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ABSTRACT  
Extended Jacobian elliptic function expansion method is 

employed to find the exact traveling wave solutions involving 

parameters for nonlinear evolution equations. When these 

parameters are taken to be special values, the solitary wave 

solutions are derived from the exact traveling wave solutions. It 

is shown that extended Jacobian elliptic function expansion 

method provides an effective and a more powerful 

mathematical tool for solving nonlinear evolution equations in 

mathematical physics. Comparison between our results and the 

well-known results will be presented. 
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1. INTRODUCTION 
The nonlinear partial differential equations of mathematical 

physics are major subjects in physical science [1]. Exact 

solutions for these equations play an important role in many 

phenomena in physics such as fluid mechanics, 

hydrodynamics, Optics, Plasma physics arid so on. Recently 

many new approaches for finding these solutions have been 

proposed, for example, tanh - sech method [2]-[4], extended 

tanh - method [5]-[7], sine - cosine method [8]-[10], 

homogeneous balance method [11, 12], F-expansion method 

[13]-[15], exp-function method [16, 17], trigonometric function 

series method [18], (
𝐺 ,

𝐺
)-expansion method [19]-[22], Jacobi 

elliptic function method [23]-[26],and so on. 

The objective of this article is to investigate more applications 

than obtained in [23]-[26] to justify and demonstrate the 

advantages of extended Jacobian elliptic function expansion 

method. Here, we apply this method to (2+l)-dimensional 

soliton breaking equation [27] and (3+l)-dimensional 

Kadomstev-Petviash-vili. 

2. DESCRIPTION OF METHOD 
Consider the following nonlinear evolution equation 

F(u, ut, ux, utt, uxx: ....) = 0,    (2.1) 

where F is polynomial in u(x,t} and its partial derivatives in 

which the highest oreder derivatives and nonlinear terms are 

involved.  In the following, we give the main steps of this 

method [23] -[26]  

Step l. Using the transformation 

𝑢 =  𝑢(𝜉),    𝜉 = 𝑥 −  𝑐𝑡,   (2.2) 

where k and c are the wave number and wave speed, to reduce 

Eq.(2.1) to the following  

ODE: 

𝑃(𝑢, 𝑢′ , 𝑢′′′ , … . ) =  0,    (2.3) 

where P is a polynomial in 𝑢(𝜉)and its total derivatives, while ' 

= 
𝑑 ;

𝑑𝜉
. 

Step2. Making good use of extended Jacobian elliptic 

functions, we assume that (2.3) has the 

solutions in these forms: 

𝑢(𝜉) =  𝑎0 +   𝑓𝑖
𝑗−1𝑁

𝑗=1 (𝜉) 𝑎𝑗𝑓𝑗 (𝜉) + 𝑏𝑗𝑔𝑗 (𝜉) , 𝑖 = 1,2,3,…

     (2.4) 

With 

𝑓1(𝜉) =  𝑠𝑛𝜉, 𝑔1(𝜉) =  𝑐𝑛𝜉, 

𝑓2(𝜉) =  𝑠𝑛𝜉, 𝑔2(𝜉) =  𝑑𝑛𝜉, 

𝑓3(𝜉) =  𝑛𝑠𝜉, 𝑔3(𝜉) =  𝑐𝑠𝜉, 

𝑓4(𝜉) =  𝑛𝑠𝜉, 𝑔4(𝜉) =  𝑑𝑠𝜉, (2.5) 

𝑓5(𝜉) =  𝑠𝑐𝜉, 𝑔5(𝜉) =  𝑛𝑐𝜉, 

𝑓6(𝜉) =  𝑠𝑑𝜉, 𝑔6(𝜉) =  𝑛𝑑𝜉, 

where 𝑠𝑛𝜉, 𝑐𝑛𝜉, 𝑑𝑛𝜉, are the Jacobian elliptic sine function, 

The Jacobian elliptic cosine function and the Jacobian elliptic 

function of the third kind and other Jacobian functions which is 

denoted by Glaisher's symbols and are generated by these three 

kinds of functions, namely 

𝑛𝑠𝜉 =
1

𝑠𝑛𝜉
, 𝑛𝑐𝜉 =  

1

𝑐𝑛𝜉
, 𝑛𝑑𝜉 =

1

𝑑𝑛𝜉
, 𝑠𝑐𝜉 =

𝑐𝑛𝜉

𝑠𝑛𝜉
, 

𝑐𝑠𝜉 =
𝑠𝑛𝜉

𝑐𝑛𝜉
, 𝑑𝑠𝜉 =  

𝑑𝑛𝜉

𝑠𝑛𝜉
, 𝑠𝑑𝜉 =

𝑠𝑛𝜉

𝑑𝑛𝜉
,  

that have the relations 

sn2𝜉 + cn2𝜉 = I, dn2𝜉 + m2sn2𝜉 = 1, ns2𝜉 = 1 + cs2𝜉,         (2.7) 

