in the present article with the well-known results obtained by 

other authors using different methods as follows: Our results of 

the space-time nonlinear fractional PKP equation, the space-

time nonlinear fractional SRLW equation, the space-time 

nonlinear fractional STO equation and the space-time nonlinear 

fractional KPP equation , are new and different from those 

obtained in [27]-[29]. It can be concluded that this method is 

reliable and propose a variety of exact solutions NPDEs. The 

performance of this method is effective and can be applied to 

many other nonlinear evolution equations. 
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