
International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 11, January 2015

20

Comparative Analysis of Energy Usage of Hash

Functions in Secured Wireless Sensor Networks

Henry Nunoo-Mensah
Department of Computer

Engineering
 KNUST, Kumasi - Ghana

Kwame Osei Boateng
 Department of Computer

Engineering
KNUST, Kumasi - Ghana

James Dzisi Gadze
Department of Electrical and

Electronics Engineering
KNUST, Kumasi - Ghana

ABSTRACT

Security in wireless sensor network (WSN) has become an

increasing necessity due to the diverse application areas being

implemented. Application areas such as military surveillance

and environmental monitoring need to be guided against node

tampering and node subversion. Works carried out by wireless

sensor network researchers pertaining to increasing the

security of the network is significant. Node authentication is a

suitable technique against node tampering and the

introduction of false nodes. A way of authenticating nodes is

by using Message Authentication Code (MAC); this is

implemented using hash functions. The limited energy

available to sensor nodes, have to be considered when

selecting a hash function for implementation. In this paper,

comparative analysis of some hash functions (MD-5, SHA-1,

SHA-224, SHA-256, SHA-384 and SHA-512) were carried

out. The functions were selected based on their popularity.

The analysis was done to identify a short-list of hash functions

that can be used when WSN hash related security techniques

are being designed. The short-listed functions so identified

were further analyzed in terms of their complexities. This was

carried out by executing compiled codes and averaging the

CPU time spent in executing a common scenario. The result

of the analyses showed SHA-224 as the best hash function to

be used when designing energy-conscious secured WSNs.

General Terms

Wireless Sensor Networks, Security, Hash Functions

Keywords

Hash Functions, Wireless Sensor Network, Security,

Execution time, Complexity, SHA-224, SHA-1, Analysis

1. INTRODUCTION
Wireless Sensor Networks have gained tremendous pace

considering the rate at which they are being used for many

challenging applications. The ubiquitous and disposable

nature of these sensor nodes, make them easier and less costly

to be deployed in harsh and inaccessible areas. The deployed

nodes are able to measure and transmit data from the field for

numerous environmental and strategic reasons. Sensor nodes

deployed in sensor networks, are mostly deployed with very

little or no supervision. Under the above mentioned

circumstances, the nodes are physically made accessible to

possible adversaries and are more vulnerable to security

breaches. WSNs are subject to security threats at virtually all

layers of the communication protocol stack [1].

 Cryptography is a potent remedy to a lot of the security issues

faced by network communications. Concerns such as

Confidentiality, Integrity and Authentication are tackled using

cryptography. Security techniques implemented in traditional

wireless networks cannot be easily ported to wireless sensor

networks due to the energy constraints and other unique

characteristics such as the infrastructureless nature of WSNs

[2].

Hashes are able to provide authentication of communication

entities and also help in checking the integrity of messages

traversing the network. Attacks carried out by adversaries

with the intent of altering data traversing the network can be

mitigated by, using Hash Message Authentication Code

(HMAC). In situations not involving confidentiality; the use

of symmetric and asymmetric encryption algorithms can be a

drain on the energy available to the sensor nodes. When

HMACs are to be used, it is prudent that energy efficient hash

functions are selected to help increase the lifespan of

deployed nodes in the field. Fig. 1 shows the high-level view

of hash function whilst fig.2 shows the detailed view of the

workings of a typical hash function.

Figure 1: High-level view of an iterative hash function

Figure 2: Detailed view of an iterative hash function

International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 11, January 2015

21

Most hash functions (h) are designed as iterative processes.