ns2𝜉 = m2 + ds2𝜉, sc2𝜉 + 1 = nc2𝜉, m2sd2 + 1 = nd2𝜉  

with the modulus m (0 < m < 1). In addition we know that 

𝑑

𝑑𝜉
𝑠𝑛𝜉 = 𝑐𝑛𝜉𝑑𝑛𝜉,

𝑑

𝑑𝜉
𝑐𝑛𝜉 = −𝑠𝑛𝜉𝑑𝑛𝜉,

𝑑

𝑑𝜉
𝑑𝑛𝜉 =

−𝑚2𝑠𝑛𝜉𝑐𝑛𝜉              (2.8) 

The derivatives of other Jacobian elliptic functions are obtained 

by using Eq.(2.8). To balance the highest order linear term with 

nonlinear term we define the degree of u as D[u] = n which 
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gives rise to the degrees of other expressions as 

𝐷  
𝑑𝑞𝑢

𝑑𝜉𝑞
 = 𝑛 + 𝑞,    𝐷  𝑢𝑝  

𝑑𝑞𝑢

𝑑𝜉𝑞
 

8

 = 𝑛𝑝 + 𝑠(𝑛 + 𝑞). 

(2.9) 

According the rules, we can balance the highest order linear 

term and nonlinear term in Eq.(2.3) so that n in Eq.(2.4) can be 

determined. 

In addition we see that when m ⇒ 1, sn𝜉, cn𝜉, and dn𝜉 

degenerate as tanh𝜉, sech𝜉, cosech𝜉, respectively, while when 

therefore Eq.(2.5) degenerate as the following forms 

𝑢(𝜉) = 𝑎0 +  𝑡𝑎𝑛𝑕𝑗−1(𝜉) 𝑎𝑗 𝑡𝑎𝑛𝑕(𝜉)  + 𝑏𝑗 𝑠𝑒𝑐𝑕(𝜉) 

𝑁

𝑗=1

, 

(2.10) 

𝑢(𝜉) = 𝑎0 +  𝑐𝑜𝑡𝑕𝑗−1(𝜉) 𝑎𝑗 𝑐𝑜𝑡𝑕(𝜉)  +  𝑏𝑗 𝑐𝑜𝑡𝑕(𝜉) 

𝑁

𝑗=1

, 

(2.11) 

𝑢(𝜉) = 𝑎0 +  𝑡𝑎𝑛𝑗−1(𝜉) 𝑎𝑗 𝑡𝑎𝑛(𝜉)  +  𝑏𝑗 𝑠𝑒𝑐(𝜉) 

𝑁

𝑗=1

, 

(2.12) 

𝑢(𝜉) = 𝑎0 +  𝑐𝑜𝑡𝑗−1(𝜉) 𝑎𝑗 𝑐𝑜𝑡(𝜉)  +  𝑏𝑗 𝑐𝑠𝑐(𝜉) 

𝑁

𝑗=1

, 

  (2.13) 

Therefore the extended Jacobian elliptic function expansion 

method is more general than sine-cosine method, the ton-

function method and Jacobian elliptic function expansion 

method. 

3. APPLICATION 
Here, we will apply extended Jacobian elliptic function 

expansion method described in sec.2 to find the exact traveling 

wave solutions and then the solitary wave solutions for the 

following nonlinear systems of evolution evolution equations. 

3.1-Example 1: The (2+l)-dimensional 

breaking soliton equations 
Let us consider the (2+l)-dimensional breaking soliton 

equations [27]: 

 
𝑢𝑡 + 𝛼𝑢𝑥𝑥𝑦 + 4𝛼𝑢𝑣𝑥 + 4𝛼𝑢𝑥𝑣 = 0,

𝑢𝑦 = 𝑣𝑥 ,
  

where a is known constant. Eqs.(3.1) describes the (2+l)-

dimensional interaction of a Riemann wave propagating along 

the y-axis with along wave along the x-axis. In the past years, 

many authors have studied Eqs.(3.1). For instance, Zhang has 

successfully extended the generalized auxiliary equation 

method of the (2+l)-dimensional breaking soliton equations in 

[28]. Some soliton-like solutions were obtained by the 

generalized expansion of Riccati equation in [29]. Recently, a 

class of periodic wave solutions were obtained by the mapping 

method in [30]. Two classes of new exact solutions were 

obtained by the singular manifold method in [31]. Using the 

wave variable 𝜉 = x + y − ct and proceeding as before we find 

 
−𝑐𝑢′ + 𝑎𝑢′′′ + 4𝛼𝑢𝑣 ′ + 4𝛼𝑢′𝑣 = 0,

𝑢′ = 𝑣 ′ ,
  

 

Integrating the second equation in the system and neglecting 

constant of integration we find 

u = v.      (3.3) 

Substituting (3.3) into the first equation of the system and 

integration we find 

-cu + 4𝛼𝑢2 + au" = 0.    (3.4) 

Balancing u2 and u" in Eq.(3.4) yields,  2N = N + 2⇒N = 2. 

Consequently, we get the formal solution 

𝑢(𝜉) = 𝑎0 + 𝑎1𝑠𝑛 + 𝑏1𝑐𝑛 + 𝑎2𝑠𝑛
2 + 𝑏2𝑠𝑛𝑐𝑛,  (3.5) 

where ao, a1, a2 are constants to be determined, such that a2 ≠ 0 

or b2 ≠ 0. It is easy to see that 

u' = a1cn dn — b1sn dn + 2 dna2sn cn — 2 dnb2sn2 + dnb2,  
    (3.6) 

𝑢′′ = 𝑚2𝑠𝑛𝑎1 + 2𝑎1𝑠𝑛
3𝑚2 + 2𝑚2𝑠𝑛2𝑐𝑛𝑏1 − 4𝑎2𝑚

2𝑠𝑛2 +
6𝑎2𝑠𝑛

4𝑚2 + 6𝑚2𝑠𝑛3𝑐𝑛𝑏2 −𝑚2𝑠𝑛𝑐𝑛𝑏2 − 𝑎1𝑠𝑛 − 𝑏1𝑐𝑛 +
2𝑎2 − 4𝑎2𝑠𝑛

2 − 4𝑏2𝑠𝑛𝑐𝑛.     
 (3.7) 

Substituting (3.5) arid (3.7) into Eq.(3.4) arid equating all the 

coefficients of sn4, sn3cn, sn3, sn2cn, sn2, sncn, sn, en, sn° to 

zero, we deduce respectively 

4 𝛼 (a2
2 - b2

2) + 6𝛼𝛼2m
2 = 0,     

    (3.8) 

8𝛼𝑎2𝑏2 + 6𝛼𝑚2𝑏2 = 0,    

    (3.9)   

4 a (-2 b1b2 + 2 a1 a 2) + 2 𝛼 a1m
2 = 0, 

    (3.10) 

4 a (2a1b2 + 2b1a2) + 2 𝛼 b1m
2 = 0,  

    (3.11) 

-ca2 + 4 𝛼 (a1
2 – b1

2 + 2 a0a2 + b2
2) + 𝛼 (-4 a2m

2 - 4 a2) = 0,   

(3.12) 

-cb2 + 4 𝛼 (2 a1b1 + 2 a0b2) + a (-m2b2 - 4 b2) = 0,            (3.13) 

-ca1 +4a (2b1b2 + 2a0a1) + 𝛼 (-m2a1 –a1) = 0,             (3.14) 

-cb1 + 8 𝛼 a0b1-ab1 = 0,                        (3.15)  

-ca0 + 4 𝛼 (a0
2 + b1

2) +2 𝛼 a2 = 0.  (3.16)  

From Eqs.(3.8)-(3.16), we have the following results: 

𝑐 = 8𝛼  
1

2
𝑚2 +

1

2
−

1

2
 𝑚4 −𝑚2 + 1 − 4𝛼𝑚2 − 4𝛼, 

𝑎0 =
1

2
𝑚2 +

1

2
−

1

2
 𝑚4 −𝑚2 + 1, 𝑎1 = 𝑏1 = 𝑏2 = 0, 𝑎2

=
−3

2
𝑚2 . 