These functions hash variable length input data by

successively processing input blocks of fixed sizes. A hash

input x of arbitrary finite length is divided into fixed-length r-

bit blocks xi. The preprocessing stage involves padding of the

input with extra bits as necessary to attain an overall bit length

which is a multiple of the block length r. The xi blocks now

serve as inputs to an internal fixed-size hash function f, the

compression function of h, which computes a new

intermediate result of bit length n for some fixed n, as a

function of the previous n-bit intermediate result and the next

input block xi. Hi denotes the partial result after stage i, the

general process of an iterated hash function with input x =

x1x2x3…xi can be modeled as:

H0 = IV; Hi = f (Hi-1, xi), 1 ≤ i ≤ t; h(x) = g(Ht) [3]

Hi-1 serves as an n-nit chaining variable between stage i-1 and

stage i. H0 is a predefined stating value or initialization value

(IV). There is an optional output transformation g which is

used in the final step to map the n-bit chaining variable to an

m-bit result g(Ht); g is often the identity mapping g(Ht) = Ht.

Hash functions are distinguished by the nature of the

preprocessing, compression function and the output

transformation [3].

This paper conducts a study to determine amongst the MD-5

and SHA family of hash functions, the appropriate hash

function for designing secured WSNs that are energy-thrifty.

The paper performs analysis on the selected hashes to help

future research into security techniques involving hash

functions.

This rest of this paper is organized as follows. Section II

discusses research works that have been proposed utilizing

hashes to provide security in WSNs. Section III describes

briefly the selected hash functions and the reason why they

have been selected. Sections IV and V outlines the procedure

and analysis carried out during the study. Finally section VI

concludes this paper by recommending one of the candidate

hash functions for possible use by researchers in future works.

2. RELATED WORK
The succeeding paragraphs in this section touch on security

related implementations of hashes for wireless sensor

network. It is to highlight the fact that hashes are becoming

widely used in security schemes. It also shows that, due to

their reduced complexity, they constitute the prudent energy

efficient option compared to encryption techniques.

Deng et al proposed an intrusion tolerant routing protocol in

wireless sensor networks (INENS). It works by adapting a

routing-based approach to security in WSNs [4]. The

proposed protocol prevents Denial of Service (DoS) attacks

by not allowing individual nodes to broadcast to the entire

network. The only device allowed to broadcast is the base

station which is authenticated using a one-way hash function

so as to prevent the possible masquerading of a malicious

node. The protocol increases the computation and

communication requirements of the base station but not at the

field nodes.

Du et al also proposed a one-way hash-function for public key

authentication [5]. The proposed schemes is said to be more

efficient than signature verification on certificates. The

signature verification operation is a very expensive operation

for the sensors which also involves a trusted third-party

Certificate Authority (CA). The scheme however, requires

some hash values to be distributed at a key pre-distribution

stage. This phenomenon raises a serious concern against

scalability of the network when new nodes are added to the

initial network deployment.

Delgado-Mohatar et al proposed an authentication and key

establishment scheme that is energy efficient and especially

suited to sensor networks [6]. The proposed scheme requires

keyed-hash functions (HMAC) and encryption algorithms.

The scheme focuses more on confidentiality and

authentication. It does not require expensive public key

making it light-weight. The scheme is made up of three

phases; key pre-distribution phase, network initialization

phase and finally authentication protocol. The key pre-

distribution requirement hinders the ability of the network to

easily scale.

3. HASHING CANDIDATES
The candidate hash functions under consideration in this paper

are presented and explained in this section. They are MD-5,

SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512. These

hash function were selected based on their popularity. Table 1

shows a summary of properties of the candidate hash

functions.

3.1 MD-5
Message Digest 5 (MD-5) was developed in 1991 by Ron

Rivest. It takes an input of any length and produces a fixed

length output digest of 128-bit. The input data that are

received by MD-5 is processed in 512-bit block sizes. The

blocks are further divided into 16 sub-blocks, each of size 32-

bit. The weakness of MD-5 is pointed out in 2004 [7]. The

weakness identified by [7] concerning the MD-5 algorithm

was that collisions frequently occur on MD-5 hashes. The

design of MD-5 with unlimited input message sizes makes it

collision-prone.

3.2 SHA-1
Secure Hash Algorithm–1 (SHA-1) [8] was developed by the

National Institute of Standards and Technology (NIST) in

1995 as a revision of the original SHA. SHA-1 has a

maximum input data length of 64-bit as opposed to the no

restriction found in MD-5. The input restriction is said to be

one of the strong points of the algorithm since it helps ensure

a reduction in the number of collisions due to the input

restrictions. SHA-1 produces a fixed output of 160-bit. SHA-1

like MD-5 processes inputs in 512-bit blocks, which are

further divided into 16 sub-blocks each of size 32 bits. SHA-1

carries out 80 steps of computation to arrive at the final hash

value.