So that the exact solution of Eq.(3.4) 

𝑢(𝜉) =
1

2
𝑚2 +

1

2
−

1

2
 𝑚4 −𝑚2 + 1 −

3

2
𝑚2𝑠𝑛2,             (3.17) 

now, if m → 1 we can obtain the hyperbolic solution: 

𝑢(𝜉) =
1

2
−

3

2
𝑡𝑎𝑛𝑕2(𝜉),               (3.18) 
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Figure 1: solution of Eq.(3.18) 

3.2 Example 2: The (3+l)-dimensional KP 

equation 
We next consider the (3+l)-dimensional KP equation 

uxt + 6u2
x + 6uuxx - uxxxx - uyy - uzz = 0.    

(3.19) 

Xie et al. [32] obtained non-traveling wave solutions by the 

improved tanh function method, in which they introduced a 

generalized Riccati equation and gained its 27 new solutions. 

In this paper, we will construct new non-traveling wave 

solution of Eq.(2.1). As a result, new non-traveling wave 

solutions including soliton-like solutions and periodic solutions 

of Eq.(2.1) are obtained. A generalized variable-coefficient 

algebraic method with computerized symbolic computation is 

developed to deal with (3+l)-dimensional KP equation with 

variable coefficients in[33]. Cheri et al. [34]study (3+l)-

dimensional KP equation by using the new generalized 

transformation in homogeneous balance method. Using the 

wave variable 𝜉 = x + y + z — ct, the Eq.(3.19) is carried to an 

ODE of the form 

- (c + 2) u" + 6 (u')2 + 6uu" - u'" = 0.    

(3.20) 

 Integrating twice and setting the constants of integration to 

zero, we obtain 

- (c + 2) u + 3u2 - u" = 0.    (3.21) 

Balancing u" and u2 in Eq.(3.21) yields,   N + 2 = 2N    N = 2. 

Consequently, we get the formal solution (3.5). 

Substituting (3.5)-(3.7) into Eq.(3.21) and equating the 

coefficients of sn4, sn3cn, sn3, sn2cn, sn2, sncn, sn, en, sn° to 

zero, we respectively obtain 

3a2
2 -3b2

2-6a2m
2 = 0,   

(3.22) 

6a2b2 – 6m2b2= 0,    

(3.23) 

− 6 b1b2 + 6 a1a2 - 2 m2a1 = 0,                                         

(3.24) 

6 a1b2 + 6 b1a2 - 2 b1m
2 = 0,                                         

(3.25) 

− (c + 2) a2 + 3 a1
2 - 3 b1

2 + 6 a0a2 + 3 b2
2 + 4 a2m

2 + 4 a2 = 0,

  

(3.26) 

− (c + 2) b2 + 6 a1b1 + 6 a0b2 + m2b2 + 4 b2 = 0,   

(3.27) 

− (c + 2) a1 + 6 b1b2 + 6 a0a1 + m2 a1 + a1 = 0,  

 (3.28) 

−  c + 2 b1 + 6a0b1 + b1 = 0, 

(3.29) 

− (c + 2) a0 + 4 𝛼 (a0
2 + b1

2) - 2 a2 = 0.   

 (3.30)  

From Eqs.(3.22)-(3.30), we have the following results: 

𝑐 = 2 + 6
𝑚2 + 1 +  𝑚4 − 4𝑚2 + 1 + 4𝛼𝑚2

−3 + 2𝛼
+ 4𝑚2, 

𝑎0 =
𝑚2 + 1 +  𝑚4 − 4𝑚2 + 1 + 4𝛼𝑚2

−3 + 2𝛼
, 𝑎1 = 𝑏1 = 𝑏2

= 0, 𝑎2 = 2𝑚2 

So that the exact solution of Eq.(3.21) 

𝑢(𝜉)=
𝑚2+1+ 𝑚4−4𝑚2+1+4𝛼𝑚2

−3+2𝛼
+ 2𝑚2𝑠𝑛2,  

(3.31) 

now, if m —> 1 we can obtain the hyperbolic solution: 

𝑢(𝜉)=
2+ −4+4𝛼

−3+2𝛼
+ 2, 𝑡𝑛𝑎𝑕2 𝜉 ,   

(3.32) 

 

Figure 2: solution of Eq.(3.32) 

4. CONCLUSION 
Extended Jacobian elliptic function expansion method has been 

successfully used to find the exact traveling wave solutions of 

nonlinear evolution equations. As an application, the traveling 

wave solutions for (2+l)-dimensional soliton breaking equation 

and (3+l)-dimensional Kadomstev-Petviash-vili which have 

been constructed using the modified simple equation method. 

Let us compare between our results obtained in the present 

article with the well-known results obtained by other authors 

using different methods as follows: Our results of (2+l)-

dimensional soliton breaking equation and (3+l)-dimensional 

Kadomstev-Petviash-viliare are new and different from those 

obtained in [35], [36]. It can be concluded that this method is 

reliable and propose a variety of exact solutions NPDEs. The 

performance of this method is effective and can be applied to 

many other nonlinear evolution equations. 

  



International Journal of Computer Applications (0975 – 8887)  

Volume 109 – No. 12, January 2015 

4 

5. REFERENCES 
[1] M. J. Ablowitz, H. Segur, Solitions and Inverse Scattering 

Transform, SIAM, Philadelphia 1981. 

[2] W. Malfliet, Solitary wave solutions of nonlinear wave 
equation. Am. J. Phys., 60 (1992) 650-654. 

[3] W. Malfliet, W. Hereman. The tanh method: Exact 

solutions of nonlinear evolution and wave equations, 
Phys.Scr., 54 (1996) 563-568. 

[4] A. M. Wazwaz, The tanh method for travelling wave 

solutions of nonlinear equations, Appl. Math. Comput., 
154 (2004) 714-723. 

[5] S. A. EL-Wakil, M.A.Abdou, New exact travelling wave 

solutions using modified ex-tented tanh-function method, 

Chaos Solitons Fractals, 31 (2007) 840-852. 

[6] E. Fan, Extended tanh-function method and its 

applications to nonlinear equations, Phys. Lett. A 277 
(2000) 212-218. 

[7] A. M. Wazwaz, The extended tanh method for abundant 

solitary wave solutions of nonlinear wave equations, 
Appl. Math. Comput., 187 (2007) 1131-1142. 

[8] A. M. Wazwaz, Exact solutions to the double sinh-Gordon 

equation by the tanh method and a variable separated 

ODE. method, Comput. Math. Appl., 50 (2005) 1685-
1696. 

[9] A. M. Wazwaz, A sine-cosine method for handling 

nonlinear wave equations, Math. Comput. Modelling, 40 
(2004) 499-508. 

[10] C. Yan, A simple transformation for nonlinear waves, 

Phys. Lett. A 224 (1996) 77-84. 

[11] Emad. H.M. Zahran and mostafa M. A. Khater. The 

modified simple equation method and its applications for 

solving some nonlinear evolutions equations in 

mathematical physics. Jokull journal- Vol. 64. Issue 5 - 
May 2014. 

[12] M. L. Wang, Exct solutions for a compound KdV-Burgers 

equation, Phys. Lett. A 213 (1996) 279-287. 

[13] M. A. Abdou, The extended F-expansion method and its 

application for a class of nonlinear evolution equations, 
Chaos Solitons Fractals, 31 (2007) 95-104. 

[14] Y. J. Ren, H. Q. Zhang, A generalized F-expansion 

method to find abundant families of Jacobi elliptic 

function solutions of the (2+l)-dimensional Nizhnik-

Novikov-Veselov equation, Chaos Solitons Fractals, 27 
(2006) 959-979. 

[15] J. L. Zhang, M. L. Wang, Y. M. Wang, Z. D. Fang, The 

improved F-expansion method and its applications, 
Phys.Lett.A 350 (2006) 103-109. 

[16] J. H. He, X. H. Wu, Exp-function method for nonlinear 

wave equations, Chaos Solitons Fractals 30 (2006) 700-

708. 

[17] H. Aminikhad, H. Moosaei, M. Hajipour, Exact solutions 

for nonlinear partial differential equations via Exp-

furictiori method, Numer. Methods Partial Differ. 
Equations, 26 (2009) 1427-1433. 

[18] Z. Y. Zhang, New exact traveling wave solutions for the 

nonlinear Klein-Gordon equation, Turk. J. Phys., 32 

(2008) 235-240. 