3.3 SHA-224
Secure Hash Algorithm-224 (SHA-224) [9] was announced

by NIST in 2004. SHA-224 also has a maximum input data

length of 64-bit. A fixed hash value or digest of 224 bits is

outputted from the algorithm. SHA-224 also processes inputs

in 512-bit blocks which are further divided into sub-block

divisions each of a length of 32 bits. SHA-224 performs 64

steps in the computation of the final hash value.

3.4 SHA-256
Secure Hash Algorithm-256 (SHA-256) [9] operates on 512-

bit message blocks which are further divided into 32-bit

words. It accepts 64-bit input and outputs a digest of fixed

length of 256 bits. It also performs a total of 64 steps before

the hash values are generated.

3.5 SHA-384
SHA-384 [9] accepts a maximum input of 128 bits and

produces a fixed output digest size of 384 bits. It operates on

International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 11, January 2015

22

1024-bit blocks which are further sub-divided into 64-bit

word sizes. It goes through a total of 80 steps to produce the

final hash value.

3.6 SHA-512
SHA-512 [9] like SHA-384 accepts a maximum of 128-bit

input message. It however, produces an output message digest

of 512 bits. It operates on inputs in 1024-bit blocks each of

which is further sub-divided into 64-bit words.

Table 1. Candidate hash function summarization

 MD-5 SHA

-1

SHA

-224

SHA

-256

SHA

-384

SHA

-512

Message

Digest

Size (bit)

128

160

224

256

384

512

Message

Size

Varying

<264

<264

<264

<2128

<2128

Block

Size (bit)

512

512

512

512

1024

1024

Word

Size (bit)

32

32

32

32

64

64

Number

of Steps

64

80

64

64

80

80

4. METHODOLOGY
Analyses carried out in this paper include a combination of

consideration from literature and simulation of short-listed

hash functions. Initial comparisons were done based on the

knowledge from previous works carried out concerning the

current state of the hash functions and their suitability for

typical sensor networks based on the TinySec security scheme

[10]. Next sensor network link layer Protocol Data Unit

(PDU) was used to carry out specific analysis. The link layer

PDU was chosen because it is the last point before the data

accesses the transmission medium and thus it is the best

option to focus on. Finally, simulations were carried out on

the short-list of hash functions. The hash functions were

implemented on a virtual computer using optimized codes of

the hash functions. The implementations were fed with the

input “wireless sensor networks”. The time taken by each

hash function to perform the hashing operation was noted.

The assumption was that the runtimes are measures of the

hash algorithm’s time complexity, which affects the compute

times of the sensor nodes. Table 2 below shows the

parameters of the virtual computer.

Table 2. Parameters of virtual computer running the

candidate hash examples

Parameter Value

Operating System Ubuntu 12.04 LTS

Hard Disk Space 8GB

Memory 512MB

Compiler GNU GCC Compiler

The next section details the analysis carried out using existing

literature and also displays the CPU execution times of each

short-listed candidate.

5. RESULT AND ANALYSIS
MD-5 hash function is ruled out from the list of potential hash

functions because even though it is faster in its operation, the

unlimited input length makes it very prone to collisions [7].

This is a very critical concern when it comes to services such

as authentication.

Shown in fig. 3 is an illustration of the packet format of the

TinySec security scheme.

Fig. 3: Packet format for TinySec-AE

In fig. 3 it is clear that the data field has a maximum size of 29

bytes. For authentication purposes of sensor nodes, therefore,

a hash function that produces a message digest that is not

more than 29 bytes needs to be used. From table 1 digest sizes

of 160, 224, 256, 384 and 512 bits are the outputs for SHA-1,

SHA-224, SHA-256, SHA-384, and SHA-512 respectively.