[19] E.H.M.Zahran and Mostafa M.A. khater, Exact solutions 

to some nonlinear evolution equations by the (
𝐺 ′

𝐺
) -

expansion method equations in mathematical physics, 
Jokull Journal, Vol. 64, No. 5; May 2014. 

[20] Emad H. M. Zahran and Mostafa M. A. Khater, Exact 

solutions to some nonlinear evolution        equations by 

using (G'/G)-expansion method, Jokull journal- Vol. 64. 
Issue 5 - May 2014 

[21] E. M. E. Zayed and K. A. Gepreel, The (
𝐺 ′

𝐺
)- expansion 

method for finding traveling wave solutions of nonlinear 

partial differential equations in mathematical physics, J. 
Math. Phys., 50 (2009) 013502-013513. 

[22] E. M. E. Zayed, The (
𝐺 ′

𝐺
)- expansion method and its 

applications to some nonlinear evolution equations in 

mathematical physics, J. Appl. Math. Computing, 30 
(2009) 89-103. 

[23] C. Q. Dai , J. F. Zhang, Jacobian elliptic function method 

for nonlinear differential difference equations, Chaos 
Solutions Fractals, 27 (2006) 1042-1049. 

[24] Emad H. M. Zahran and Mostafa M. A. Khater, Exact 

Traveling Wave Solutions for the System of Shallow 

Water Wave Equations and Modified Liouville Equation 

Using Extended Jacobian Elliptic Function Expansion 

Method.  American Journal of Computational 
Mathematics (AJCM) Vol.4 No.5 2014. 

[25] S. Liu, Z. Fu, S. Liu, Q.Zhao, Jacobi elliptic function 

expansion method and periodic wave solutions of 
nonlinear wave equations, Phys. Lett. A 289 (2001) 69-74. 

[26] X. Q. Zhao, H.Y.Zhi, H.Q.Zhang, Improved Jacobi-

function method with symbolic computation to construct 

new double-periodic solutions for the generalized Ito 
system, Chaos Solitons Fractals, 28 (2006) 112-126. 

[27] R. Hirota, Y. Ohta, Hierarchies of coupled soliton 

equations I, J phys. Soc. Jpn. 60.(1991) 798. 

[28] S. Zhang, New exact non-traveling wave and coefficient 

function solutions of the (2+1)-dimensional breaking 
soliton equations, Phys. Lett. A. 368 (2007) 470. 

[29] Y. Cheng, B. Li, Symbolic computation and construction 

of soliton-like solutions to the (2+l)-dimensional breaking 

soliton equation, Commun. Theor. Phys. (Beijing, China) 

40 (2003) 137. 

[30] Y. Z. Peng, New exact solutions for (2+l)-dimensional 

breaking soliton equation, Commun. Theor. Phys. 
(Beijing, China) 43 (2005) 205. 

[31] Y. Z. Peng, E. V. Krishna, Two classes of new exact 

solutions to (2+l)-dimensional breaking soliton equation, 
Commun. Theor. Phys. (Beijing, China) 44 (2005) 807. 

[32] F. D. Xie, Y. Zhang, Z. S. Lu, Symbolic computation in 

non-linear evolution equation: application to (3+1) 

dimensional Kadomtsev-Petviashvili equation, Chaos, 
Solitons Fractals 24 (2005) 257. 

[33] H. Zhao, C. Bai, New doubly periodic and multiple 

soliton solutions of the generalized (3+l)-dimensional 

Kadomtsev-Petviashvilli equation with variable 

coefficients, Chaos, Solitons Fractals 30 (2006) 217. 

[34] Y. Chen, Z. Yan, H. Zhang, New explicit solitary wave 

solutions for (2+l)-dimensional Boussinesq equation and 

(3+l)-dimensional KP equation Phys. Lett. A. 307 (2003) 
107. 

[35] Ahmet Bekir, Ferhat Uygun, Exact traveling wave 

solutions of nonlinear evolution equations by using the 
𝐺 ′

𝐺
 expansion method, Arab Journal of Mathematical 

Sciences 18 (2012) 73-85. 

[36] E.H.M.Zahran and Mostafa M.A. khater, The modified 

simple equation method and its applications for solving 

some nonlinear evolution equations in mathematical 

physics, Jokull Journal, Vol. 64, No. 5; May 2014. 

IJCATM : www.ijcaonline.org 