These output sizes translate to 20, 28, 32, 48, 64 bytes

respectively. Based on these output data byte values the hash

functions, SHA-256, SHA-384 and SHA-512, are also ruled

out of the possible candidates since their digest sizes are each

beyond the 29-byte maximum acceptable data size per packet.

The remaining hash functions which meet the data size

criterion are SHA-1 and SHA-224.

When codes of both SHA-1 and SHA-224 were compiled and

executed on a virtual computer up to ten times. Figs. 4 - 6

show graphs displaying the execution times recorded. These

graphs show that in seven out of the ten cases SHA-224

performed better than SHA-1. The average execution times

recorded are shown in table 3.

Fig. 4: Execution time (Real-time)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1 2 3 4 5 6 7 8 9 10

SHA-224 Real
Time

SHA-1 Real
Time

International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 11, January 2015

23

Figure 5: Execution time (User-time)

Figure 6: Execution time (System-Time)

Table 3. Average execution time of the compiled hash

functions

Hash Real time User time System time

SHA-1

0.1355s

0.0093s
0.0679s

SHA-224

0.1263s

0.0087s
0.0634s

6. CONCLUSION
In this paper, analyses was performed based on findings in

literature to compile a shortlist from a set of popular hash

functions with the view to determining the most energy-

efficient algorithm to recommend for hash-based security

schemes for WSNs. Finally, the algorithms in the short list

were implemented from their optimized codes and run on a

virtual computer and observed their average runtimes as

measures of their time complexities. From the final analysis, it

is concluded that SHA-224 is the best SHA algorithm for

implementing authentication of sensor nodes in a wireless

sensor network. This is because SHA-224 met the data field

requirement of 29 bytes and also produced a shorter average

execution time as compared to SHA-1.

7. REFERENCES
[1] A. D. Wood and J. A. Stankovic, “Denial of Service in

Sensor Networks,” IEEE Computer, vol. 35, pp. 53–57,

2002.

[2] X. Du and H. Chen, “Security in Wireless Sensor

Networks,” IEEE Wireless Communications, pp. 60-66,

August 2008.

[3] A. Menezes, P. van Oorschot and S. Vanstone,

Handbook of Applied Cryptography. CRC Press Inc,

1997.

[4] J. Deng, R. Han, and S. Mishra, “INSENS: Intrusion-

tolerant routing in wireless sensor networks,” Technical

Report CU-CS-939- 02, Department of Computer

Science, University of Colorado at Boulder, November

2002.

[5] W. Du, R. Wang, and P. Ning, “An efficient scheme for

authenticating public keys in sensor networks,” In

Proceedings of the 6th ACM International Symposium

on Mobile Ad hoc Networking and Computing, New

York, ACM Press, 2005, pp. 58-67.

[6] O. Delgado-Mohatar, A. Fúster-Sabater, J. M. Sierra, “A

light-weight authentication scheme for wireless sensor

networks,” Ad Hoc Networks, Vol. 9, No. 5, Jul. 2011,

pp. 727-735

[7] X. Wang, D. Feng, X. Lai and H. Yu, "Collisions for

Hash Functions," in Crypto, 2004

[8] A. A. Putri Ratna, P. D. Purnamasari, A. Shaugi and M.

Salman, “Analysis and comparison of MD5 and SHA-1

algorithm implementation in Simple-O authentication

based security system,” Int. Conf. on QiR (Quality in

Research), pp.99-104, Jun. 2013

[9] Description of SHA-256, SHA-384, SHA-512, Available

at:http://csrc.nist.gov/groups/STM/cavp/documents/shs/s

ha256-384-512.pdf

[10] C. Karlof, N. Sastry and D. Wagner, “TinySec: A link

layer Security Architecture for Wireless Sensor

Networks,” 2nd ACM Conference on Embedded

Networked Sensor Systems (SenSys) ’04, pp. 162– 175,

Nov. 2004

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

1 2 3 4 5 6 7 8 9 10

SHA-1 User
Time

SHA-224 User
Time

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

1 3 5 7 9

SHA-1 System
Time

SHA-224 System
Time

IJCATM : www.ijcaonline.org

